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Abstract: The single-ion Penning trap (SIPT) at the Low-Energy Beam Ion Trapping Facility has
been developed to perform precision Penning trap mass measurements of single ions, ideal for
the study of exotic nuclei available only at low rates at the Facility for Rare Isotope Beams (FRIB).
Single-ion signals are very weak—especially if the ion is singly charged—and the few meaningful
ion signals must be disentangled from an often larger noise background. A useful approach for
simulating Fourier transform ion cyclotron resonance signals is outlined and shown to be equivalent
to the established yet computationally intense method. Applications of supervised machine learning
algorithms for classifying background signals are discussed, and their accuracies are shown to be
≈65% for the weakest signals of interest to SIPT. Additionally, a deep neural network capable of
accurately predicting important characteristics of the ions observed by their image charge signal is
discussed. Signal classification on an experimental noise dataset was shown to have a false-positive
classification rate of 10.5%, and 3.5% following additional filtering. The application of the deep neural
network to an experimental 85Rb+ dataset is presented, suggesting that SIPT is sensitive to single-ion
signals. Lastly, the implications for future experiments are discussed.

Keywords: Penning trap; high-precision mass measurements; FT-ICR; machine learning; deep learning

1. Introduction

Precision nuclear mass measurements are fundamental quantities needed in practi-
cally every area of nuclear physics research. The masses of rare isotopes far beyond the
valley of stability are of particular importance for both nuclear structure and astrophysics
calculations [1–5]. Such measurements can be used to extract a large range of nuclear
structure information, including shell structure, nuclear deformation, pairing, and effective
interactions, among others. New accelerator facilities, such as the Facility for Rare Isotope
Beams (FRIB), are expected to improve rare isotope production by orders of magnitude;
however, many isotopes very far from stability would only be delivered at rates below
∼10−5 ions/s [6]—roughly one ion per day. The Low-Energy Beam Ion Trapping (LEBIT)
facility at FRIB performs precision mass measurements of these isotopes using Penning
trap mass spectrometry—the most precise method known to date [7,8]. Techniques such
as time-of-flight ion cyclotron resonance (TOF-ICR) [9] and phase-imaging ion cyclotron
resonance (PI-ICR) [10], while flexible, are destructive and require hundreds of ions to
complete a mass measurement. Measuring mass information to the needed precision for
shell structure evolution [11,12] away from stability is difficult and often infeasible given
the low delivery rates of the isotopes of interest, particularly near the doubly magic 100Sn
and 78Ni which are of current interest.
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The single-ion Penning trap (SIPT) developed by LEBIT addresses these shortcomings
with the narrowband Fourier transform ion cyclotron resonance (FT-ICR) technique [13].
SIPT has been developed specifically to achieve the needed mass precision for single
isotopes, which are of high importance to nuclear structure and astrophysics studies. This
technique is suited to low delivery rates, as a measurement relies only on recording the
image current produced by ions in the trap. This is of particular use for the most exotic
rare isotopes, such as those near the proton/neutron drip lines. FT-ICR measurements can
be performed with only a single ion given a suitably low-noise amplification circuit. The
challenge in performing these measurements is that the weak ion signals and electronic
noise are often comparable and can be easily conflated. Various measured and simulated
cases are presented in Figure 1, illustrating the difficulty associated with this problem.

Figure 1. Frequency spectra for Fourier transform ion cyclotron resonance signals from the single-ion
Penning trap (SIPT) for various measured and simulated 85Rb+ ion signals. The black line indicates
the experimental dataset, the dashed red line shows one possible Lorentzian distribution fit to the
dataset. Top Left: Example of a measured SIPT signal, likely from real ions, easily distinguished
from noise as a strong peak is present near the expected frequency. Top Right: A measured signal
which is ambiguous as the identified peak frequency may also just be noise. Bottom Left: Example
of a simulated noise signal which exhibits a strong peak near the expected frequency, easily mistaken
for a signal produced by an ion. Bottom Right: A simulated signal created by two ions whose peak
frequency is easily mistaken for noise due to destructive interference.

The classification of these signals as either background or from ions is a problem well
suited to supervised machine learning techniques [14,15]. Caution is often required when
utilizing machine learning as the models are limited in parameter scope and are susceptible
to over-fitting a trend to data. As such, stable numerical approaches should always be
favored when possible. This is not easily feasible for the problem at hand: cases where ion
signals and noise have comparable amplitudes become exceptionally difficult to ‘fit’, if not
impossible. Machine learning is applied as a means of extracting as much information from
each signal as possible, with the understanding that predictions are probabilistic.

Machine learning algorithms use a large set of labeled data to predict the most likely
classification for an unknown instance. Machine learning, including deep neural networks,
has recently been applied to a variety of nuclear physics problems such as determining
nuclear mass [16,17], nuclear charge radius [18], and ground-state energy [19], among many
others. Applications of machine learning for FT-ICR mass measurements have been explored,
but tend to focus on sample analysis such as biomarker profiling [20,21], accounting for
space charge effects [22,23], or molecular mass spectrometry [24]. These applications are of
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no particular significance to precision isotope mass measurements with SIPT. No previous
work could be identified addressing the classification of background signals using machine
learning on FT-ICR data, or for determining ion characteristics in an FT-ICR Penning trap.

In this paper, several machine learning models are presented which are used to identify
ion signals from electronic noise and extract important characteristics of ions within the
detector. The necessary background regarding the mass measurement technique, theoretical
models, and the specifics of the SIPT detector is presented in Section 2. A method for
efficiently simulating realistic SIPT FT-ICR signals is discussed in Section 3. Section 4
highlights the procedure for applying supervised machine learning algorithms for signal vs.
noise classification. In Section 5, a deep neural network (DNN) predicts ion characteristics
for a large set of measured isotope signals in SIPT. Section 6 applies the classification
algorithms to an experimental dataset and estimates the characteristics of the ions using the
neural network. Conclusions and directions for future work are provided in Section 7.

2. Background
2.1. Ion Motion in a Penning Trap

Using Penning traps for ion capture and excitation is well established [8], and a brief
summary is presented here for context. A Penning trap uses a homogeneous magnetic
field and a quadrupolar electrostatic field which confines charged particles in space. Mass
measurements are made possible through the determination of the characteristic cyclotron
frequency of a trapped ion. This frequency is related to the ion’s mass by

ωc = 2πνc =
qB
m

(1)

where q and m are the ion charge and mass, respectively, and B is the magnetic field
strength. This ion motion is a superposition of an axial motion (defined as the z-direction
and parallel to the magnetic field) with frequency

ωz = 2πνz =

√
qU0

md2 (2)

and two radial motions with frequencies

ω± = 2πν± =
ωc

2
±
√

ω2
c

4
− ω2

z
2

(3)

where U0 is the potential difference between the endcap and ring electrodes, and d is
a characteristic trap parameter. Furthermore, the eigenfrequencies satisfy the following
relationship:

ωc = ω+ + ω−. (4)

The position of an ion in the trap is described by the following equations:

x = ρ+ cos(ω+t + φ+,0) + ρ− cos(ω−t + φ−,0)

y = ρ+ sin(ω+t + φ+,0) + ρ− sin(ω−t + φ−,0) (5)

z = ρz cos(ωzt + φz,0)

where ρ±, φ±,0 and ρz, φz,0 are the radial amplitudes and initial phases of the radial and axial
eigenmotions. Dipole and quadrupole radio frequency (RF) excitations can be applied to
the Penning trap to modify and convert between ρ+ and ρ−; further specifics are discussed
in [9]. The application of these excitations also impacts the eigenmotion phases, φ±,0, and a
derivation of this effect is presented in [25]. Notably, for multiple ions in the trap, longer RF
dipole excitations of ρ± correspond to a tightening of the distribution of φ± such that the
relative ion spatial distribution remains constant regardless of excitation time. The effect of
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a sufficiently long dipole excitation is observed by the center of the ion ‘spot’ moving to a
larger radius while the shape of the spot remains unchanged.

2.2. Fourier Transform Ion Cyclotron Resonance Technique

The non-destructive narrowband Fourier transform ion cyclotron resonance (FT-ICR)
technique used by SIPT is sensitive to the image current on the Penning trap ring electrode
segments, produced as ions undergo their characteristic eigenmotions [13]. A narrowband
approach limits the observable frequency range to be near that of the eigenmotion being
probed for a given isotope [26]. The resulting image current signal is a combination of
noise as well as contributions from each ion present in the trap. This signal is very weak—
typically of the order of femtoamperes—and requires further amplification to be readable.
SIPT uses a low-noise, high-quality factor resonator circuit sufficient for detecting the image
charge of a singly charged ion. Both the SIPT and detection circuit are operated at cryogenic
temperatures to further reduce thermal noise, improving the signal-to-noise ratio of the
detected ion signals by a factor of eight compared to room temperatures. A discrete Fourier
transform (DFT) [27] is then applied to the time-domain signal to produce the frequency
spectrum, from which the eigenfrequency of interest can be identified. Often, this is achieved
by fitting a peak in the frequency spectrum to a characteristic Lorentzian curve of the form

L(ν) = L0 +
|b| · c

(ν− ν0)2 + c2 (6)

where L0 is an initial offset, b and c are the characteristic height and width, respectively,
and ν0 is the distribution center. In this formulation, the total area of the distribution is bπ.
Since the eigenfrequency is expected at the peak value, ν0, one can determine the isotope’s
mass from Equations (1) and (4).

The ion image current signal is directly proportional to the ion’s charge: FT-ICR is
increasingly more sensitive for multiply charged ions [13]. This poses an even greater
challenge for measurements of a single singly charged ion. Given the negative impact of
noise on the potential resolving power, the ability to identify, isolate, and filter noise is highly
desirable. This problem has been the subject of various studies [28–31], and various FT-ICR
techniques have been developed to improve the signal-to-noise ratio achievable [32–34].
However, these techniques are not suited to the narrowband FT-ICR technique, or have
limited applicability for precision mass measurements of rare or exotic nuclei. Furthermore,
selective noise filtering techniques are not effective for the typically weak SIPT ion signals
as they can be significantly distorted.

The FT-ICR signal strength for a given eigenmotion(s) is also highly dependent on
which of the segmented ring electrodes in the Penning trap are used for detection or
excitation [35,36]. Often this detection scheme is chosen to maximize the signal amplitude
of the eigenfrequency being probed. Simulations were performed in [36] to determine
an optimal configuration of detection/excitation electrodes for cyclotron and reduced
cyclotron frequency pickup. In [35], simultaneous detection of ωc and ω+ using a single
detection circuit was demonstrated, which provides an unambiguous ion signature if
both frequencies are observed. However, this method is still in development for SIPT and
would also require frequency identification in two separate regions. For these reasons, the
measurements discussed in this work consider the established dipole pickup of only the
modified cyclotron frequency ν+, whose scheme is illustrated in Figure 2.
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Figure 2. A cartoon illustration of the single-ion Penning trap ring electrode configuration and
detection scheme. The shown configuration is optimal for dipole pickup of the ν+ eigenfrequency.
The red electrodes labeled ‘P’ are those used for signal pickup, and those labeled ‘0’ are grounded or
used for radio frequency excitations.

Ion motion in the Penning trap also plays an important role in the achievable signal
strengths. As discussed in Section 2.1, the phase distribution of ions following a dipole RF
excitation converges for longer excitation times. This is of critical importance for FT-ICR
measurements as each signal is a superposition of all ion image current signals. As such, for
multiple ions, destructive interference of the ion image current signals can occur, even more
so if the phase distribution spans a large range. A large phase distribution is not always
avoidable, and is limited in part by the injection of ions into the Penning trap: reduced
cyclotron motion is introduced as ions cross magnetic field lines due to imperfect alignment.
Longer duration dipole RF excitations cannot always be used to reduce the phase spread as
electric field imperfections are amplified at larger radii [9]. An additional consideration is
the impact of axial motion introduced by non-optimal ion injection into the Penning trap.
Realistic simulations of FT-ICR signals, such as the one presented in Section 3.3, suggest
that axial oscillations in SIPT have a negligible impact (∼ 1 part in 105 for ρz ≤ 0.25ρ+) on
the eigenfrequency signal strength, and as such are not considered further for this work.

3. Numerical Simulation
3.1. Noise Floor Determination

Considering a realistic construction of the SIPT detector noise floor, the dominant
source of noise in FT-ICR signals is expected to be root mean-squared (RMS) Johnson–
Nyquist noise [37]. Assuming an ideal resistor, RMS noise is approximately white [38]. The
broadband noise power spectral density (PSD) of an FT-ICR detection circuit, however,
is generally not white, since it is subject to resonances from the RLC amplifier and other
external sources. The narrowband FT-ICR measurements used by SIPT focus on a small
frequency band around the eigenfrequency being probed. Within a sufficiently narrow
band, noise can be reasonably approximated as white. A model for the simulated noise
signal at any point in time is defined simply as

Snoise(t) = U(0, Anoise) (7)

where U denotes the uniform random distribution from zero to a maximum of Anoise.
Measured background signals from SIPT can then be compared to a simulated noise signal
of the same length by their power spectral densities (PSDs). When determining the PSD,
a spectral bandwidth of 100 Hz centered about the expected ion frequency was used, as
it captures the maximum expected width of the ion signals by at least a factor of ten.
Comparisons of the average PSDs for a large set of both simulated and measured noise
signals are shown in Figure 3. A reasonable white noise approximation with an amplitude
of Anoise ≈ 4.85 mV was determined to best fit the measured background noise power
from SIPT.
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Figure 3. Power spectral density (PSD) for measured background data, compared to simulated white
noise(of Equation (7)). The average of 1500 samples of each of the measured and simulated data are
plotted above. The PSD is calculated over a 100 Hz bandwidth, centered about the reduced cyclotron
frequency of 85Rb+. The mean values of the averaged measured signal and white noise amplitude
were optimized to be as close as possible.

3.2. Simulated Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is a useful metric for quantifying the strength of a
desired signal to that of the intrinsic noise. The ability to accurately identify weak signals is
directly related to this ratio: an ion signal with a larger SNR becomes more clearly defined
from noise. A general definition for the signal-to-noise ratio is

SNR =
Psignal

Pnoise
(8)

where Psignal, noise are the powers of the signal and noise, respectively. The power for either
the signal or noise is calculated as the integrated Fourier spectrum over a finite spectral
bandwidth. In the case of simulated data, the SNR can be determined in this manner since
both the noise and ion signal are known independently.

For an FT-ICR Penning trap, assuming RMS Johnson–Nyquist noise, the signal-to-noise
ratio (SNR) is approximated by

SNR = κ

√
π

4
Nqe

(
ρ

ρ0

)√
ν

∆ν

√
Q

kBTC
(9)

where κ ≈ 0.93 is a geometrical parameter that accounts for the fact that the pickup
electrodes are not infinite flat planes; N is the number of ions; qe is the ion charge; ρ/ρ0
is the radius of the ions’ orbit relative to the trap radius; ν/∆ν is the ratio of the ion
eigenfrequency to the spectral bandwidth; kB is the Boltzmann constant; and Q, T, and C are
the quality factor, temperature, and capacitance of the detection circuit, respectively [7,39].
Maximizing the quality factor of the RLC resonator is essential to achieving reasonable
SNR values for single-ion signals, and a baseline of Q ∼ 1000 is necessary. For the SIPT,
typical values for these parameters are ρ/ρ0 ≈ 0.5, Q = 2785, T = 5 K, and C ≈ 30 pF. The
capacitance of the resonator is tuned for a given isotope such that the SIPT resonator peaks
at the eigenfrequency being measured. Lastly, the radius of the ion in the trap is dependent
upon the duration of the initial dipole excitation of the isotope eigenmotion. For single ions
of 100Sn+ and 78Ni+, SIPT is expected to achieve SNR’s of roughly 5.5/

√
∆ν Hz1/2. The

spectral bandwidth is left undetermined as it is limited by the measurement sample rate
and acquisition time. A more precise measurement will yield a narrower resonance for the
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eigenfrequency being probed, which improves the SNR as a narrower spectral bandwidth
can be used.

3.3. Methods for Simulating FT-ICR Signals

A rigorous method to simulate the image current of an ion undergoing cyclotron
motion for a given Penning trap ring electrode configuration has been previously estab-
lished [9], and a brief summary is presented here for completeness. The voltage readout of
the ion image charge current on the Penning trap ring electrodes is given by

S(t) = Reffq~v(t) · ~E1 (10)

where Reff is the effective resistance of the detector circuit, which is dependent on the
intrinsic resonator frequency; q and ~v(t) are the ion charge and velocity, respectively; and
~E1 = ~E/V is the unit electric field generated by a ±1 V potential difference applied to the
detection electrodes. A discrete approximation of the electric field can be computed using
SIMION [40] for the desired pickup scheme of the Penning trap ring electrodes. The ion
velocity is found easily by differentiating the equations for ion position in Equation (5).

However, this method is computationally intensive as the fields must be determined for
the ion at each new position. This becomes problematic for the machine learning algorithms
used later in this work as they rely on a large dataset of these signals to adequately encom-
pass the problem complexity. For example, the neural network in Section 5 requires the
simulation of ∼108 unique ion signals to achieve an acceptable accuracy. It was estimated
that approximately 200 days of calculation time using 64 fully dedicated CPUs would be
required to complete all the required simulations on a state-of-the-art high-performance
computing farm. Clearly, a faster simulation method is highly desirable. Given the expected
periodic behavior of the signals, a simplified construction is used, where each ion’s image
current is sinusoidal and acts independently. The overall voltage signal from all ions is
simply a superposition of each ion’s contribution:

S(t) = Snoise(t) +
N

∑
i=1

Ai sin(2πt fi + φi) (11)

where N is the number of ions composing the signal; Snoise is the signal contribution from
noise; and Ai, fi, and φi are the amplitude, frequency, and initial phase, respectively, of
the ith ion. This approach lends itself well to vectorization and is, thus, significantly faster
(approximately 50 times faster than the rigorous method).

The general sum-of-sines algorithm is detailed in Algorithm 1. Each ion has its eigen-
frequency selected from a normal distribution with a standard deviation of 0.5 Hz. This well
encompasses the observed experimental uncertainty. Similarly, the voltage signal amplitude
for a given ion is also selected from a normal distribution with a typical standard deviation
of 0.005 mV. This approximates the beam spot radial distribution. The noise contribution
to the signal is modeled by Equation (7) with Anoise = 4.85 mV. Lastly, the phase spread,
φi, discussed in Section 2.1, is also chosen from a uniformly random distribution with a
maximum value of φ0,max. Each simulated time-domain signal is sampled over 24,000 points,
each 5 µs apart, for a total duration of 120 ms. The simulated frequency-domain signal was
then computed using a fast Fourier transform (FFT).
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Algorithm 1: Serial method for simulating an FT-ICR time-domain signal using
the ‘sum of sines’ approach. The inputs are as follows: Nions is the number
of ions in the Penning trap; f and σf define the ion eigenfrequency normal
distribution; A and σA define the single-ion amplitude normal distribution;
φ0,max is the maximum eigenmotion phase; Anoise is the noise amplitude; ∆t,
Nsamples are the sample time and number of samples, respectively. The method
UniformRandom (low, high, N = 1) samples N instances from a uniformly random
distribution within the range defined from low (inclusive) to high (exclusive),
and NormalRandom (µ, σ) randomly samples a Gaussian/normal distribution
defined by a mean value µ and standard deviation σ.

input : Nions, f , σf , A, σA, φ0,max, Anoise, ∆t, Nsamples
output :Time-domain FT-ICR signal of length Nsamples

begin
signal = UniformRandom(low=0, high=Anoise, N=Nsamples)
for i = 1 to Nions do

freq = NormalRandom(µ = f , σ = σf )
phi = UniformRandom(low=0, high=φ0,max)
amp = NormalRandom(µ = A, σ = σA)
for j = 0 to Nsamples do

time = j * ∆t
signal[j] += amp * Sin(2π*time*freq + phi)

end
end
return signal

end

To compare the two methods and ensure the proposed method adequately approxi-
mates the more realistic SIMION approach, the SNR distributions for different numbers of
ions in the Penning trap are analyzed for both approaches. Again, a spectral bandwidth of
100 Hz about the known eigenfrequency is used, capturing the width of expected ion signals
by at least a factor of ten. The noise level of Anoise = 4.85 mV determined in Section 3.1
is used. The relationship between the SNR and the ion position in the trap, ρ/ρ0 for the
rigorous method, and SNR to the single-ion signal amplitude, Asingle for the sum-of-sines
approach, were determined at a 95% confidence level as

SNR = 0.229673(13)
ρ

ρ0
(12)

SNR = 9.896849(3)[mV−1]Asingle (13)

where both have offsets compatible with zero, and the SNR was determined over a 100 Hz
spectral bandwidth. Using the expected SNR’s for 100Sn+ and 78Ni+, the approximate
single-ion signal amplitude is Asingle∼ 0.02 mV. This is used as a point of reference when
determining a reasonable amplitude for 85Rb, for which a large dataset of signals have been
collected. Furthermore, combining these relationships provides a correlation between the
relative ion radius in the Penning trap to the simulated amplitude for a single ion:

ρ

ρ0
= 43.063(2)[mV−1] · Asingle (14)

where the uncertainty is determined in quadrature at a 95% confidence level. A compar-
ison of the signals generated from Equations (10) and (11) for equivalent SNR’s using
Equation (14) and different phase spreads is presented in Figure 4.
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Figure 4. A comparison of the signal-to-noise (SNR) ratio distributions for N = 1, 2, 3 ions in the SIPT.
Three different phase spread distributions are investigated, with each plot comparing the ‘sum of sines’
approach (top) of Equation (11) to the rigorous method of [9] (middle), and the residuals between the
two methods (bottom). For each ion number, 104 simulated signals make up each distribution.

Of primary interest is the relative positioning and widths of the distributions. The re-
sults are equivalent, so the approximation presented in Equation (11) is used for the
remaining work.

4. Identification of Ion Signals

A reliable means of identifying ion signals, especially in cases with small signal-to-noise
ratios, is fundamental to performing the mass measurement. Machine learning algorithms
are well suited to this type of task. These algorithms (also known as models) require two
sets of information: the ‘feature set’ (also known as model input) and a ‘prediction set’
(also known as model output). The feature set is the data provided to the algorithm upon
which predictions are based on. A prediction set is the matching pair to the input that
informs the algorithm of the true output. When training a machine learning model, a
large dataset of known inputs and true outputs is used to optimize its algorithm in some
fashion. The performance of each classifier is evaluated using its precision: the number of
true-positive classifications relative to the true number of true-positive and false-positive
instances. Precision was chosen as the cost of a false-positive classification (noise mistaken
for an ion signal) is deemed greater than the cost of a false-negative classification (ion signal
mistaken for noise) [41]. A standard means of evaluating the performance of a classifier is
using cross-validation [42]. Specifically, k-fold cross-validation is used throughout this work
to compare the precision between models.

For identification of ion signals, the model used is a ‘binary classifier’ which labels
a given feature set as either noise or an ion signal. Four classifiers from the Scikit-learn
library [43] are considered: k-nearest neighbors (kNN), Gaussian naive Bayes (GNB), sup-
port vector machine (SVM), and logistic regression (LR). These algorithms were chosen
based on their performance and suitability for the frequency data used to make the classi-
fication. There are many other standard algorithms, like decision trees, linear regression,
and neural networks. However, these methods showed no particular benefits, and initial
investigations showed no performance increase over other models. These options were not
considered further.

4.1. Dataset Construction for Signal Classifiers

The frequency spectra, relative to the expected ion frequency, of the SIPT signals
are used for the classifier feature set. In principle, these should be independent of the
frequency magnitude of the signal, allowing the classifier to be used for signals generated
by ions of any mass. This assumes the noise remains white at any frequency magnitude, an
assumption which is largely preserved for a narrow frequency band. The classifiers are
dependent of the frequency resolution of the signals: this is limited by the sampling rate
and total acquisition time of the signal. Signals with higher resolution, however, can easily
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be down-sampled to match the required frequency resolution of the classifier. The parallel
nature of the signal model of Equation (11) allows for new training datasets to be quickly
generated if needed. The work presented here considers time-domain signals with a total
of 24,000 samples, each 5 µs apart, for a total time of 120 ms.

Including noise data at frequencies far beyond the expected ion frequency has the
potential of ‘confusing’ classifiers, as such datapoints are ‘informationless’: a known con-
cern for classifier reliability and efficiency [44,45]. Furthermore, the frequency resolution
of the FFT allows signal peaks to be either clarified or obfuscated within the surrounding
noise. Additional frequency granularity can be interpolated from an FFT by padding the
time-domain signal with additional zeros. This process is referred to as zero-padding [46].
A zero-padding multiplier, α, was defined to mean appending αNt zeros to the time-
domain signal of length Nt. Beyond aiding classification, including further interpolated
frequency information is also important for accurately fitting the spectrum to the character-
istic Lorentzian curve. Minimal improvement was observed in classification performance
beyond a padding multiplier of one to both the left and right ends of the signal. How-
ever, a minimum multiplier of two was observed to significantly improve the reliability of
curve fitting.

Since the narrowband FT-ICR approach is used, the FFT spectrum is limited to a
narrow range encompassing the expected ion eigenfrequency. A large frequency range
is potentially important for generalizing noise trends, but this can also overshadow the
importance of a valid ion peak. The optimal frequency range should then maximize the
classifier performance while minimizing false-positive and false-negative classifications.
An investigation of classification precision using a 10-fold cross-validation [47] approach
with 10,000 samples, for different frequency ranges centered about νc, is shown in Figure 5.

Figure 5. Impact of the included frequency range for the feature set on classification precision. Each
feature set is a sampling from the discrete Fourier transform of the SIPT time-domain signals, which
had a zero padding of twice the signal length on both the left and right sides. Note that typical
SIPT signals are expected to have an FWHM of .10 Hz. Classifier precision was determined from a
10-fold cross-validation approach with a total of 10,000 samples. Four classifiers were considered:
k-nearest neighbors (kNN), Gaussian naive Bayes (GNB), support vector machine (SVM), and logistic
regression (LR).

One pertinent feature is the stability of the classifiers across frequency ranges. A higher
degree of stability suggests a robust determination of the relevant frequency information re-
gardless of additional noise. All the classifiers display some level of instability for narrower
frequency windows. Another important aspect to consider is that smaller frequency ranges
increased the rate of false-positive classifications. This is likely due to an over-weighting of
features near the expected eigenfrequency.

Taking these findings into consideration, the following method was devised. First,
the time-domain signal for each simulated measurement was determined. After which, a
zero-padding of twice the length the time-domain set was appended to both sides. Then, a
fast Fourier transform was performed on the padded signal. Lastly, the frequency spectrum
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was reduced to only include frequencies within a 25 Hz window, centered at the expected
eigenfrequency. In total, a set of 20,000 signals were generated for training and testing the
accuracies of the classifiers.

4.2. Optimal Classifier Hyperparameters

For the classifiers of interest, choosing appropriate model hyperparameters is nec-
essary to efficiently and accurately predict an unseen input. To accomplish this task in
a systematic manner, a Bayesian optimization [48] approach is used. Specifically, the
BayesSearchCV in the Python scikit-optimize [49] library is used for the primary hyperpa-
rameters for each classifier. A set of 10,000 simulated Fourier domain signals with an equal
sampling of background and single-ion signals was used to train each model using a 5-fold
cross-validation technique [47]. Initial ranges for hyperparameters in the optimization
were chosen using a coarse grid over a large range of values and moving to a finer grid
where clear positive trends were observed. In the case where multiple parameter sets
were equivalently ranked, the set with the fastest training and prediction was chosen. A
summary of the results for each classifier is presented in Table 1.

Table 1. Summary of the optimal model hyperparameters found using a Bayesian optimization for
four classifiers: k-nearest neighbors (kNN), Gaussian naive Bayes (GNB), support vector machine
(SVM), and logistic regression (LR). Classifier precision was determined from a cross-validation
approach with 10,000 samples. The signals with ions present were chosen to have SNR = 0.23
normally distributed with an uncertainty of σSNR = 0.05.

Classifier Parameter Value Precision

kNN
Algorithm Ball Tree

0.711Leaf Size 46
k Neighbors 35

GNB Variable Smoothing 0 0.704

SVM

C 100

0.715γ 1.895
Degree 8
Kernel rbf

LR
C 39

0.735Solver Saga
Penalty `2

4.3. Classification of Ion Signals

A concern for experimental applications of these classifiers are mis-classifications,
wherein noise propagates into the final mass calculation, or valid ion data are incorrectly
identified as noise. This can be mitigated, in part, by a priori filtering of the signals. The
simplest scheme would be to simply filter signals above a set SNR threshold which meets
an acceptable false-positive classification rate. However, this is infeasible/inefficient for
most single-ion measurements since they have signal amplitudes which can be on the
order of the noise itself. A more intelligent scheme can be accomplished by first fitting
a Lorentzian of Equation (6) to the frequency spectrum. Initial parameter values for this
optimization are selected under the assumption of a valid ion signal, i.e., ν0 = νc,±. The
filtering scheme uses a priori knowledge of the ion being measured such that restrictions
can be placed on the Lorentzian fit parameters. For example, requiring the fitted center
frequency to be within a finite range of the expected cyclotron frequency, requiring the
characteristic Lorentzian width and height to be within reasonable bounds, and requiring
the fit R2 to meet a threshold. The filtering restrictions can be set to arbitrary limits at the
potential expense of rejecting additional ion signals.

To classify a given signal, all four classifiers independently predict and at least two
positive ‘votes’ are required for a signal to be classified as containing ion information.
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Following this, a Lorentzian distribution is fit to each signal classified as containing ion
information and the filtering scheme described above is applied. Signals which meet all
the filtering restrictions are determined to contain meaningful ion information. As one
might expect, classification performance is directly related to the SNR of a given signal,
where lower values become increasingly difficult to differentiate from noise. A study of the
expected classification precision on single-ion signals for different SNR ratios is presented
in Figure 6.

Figure 6. Precision of classifiers for different simulated single-ion signal-to-noise (SNR) ratios. Four
classifiers were considered: k-nearest neighbors (kNN), Gaussian naive Bayes (GNB), support vector
machine (SVM), and logistic regression (LR). SNR values ranging from ∼0.25 to ∼0.55 over a 100 Hz
spectral bandwidth are investigated, as these are expected values for single-ion signals. Precision
was determined by training each classifier in a 5-fold cross-validation approach with a dataset of
size 20,000.

After SNR ≈ 1.5, the classifiers are able to parse noise from signals with exceptionally
high precision. However, SIPT is most concerned with measurements of signals below this
level, where classification precision drops steeply. For example, 100Sn+ is expected to have
a precision of about 60–70% for single ions.

It is critical that the classification of these signals does not impact the extracted fre-
quency (and consequentially the measured mass). This may be most easily found in the
classification of noise signals as those produced by an ion, whose fitted frequency peak
introduces an additional uncertainty into the final result. Furthermore, the superposition
of the noise on top of the ion signal has the potential to introduce an additional statistical
uncertainty. This problem is two-fold: for small signal-to-noise ratios, the effect is amplified
and the classifier accuracy is diminished. The case for signals with SNRs expected for 100Sn+

was studied: simulations of 1000 background and single-ion signals each were classified,
and the frequency extracted from the fitted Lorentzian distribution. The average recovered
frequency agreed with the simulation input within the prediction uncertainty. The potential
for adding additional systematic and statistical uncertainties remains a topic for further
investigation when performing high-precision measurements.

5. Extracting Ion Characteristics with Neural Networks

To better quantify SIPT’s functionality and experimental applicability, additional
information about ions in the detector’s Penning trap is needed. Properties such as the
number of ions producing a signal, the signal strength of each ion, and the phase spread
of ion motion provide information on how SIPT can be optimized during an experiment
to make the best use of the limited beam time. Unfortunately, a single SIPT signal is
insufficient to determine these values with any confidence. For instance, signal-to-noise
does not uniquely determine ion number due to a significant overlap in the signal-to-
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noise distributions, evident in Figure 4. Additionally, the amount of overlap in these SNR
distributions is dependent on each ion’s charge and location in the trap (which determine
its signal amplitude Ai) as well as the range of the reduced cyclotron motion phase of each
ion. However, by considering a large set of signals whose properties of interest are similar,
general trends emerge which are unique to the given characteristics. In this section, deep
neural networks (DNNs) are utilized to predict these characteristics.

5.1. Construction of Datasets for Predicting Ion Characteristics

Preparing the training dataset for the DNN is a multi-step process. First, a set of signals
with similar properties are assembled, uniquely characterizing the set. A sufficiently large
sampling (∼104) of individual simulated signals is produced where each has the same
single-ion amplitude distribution, phase spread, and voltage offset. The assumption of
constant eigenmotion phase spread and single-ion amplitude is consistent with how experi-
ments are conducted, as the isotope and excitation radius are kept constant. The number of
ions delivered from an experimental beam which create a given SIPT signal is assumed to
follow a Poisson distribution. After generating the signal dataset, the classification scheme
described in Section 4.3 is used to reject signals classified as only electronic background.
A Lorentz distribution is then fit to the FFT spectra for each signal in the remaining set.
Lastly, the filtering scheme described in Section 4.1 is then applied to remove any signal
that does not meet all the criteria.

Following the signal generation and subsequent fitting, signals are characterized in
a form suitable for predictions to be made by the DNN. While the SNR may seem like a
natural choice, there are limitations with experimental signals: only an approximate SNR
can be calculated and it varies widely based on the assumed noise spectrum. A defining
feature of the FFT spectrum for an ion signal is a peak near the expected frequency, which
is captured by the Lorentzian curve. The area of this fitted distribution was determined
to well characterize a given signal, as a strong linear relationship between the noiseless
signal area and the fitted Lorentzian area of a noisy signal was observed. This quantity is
closely related to the SNR, but exhibits far more accuracy. As such, the sampling of signals
is well characterized as a whole by a histogram of the signals’ fitted Lorentzian areas. This
histogram is given sufficient granularity over a range of values such that all signals are
represented and important trends are resolvable. At this point, a single training instance
has been created: the histogram of Lorentzian areas is the model input, and the list of ion
characteristics used to generate the signals is the model output.

The full dataset for the neural network is built by repeating the above process for a
total of 130,000 instances. Each instance is generated using a unique combination of the
Poisson mean, single-ion amplitude distribution, voltage offset, and phase spread. The size
of this dataset is chosen to adequately reflect the problem’s scope. This dataset is then split
into three sets: 96,000 are used for training the DNN, 24,000 for validation of the model
during training, and 10,000 for evaluating the model after training.

5.2. Network Architecture and Training

Preliminary studies indicated that a simple feed-forward multi-layer neural net-
work [50] provided equivalent if not superior predictive power to more complicated
network structures. Additionally, this has the advantage of a smaller number of hyperpa-
rameters which simplifies network optimization. The DNN described here is implemented
with Tensorflow Keras [51]. The model input is the histogram with 400 bins of fitted and
filtered Lorentzian areas for each signal, as described above. The internal structure of the
network contains three hidden layers with 500, 250, and 125 neurons. Each hidden layer
uses rectified linear unit (ReLU) [52] activation with a dropout rate [53] of fifty percent. The
network output contains the following five values: predicted Poisson mean µp, single-ion
signal amplitude Asingle and its experimental standard deviation σ(Asingle), a constant sig-
nal voltage offset Voffset, and the eigenmotion phase spread outer limit, φ0,max. The neural
network was trained with the Adam optimizer [54] set to a constant learning rate of 10−3.
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The network parameters (i.e., ‘neurons’) were optimized with a standard mean-squared
error (MSE) loss function [55]. The model was then trained over 50 epochs with a batch
size of 64, which showed a consistent flattening of the loss curve while avoiding significant
over-fitting, evidenced by the validation dataset.

5.3. Model Uncertainty and Sensitivity Analysis

For a neural network, the complexity of the model is often reflected in the uncertainties
associated with each output value. Uncertainty analysis is performed to quantify this effect.
Additionally, a network may also experience sensitivity, where small changes to some input
values result in drastic changes to the output. Determining the dependence of the outputs
on the input parameters is referred to here as sensitivity analysis.

An analysis of the model uncertainty is performed using the MC Dropout [56] method.
MC Dropout allows each dropout layer in the network model to continue excluding
nodes when making a prediction; dropout would normally be disabled when a consistent
prediction is desired. After a number of iterations, the resulting distribution for each output
value can be analyzed to determine an uncertainty. Here, the standard deviation is used
to determine the uncertainty. In Table 2, model predictions are presented for six unique
simulated datasets, chosen to be representative of various observed cases. In each case,
uncertainties are determined via MC Dropout to one sigma. A comparison of the predicted
outputs to the known values indicates that the network is able to accurately predict values
within the uncertainty.

Table 2. A summary of the true and predicted parameters from the neural network for six unique
simulated datasets. All predicted values are determined to 1σ uncertainty, calculated using the
MC Dropout method [56] for 100 iterations. Summaries for each output parameter can be found in
Section 5.2.

Sim. Dataset 0 Sim. Dataset 1 Sim. Dataset 2

True Prediction True Prediction True Prediction

µp 0.54 0.54(8) 0.37 0.43(8) 0.14 0.18(6)
Asingle (mV) 0.053 0.053(5) 0.051 0.051(3) 0.046 0.044(2)

σ(Asingle) (mV) 0.000835 0.0017(9) 0.00174 0.0023(8) 0.000357 0.0024(7)
Voffset (µV) 8.89 8.1(1.1) 9.79 8.4(1.0) 1.85 0.9(8)
φ0,max (rad) 4.85 4(1) 1.91 1.8(1.0) 4.47 3.8(9)

Sim. Dataset 3 Sim. Dataset 4 Sim. Dataset 5

True Prediction True Prediction True Prediction

µp 0.36 0.37(7) 0.12 0.18(7) 0.29 0.34(8)
Asingle (mV) 0.027 0.029(3) 0.054 0.049(3) 0.052 0.053(5)

σ(Asingle) (mV) 0.000404 0.000264(12) 0.000377 0.003(6) 0.000078 0.00015(10)
Voffset (µV) 8.66 7.7(9) 4.45 4.0(5) 9.73 8.8(1.1)
φ0,max (rad) 3.8 4.1(7) 3.44 3.2(9) 5.53 4.2(1.1)

There are many methods for performing a sensitivity analysis on a neural network
model, such as those presented in [57]. The most common techniques assume a finite dataset
with no underlying model (i.e., no means of simulating data). A simplified approach is
taken given the ability to easily simulate additional datasets. Recall that the model is trained
based on simulated data where the output corresponds to a set of parameters which were
used to generate the input. The sensitivity of the model is quantified by comparing a given
input A to an input B which is simulated from the output of A. The magnitude of the
similarity/difference between inputs A and B reveals the dependence of the network’s input
and output. When performing this inverse calculation, a sufficiently large sampling of SIPT
signals must be used to generate input B to minimize statistical fluctuations introduced
by the stochastic simulations. Using ∼80, 000 signals to construct input B was observed
to reduce these fluctuations to less than 5% on average. In Figure 7, stability analyses for
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the six cases in Table 2 are presented. Close agreement, i.e., small residuals, between the
histograms in all cases suggest minimal sensitivity.

Figure 7. Investigation of the neural network sensitivity for six unique simulated datasets. Sensitivity
is determined by the residual between a given input ‘A’ and another input ‘B’ generated using the
output parameters predicted by the initial input. Small residuals are desired. Note that the input to
the neural network is a histogram of Lorentzian areas, defined by Equation (6), for a large set of SIPT
FT-ICR frequency-domain signals. The reconstruction for input ‘B’ uses 80,000 ion signals to produce
each histogram shown. A summary of the corresponding output parameters can be found in Table 2.

6. Applications to Experimental Data

The DNN-based mechanism described above is applied to an experimental dataset
obtained with 85Rb+ ions produced by the LEBIT offline test ion sources. A brief description
of the dataset is presented here; further details regarding the LEBIT experimental facility and
methods for collecting these data can be found in [36]. Before injecting ions into the SIPT, a
0.25 mm collimator placed within the drift tube before the trap was used to minimize spread
in the ions’ radii. The time-domain signal was collected at 24,000 points, each 5 µs apart, for a
total of 120 ms. A total of 33,297 signals were collected while the rubidium source was active,
and an additional 18,000 signals were collected while no ions were allowed into the trap.
The ion source was operated at low rates such that the majority of ion signals were likely
from single ions. Following the experiment, and based on the findings of Section 4.1, each
time-domain signal was transformed to the frequency domain using an FFT; a zero-padding
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of twice the length of the time-domain set was appended to both sides before taking the FFT.
The frequency data were then truncated to ±25 Hz of the expected eigenfrequency.

6.1. Classification of Experimental Signals

All four classifiers described in Section 4, set with the hyperparameters described in
Table 1, were trained on 10k simulated signals: 5k background, 3k single-ion, 1k two-ion,
and 500 three- and four-ion signals each. Majority voting between all four classifiers was
used to determine ion presence. A tie was decided in favor of a valid ion signal. For each
signal identified as containing an ion signal, the FFT spectrum was then fit to the Lorentzian
curve of Equation (6). Lastly, the signals were further filtered using the scheme described
in Section 4.1, with somewhat arbitrary limits placed on the reasonable fit parameters:
the Lorentzian height is decided somewhat arbitrarily based on the expected SNR, the
Lorentzian width was restricted to 1.5 ≤ c ≤ 5 Hz, and the center frequency was restricted
to±2 Hz of the expected frequency. The effectiveness of these restrictions was evaluated on
the collected experimental background data. The results for the 18,000 experimentally col-
lected background signals showed that ≈10.5% were classified as containing ion data, but
only ≈3.5% met the set filtering requirements and were incorrectly identified as ion signals.

6.2. Predicted Ion Characteristics

After the classification of the experimental signals discussed above, the resulting filtered
signal areas were binned over an appropriate range of values with sufficient granularity and
normalized. At this point the data were in the proper format for the neural network and
can be seen in Figure 8 as the experimental input histogram. After performing the network
regression, the predicted parameters were identified and are summarized in Table 3.

Figure 8. Comparison of a histogram of experimental 85Rb+ SIPT signal Lorentzian areas (defined by
Equation (6)) to a histogram of 80,000 simulated 85Rb+ SIPT signals which was generated from the
parameters predicted by the neural network; summarized in Table 3. Small residuals correspond to
both reasonable predictions from the neural network as well as reasonable simulations of the SIPT
FT-ICR signals.

Table 3. Neural network predictions on the experimental 85Rb+ dataset. Summaries for each output
parameter can be found in Section 5.2.

Prediction

µp 0.26(6)
Asingle (mV) 0.022(4)

σ(Asingle) (mV) 0.0024(5)
Voffset (µV) 2.0(7)
φ0,max (rad) 4.3(1.4)



Atoms 2023, 11, 126 17 of 20

Following the procedure outlined in Section 5.3, a comparison of the input and recon-
structed output is shown in Figure 8.

From the results presented in Table 3, one can extrapolate the percent composition
for a given number of ions from the Poisson mean. However, as established in the prior
section, there is a known non-zero false-positive classification rate of ≈3.5% which is not
accounted for by the DNN. Recall that the Poisson probability relationship is given by

Pr(X = k) =
µk

pe−µp

k!
(15)

Pr(X = 0) = e−µp (16)

where X is the discrete random variable (number of ions), and µp is the Poisson mean.
Using the fact that the ‘true’ percent of background signals is (1 + FPR)e−µp , where FPR is
the determined false-positive rate, the corrected Poisson mean can be shown to be

µp,corr = µp − ln(1 + FPR) (17)

which is determined to be µp,corr = 0.23(6) for the measured FPR of 0.035. Using this value,
the expected percentages of 85Rb+ signals produced by different numbers of ions in SIPT
are calculated: 79(5)% correspond to background, 18(4)% are single-ion measurements,
and 2.3(1.1)% are measurements of at least two ions.

Additionally, the ion position in the trap and SNR can be extrapolated from the
predicted Asingle value using Equation (14), and were determined to be ρ/ρ0 = 0.9(3) and
SNR = 0.21(9), respectively, at a 95% confidence level. These values lie within the allowed
range of values and are reasonable.

7. Conclusions

In this paper, we first outlined two methods for the simulation of FT-ICR signals
and provided a qualitative comparison between a rigorous, but intensive, approach to a
simplified form. The two methods were shown to behave near-identically, and we discussed
the advantages of the simpler method for the needs of this work. Then, we provided novel
applications of supervised machine learning techniques for FT-ICR signal and background
signal classification. This approach was motivated by the need for an efficient filtering of
signals, the majority of which are expected to be background for experiments concerning
nuclei delivered at the lowest rates. Next, we described a multi-layer densely connected
deep neural network capable of accurately predicting collective ion characteristics in SIPT
when provided with a large set of similar same-isotope signal information. While not
used to perform the mass measurement itself, this neural network shows promise as an
invaluable diagnostic tool during an experiment.

We have also provided validation and analysis for the classification network using
both numerically simulated ion signals and experimental background data. The low false-
positive ion signal classification rates of ≈10.5%, and ≈3.5% following filtering, are critical
for experiments with the lowest ion delivery rates. Additionally, for future experimental
campaigns of 100Sn+ the classifiers were shown to have accuracies of ≈65%, which are
sufficient to successfully perform a mass measurement.

When evaluating the performance of the neural network, we qualitatively and visually
compared the network input and reconstructed output for a unique sampling of numerically
simulated datasets spanning a wide range of possible cases. Predictions of the most critical
parameters µp and Asingle in the simulated datasets showed agreement with the true value
to 1σ in all but one case. Ultimately, we demonstrated that the network provided robust
predictions that accurately described the simulated ion characteristics. When applied to
an experimental dataset, the neural network suggests that SIPT is sensitive to single-ion
signals, predicting that 18(4)% of the experimental signals resulted from single ions.

This initial work in machine learning applications for precision mass measurements
using the FT-ICR technique leaves open several avenues for future developments and



Atoms 2023, 11, 126 18 of 20

improvements. Further investigation into feature set extraction for signal classification,
such as including additional data beyond the Fourier spectrum, may improve the classi-
fier’s ability to distinguish noise and ion signals. Implementing ensemble classification
may also improve classification precision when considering diverse feature sets. Further
refining of the neural network structure and training characteristics is needed for improved
extraction of ion information. Additionally, lifting potentially limiting assumptions requires
a significantly expanded training dataset and further explorations for an optimal neural
network structure.
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