Many-Body and Single-Body Low-Energy Elastic Positron Scattering by Beryllium Atoms: From Ab Initio to Semiempirical Approaches
Abstract
:1. Introduction
2. Methods and Procedures
2.1. Ab Initio Calculations
2.2. Connecting Polarization, Correlation, and Scattering Length
- (1)
- is representative of the positron–target correlation of the SMC, and from now on, it will be considered a fixed value;
- (2)
- is representative of the electronic correlation of the target as considered in the SMC.
2.3. Semiempirical Approach
2.4. A Final Remark
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HF | Hartree–Fock |
SMC | Schwinger multichannel method |
CGF | Cartesian Gaussian functions |
FCSVM | Fixed-core stochastic variational method |
ST | Static |
AI | Ab initio |
SEMP | Semiempirical |
MP | Model potential |
SCF | Self-consistent field |
GAMESS | General atomic and molecular electronic structure system |
ICS | Integral cross section |
1 | With regard to experimental data for alkaline earth atoms, total cross section data are available for Mg [16]. |
References
- Surko, C.M.; Gribakin, G.; Buckman, S.J. Low-energy positron interactions with atoms and molecules. J. Phys. B At. Mol. Opt. Phys. 2005, 38, R57. [Google Scholar] [CrossRef]
- Kurtz, H.; Jordan, K. Theoretical study of low-energy electron and positron scattering on Be, Mg and Ca. J. Phys. B At. Mol. Phys. 1981, 14, 4361. [Google Scholar] [CrossRef]
- Harris, F.E. Expansion approach to scattering. Phys. Rev. Lett. 1967, 19, 173. [Google Scholar] [CrossRef]
- Arretche, F.; Barp, M.V.; Tenfen, W.; Seidel, E.P. The Hidden Ramsauer-Townsend Effect in Positron Scattering by Rare Gas Atoms. Braz. J. Phys. 2020, 50, 844–856. [Google Scholar] [CrossRef]
- Szmytkowski, R. Theoretical study of low-energy positron scattering on alkaline-earth atoms in the relativistic polarized orbital approximation. J. Phys. II 1993, 3, 183–189. [Google Scholar] [CrossRef]
- Ryzhikh, G.; Mitroy, J.; Varga, K. The structure of exotic atoms containing positrons and positronium. J. Phys. B At. Mol. Opt. Phys. 1998, 31, 3965. [Google Scholar] [CrossRef] [Green Version]
- Bromley, M.W.; Mitroy, J.; Ryzhikh, G. The elastic scattering of positrons from beryllium and magnesium in the low-energy region. J. Phys. B At. Mol. Opt. Phys. 1998, 31, 4449. [Google Scholar] [CrossRef] [Green Version]
- Reid, D.D.; Wadehra, J. Scattering of low-energy electrons and positrons by atomic beryllium: Ramsauer–Townsend effect. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 225211. [Google Scholar] [CrossRef] [Green Version]
- Poveda, L.A.; Assafrão, D.; Mohallem, J.R. Positron elastic scattering from alkaline earth targets. Eur. Phys. J. D 2016, 70, 152. [Google Scholar] [CrossRef]
- Germano, J.S.; Lima, M.A. Schwinger multichannel method for positron-molecule scattering. Phys. Rev. A 1993, 47, 3976. [Google Scholar] [CrossRef]
- Zanin, G.; Tenfen, W.; Arretche, F. Rotational excitation of H2 by positron impact in adiabatic rotational approximation. Eur. Phys. J. D 2016, 70, 179. [Google Scholar] [CrossRef]
- Seidel, E.P.; Barp, M.V.; Tenfen, W.; Arretche, F. Elastic scattering and rotational excitation of Li2 by positron impact. J. Electron Spectrosc. Relat. Phenom. 2018, 227, 9–14. [Google Scholar] [CrossRef]
- Barp, M.V.; Seidel, E.P.; Arretche, F.; Tenfen, W. Rotational excitation of N2 by positron impact in the adiabatic rotational approximation. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 205201. [Google Scholar] [CrossRef]
- da Silva, E.P.; Germano, J.S.; Lima, M.A. Z eff according to the Schwinger multichannel method in positron scattering. Phys. Rev. A 1994, 49, R1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varella, M.T.d.N.; de Carvalho, C.R.; Lima, M.A. The schwinger multichannel method (smc) calculations for zeff were off by a factor of z. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2002, 192, 225–237. [Google Scholar] [CrossRef]
- Stein, T.; Jiang, J.; Kauppila, W.; Kwan, C.; Li, H.; Surdutovich, A.; Zhou, S. Measurements of total and (or) positronium-formation cross sections for positrons scattered by alkali, magnesium, and hydrogen atoms. Can. J. Phys. 1996, 74, 313–333. [Google Scholar] [CrossRef]
- Maroulis, G. Atoms, Molecules and Clusters in Electric Fields: Theoretical Approaches to the Calculation of Electric Polarizability; World Scientific: Singapore, 2006; Volume 1. [Google Scholar]
- de Carvalho, C.R.; do N Varella, M.T.; Lima, M.A.; da Silva, E.P.; Germano, J.S. Progress with the Schwinger multichannel method in positron–molecule scattering. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2000, 171, 33–46. [Google Scholar] [CrossRef]
- Sanchez, S.d.; Arretche, F.; Lima, M. Low-energy positron scattering by CO2. Phys. Rev. A 2008, 77, 054703. [Google Scholar] [CrossRef] [Green Version]
- Lino, J.L. Elastic scattering of positrons by H2O at low energies. Rev. Mex. Física 2014, 60, 156–160. [Google Scholar]
- Moreira, G.M.; da Costa, R.F.; Bettega, M.H. Elastic positron-uracil scattering cross sections. Phys. Rev. A 2021, 103, 012804. [Google Scholar] [CrossRef]
- Arretche, F.; Lima, M. Electronic excitation of H2 by positron impact. Phys. Rev. A 2006, 74, 042713. [Google Scholar] [CrossRef]
- Neto, A.C.; Jorge, F. All-electron double zeta basis sets for the most fifth-row atoms: Application in DFT spectroscopic constant calculations. Chem. Phys. Lett. 2013, 582, 158–162. [Google Scholar] [CrossRef]
- Lindroth, E.; Persson, H.; Salomonson, S.; Mårtensson-Pendrill, A. Corrections to the beryllium ground-state energy. Phys. Rev. A 1992, 45, 1493. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.F. Hartree–Fock Method for Atoms. A Numerical Approach; John Wiley & Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- Barca, G.M.J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J.E.; Fedorov, D.G.; Gour, J.R.; Gunina, A.O.; Guidez, E.; et al. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020, 152, 154102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroulis, G.; Thakkar, A.J. Static hyperpolarisabilities and polarisabilities for Be: A fourth-order Moller-Plesset perturbation theory calculation. J. Phys. B At. Mol. Opt. Phys. 1988, 21, 3819. [Google Scholar] [CrossRef]
- Bransden, B.; Joachain, C.; Plivier, T. Physics of Atoms and Molecules; Pearson Education, Prentice Hall: Hoboken, NJ, USA, 2003. [Google Scholar]
- Jain, A. Low-energy positron-argon collisions by using parameter-free positron correlation polarization potentials. Phys. Rev. A 1990, 41, 2437. [Google Scholar] [CrossRef]
- O’Connell, J.K.; Lane, N.F. Nonadjustable exchange-correlation model for electron scattering from closed-shell atoms and molecules. Phys. Rev. A 1983, 27, 1893–1903. [Google Scholar] [CrossRef]
- Szmytkowski, R. Analytical calculations of scattering lengths in atomic physics. J. Phys. A Math. Gen. 1995, 28, 7333–7345. [Google Scholar] [CrossRef]
- Szmytkowski, R. Calculation of the electron-scattering lengths for the rare-gas atoms. Phys. Rev. A 1995, 51, 853–854. [Google Scholar] [CrossRef]
- Mitroy, J.; Ivanov, I.A. Semiempirical model of positron scattering and annihilation. Phys. Rev. A 2002, 65, 042705. [Google Scholar] [CrossRef] [Green Version]
- Arretche, F.; Barp, M.V.; Scheidt, A.; Seidel, E.P.; Tenfen, W. Semiempirical models for low energy positron scattering by Ar, Kr and Xe. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 215201. [Google Scholar] [CrossRef]
- Arretche, F.; Tenfen, W.; Sahoo, B.K. Semiempirical Calculations on Low-Energy Electron Scattering by Zn and Cd Atoms. Atoms 2022, 10, 69. [Google Scholar] [CrossRef]
- Arretche, F.; Andermann, A.M.; Seidel, E.P.; Tenfen, W.; Sahoo, B.K. Polarization effects, shape resonances and bound states in low energy positron elastic scattering by Zinc and Cadmium vapours. J. Electron. Spectrosc. Relat. Phenom. 2022, 257, 147186. [Google Scholar] [CrossRef]
- Tenfen, W.; Seidel, E.P.; Barp, M.V.; Arretche, F. Higher order polarizabilities and the positron forward scattering problem: Convergence between calculated and measured cross sections in the very low energy regime. J. Electron. Spectrosc. Relat. Phenom. 2022, 255, 147160. [Google Scholar] [CrossRef]
- Tenfen, W.; Barp, M.V.; Arretche, F. Low-energy elastic scattering of positrons by O2. Phys. Rev. A 2019, 99, 022703. [Google Scholar] [CrossRef]
- Tenfen, W.; de Souza Glória, J.; Arretche, F. Low Energy Positron Scattering by F and F2. J. Phys. Chem. A 2022, 126, 7901–7915. [Google Scholar] [CrossRef] [PubMed]
- Rumble, J.R.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2018; Volume 100. [Google Scholar]
- Kramida, A.; Martin, W.C. A compilation of energy levels and wavelengths for the spectrum of neutral beryllium (Be I). J. Phys. Chem. Ref. Data 1997, 26, 1185–1194. [Google Scholar] [CrossRef]
Type S | Type P | Type D |
---|---|---|
2155.379 | 7.334782 | 9.180140 |
320.2894 | 1.554565 | 7.180140 |
71.05837 | 0.430418 | 3.080140 |
19.48182 | 0.143014 | 1.556213 |
6.177410 | 0.050654 | 0.955513 |
2.205970 | 0.020871 | 0.758656 |
1.861726 | 0.010000 | 0.525648 |
0.173778 | 0.008000 | 0.102306 |
0.092853 | 0.006000 | 0.019911 |
0.064906 | 0.003000 | 0.003875 |
0.010000 | 0.001000 | 0.000754 |
0.008000 | 0.000800 | 0.000146 |
0.005866 | 0.000100 | 0.000028 |
0.001540 | 0.000050 | 0.000005 |
0.000502 | 0.000010 | 0.000001 |
45.6 | 20.1 | 3.1069 |
43.0 | 26.9 | 3.1117 |
41.0 | 36.8 | 3.1137 |
39.0 | 60.4 | 3.1154 |
37.0 | 191.6 | 3.1156 |
35.0 | −255.5 | 3.0818 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barp, M.V.; Tenfen, W.; Arretche, F. Many-Body and Single-Body Low-Energy Elastic Positron Scattering by Beryllium Atoms: From Ab Initio to Semiempirical Approaches. Atoms 2023, 11, 8. https://doi.org/10.3390/atoms11010008
Barp MV, Tenfen W, Arretche F. Many-Body and Single-Body Low-Energy Elastic Positron Scattering by Beryllium Atoms: From Ab Initio to Semiempirical Approaches. Atoms. 2023; 11(1):8. https://doi.org/10.3390/atoms11010008
Chicago/Turabian StyleBarp, Marcos V., Wagner Tenfen, and Felipe Arretche. 2023. "Many-Body and Single-Body Low-Energy Elastic Positron Scattering by Beryllium Atoms: From Ab Initio to Semiempirical Approaches" Atoms 11, no. 1: 8. https://doi.org/10.3390/atoms11010008
APA StyleBarp, M. V., Tenfen, W., & Arretche, F. (2023). Many-Body and Single-Body Low-Energy Elastic Positron Scattering by Beryllium Atoms: From Ab Initio to Semiempirical Approaches. Atoms, 11(1), 8. https://doi.org/10.3390/atoms11010008