Electron and Positron Impact Ionization of SF6−nHn(n = 0 − 6); {SCln, SFn−1Cl(n = 1 − 6)} and SF5X(X = CN, CFO)
Abstract
:1. Introduction
2. Binary Encounter Bethe (BEB) Model
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, T.T.N.; Sasaki, M.; Odaka, H.; Tsutsumi, T.; Ishikawa, K.; Hori, M. Remotely floating wire-assisted generation of high-density atmospheric pressure plasma and SF6-added plasma etching of quartz glass. J. Appl. Phys. 2019, 125, 063304. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Murphy, A.B. SF6-alternative gases for application in gas-insulated switchgear. J. Phys. D Appl. Phys. 2018, 51, 153001. [Google Scholar] [CrossRef]
- Matsuoka, K.; Okubo, R.; Adachi, Y. Demonstration of a 25-picosecond single-photon time resolution with gaseous photomultiplication. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1053, 168378. [Google Scholar] [CrossRef]
- Wang, F.; Dun, Q.; Chen, S.; Zhong, L.; Fan, X.; Li, L. Calculations of total electron impact ionization cross sections for fluoroketone and fluoronitrile. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1693–1700. [Google Scholar] [CrossRef]
- Tianpeng, Y.; Dong, X.; Zhou, W.; Zheng, Y.; Ren, S.; Lei, H. Study on gas molecular structure parameters based on maximum information coefficient. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1633–1639. [Google Scholar] [CrossRef]
- Oberthür, S.; Ott, H.E. The Kyoto Protocol: International Climate Policy for the 21st Century; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Gupta, D.; Choi, H.; Song, M.Y.; Karwasz, G.P.; Yoon, J.S. Electron impact ionization cross section studies of C2Fx (x = 1 − 6) and C3Fx (x = 1 − 8) fluorocarbon species. Eur. Phys. J. D 2017, 71, 1–10. [Google Scholar] [CrossRef]
- Zhong, L.; Xu, J.; Wang, X.; Rong, M. Electron-impact ionization cross sections of new SF6 replacements: A method of combining Binary-Encounter-Bethe (BEB) and Deutsch-Märk (DM) formalism. J. Appl. Phys. 2019, 126, 193302. [Google Scholar] [CrossRef]
- Chang, H.; Sinha, N.; Choi, H.; Song, M.Y.; Jang, H.J.; Oh, Y.H.; Song, K.D. Theoretical process for the investigation of dielectric characteristics of F3NO as an alternative gas for SF6. AIP Adv. 2023, 13, 065215. [Google Scholar] [CrossRef]
- Gupta, D. Brief review of electron collision studies of molecules relevant to plasma. Appl. Sci. Converg. Technol. 2020, 29, 125–132. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J.; Wang, X.; Rong, M. Comparison of dielectric breakdown properties for different carbon-fluoride insulating gases as SF6 alternatives. AIP Adv. 2018, 8, 085122. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, D.; Liu, J.; Zhang, Y.; Zeng, L. Alternative environmentally friendly insulating gases for SF6. Processes 2019, 7, 216. [Google Scholar] [CrossRef]
- Fenzlaff, M.; Gerhard, R.; Illenberger, E. Associative and dissociative electron attachment by SF6 and SF5Cl. J. Chem. Phys. 1988, 88, 149–155. [Google Scholar] [CrossRef]
- Rejoub, R.; Sieglaff, D.; Lindsay, B.; Stebbings, R. Absolute partial cross sections for electron-impact ionization of SF6 from threshold to 1000 eV. J. Phys. B At. Mol. Opt. Phys. 2001, 34, 1289. [Google Scholar] [CrossRef]
- Bull, J.N.; Lee, J.W.; Vallance, C. Absolute electron total ionization cross-sections: Molecular analogues of DNA and RNA nucleobase and sugar constituents. Phys. Chem. Chem. Phys. 2014, 16, 10743–10752. [Google Scholar] [CrossRef]
- Bull, J.N.; Lee, J.W.; Vallance, C. Electron-impact-ionization dynamics of SF6. Phys. Rev. A 2017, 96, 042704. [Google Scholar] [CrossRef]
- Gupta, D.; Antony, B. Electron impact ionization of cycloalkanes, aldehydes, and ketones. J. Chem. Phys. 2014, 141, 054303. [Google Scholar] [CrossRef] [PubMed]
- Joshipura, K.; Vinodkumar, M.; Limbachiya, C.; Antony, B. Calculated total cross sections of electron-impact ionization and excitations in tetrahedral (X Y 4) and SF 6 molecules. Phys. Rev. A 2004, 69, 022705. [Google Scholar] [CrossRef]
- Goswami, B.; Antony, B.; Fritzsche, S. Electron impact scattering and calculated ionization cross sections for SFx (x = 1–5) radicals. Int. J. Mass Spectrom. 2017, 417, 8–15. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, D.; Antony, B. Electron and positron scattering cross sections for propene. J. Appl. Phys. 2018, 124, 034901. [Google Scholar] [CrossRef]
- Nahar, S.N.; Antony, B. Positron scattering from atoms and molecules. Atoms 2020, 8, 29. [Google Scholar] [CrossRef]
- Linstrom, P.J.; Mallard, W.G. The NIST Chemistry WebBook: A chemical data resource on the internet. J. Chem. Eng. Data 2001, 46, 1059–1063. [Google Scholar] [CrossRef]
- Deutsch, H.; Märk, T.; Tarnovsky, V.; Becker, K.; Cornelissen, C.; Cespiva, L.; Bonacic-Koutecky, V. Measured and calculated absolute total cross-sections for the single ionization of CFx and NFx by electron impact. Int. J. Mass Spectrom. Ion Process. 1994, 137, 77–91. [Google Scholar] [CrossRef]
- Deutsch, H.; Becker, K.; Matt, S.; Märk, T. Theoretical determination of absolute electron-impact ionization cross sections of molecules. Int. J. Mass Spectrom. 2000, 197, 37–69. [Google Scholar] [CrossRef]
- Jain, D.; Khare, S. Ionizing collisions of electrons with CO2, CO, H2O, CH4 and NH3. J. Phys. B At. Mol. Phys. 1976, 9, 1429. [Google Scholar] [CrossRef]
- Khare, S.P. Introduction to the Theory of Collisions of Electrons with Atoms and Molecules; Springer Science & Business Media: New York, NY, USA, 2002. [Google Scholar]
- Bartschat, K.; Burke, P. The R-matrix method for electron impact ionisation. J. Phys. B At. Mol. Phys. 1987, 20, 3191. [Google Scholar] [CrossRef]
- Kim, Y.K.; Rudd, M.E. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A 1994, 50, 3954. [Google Scholar] [CrossRef]
- Fedus, K.; Karwasz, G.P. Binary-encounter dipole model for positron-impact direct ionization. Phys. Rev. A 2019, 100, 062702. [Google Scholar] [CrossRef]
- Franz, M.; Wiciak-Pawłowska, K.; Franz, J. Binary-Encounter Model for Direct Ionization of Molecules by Positron-Impact. Atoms 2021, 9, 99. [Google Scholar] [CrossRef]
- Huber, S.E.; Mauracher, A.; Süß, D.; Sukuba, I.; Urban, J.; Borodin, D.; Probst, M. Total and partial electron impact ionization cross sections of fusion-relevant diatomic molecules. J. Chem. Phys. 2019, 150, 024306. [Google Scholar] [CrossRef]
- Gupta, D.; Choi, H.; Singh, S.; Modak, P.; Antony, B.; Kwon, D.C.; Song, M.Y.; Yoon, J.S. Total ionization cross section of cyclic organic molecules. J. Chem. Phys. 2019, 150, 064313. [Google Scholar] [CrossRef]
- Yu, X.; Hou, H.; Wang, B. Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6. J. Comput. Chem. 2017, 38, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Leiding, J.; Woon, D.E.; Dunning, T.H., Jr. Bonding in SCln (n = 1–6): A Quantum Chemical Study. J. Phys. Chem. A 2011, 115, 4757–4764. [Google Scholar] [CrossRef] [PubMed]
- Leiding, J.; Woon, D.E.; Dunning, T.H., Jr. Bonding and Isomerism in SFn−1Cl (n = 1–6): A Quantum Chemical Study. J. Phys. Chem. A 2011, 115, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Klar, H. Threshold ionisation of atoms by positrons. J. Phys. B At. Mol. Phys. 1981, 14, 4165. [Google Scholar] [CrossRef]
- Kim, Y.K.; Johnson, W.R.; Rudd, M.E. Cross sections for singly differential and total ionization of helium by electron impact. Phys. Rev. A 2000, 61, 034702. [Google Scholar] [CrossRef]
- Guerra, M.; Amaro, P.; Machado, J.; Santos, J. Single differential electron impact ionization cross sections in the binary-encounter-Bethe approximation for the low binding energy regime. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 185202. [Google Scholar] [CrossRef]
- Garkoti, P.; Luthra, M.; Goswami, K.; Bharadvaja, A.; Baluja, K.L. The binary-encounter-Bethe model for computation of singly differential cross sections due to electron-impact ionization. Atoms 2022, 10, 60. [Google Scholar] [CrossRef]
- Kim, Y.K.; Santos, J.P.; Parente, F. Extension of the binary-encounter-dipole model to relativistic incident electrons. Phys. Rev. A 2000, 62, 052710. [Google Scholar] [CrossRef]
- Guerra, M.; Parente, F.; Indelicato, P.; Santos, J. Modified binary encounter Bethe model for electron-impact ionization. Int. J. Mass Spectrom. 2012, 313, 1–7. [Google Scholar] [CrossRef]
- Karwasz, G.P.; Możejko, P.; Song, M.Y. Electron-impact ionization of fluoromethanes–Review of experiments and binary-encounter models. Int. J. Mass Spectrom. 2014, 365, 232–237. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. Gaussian 16. 2016. Available online: https://gaussian.com/gaussian16/ (accessed on 12 September 2023).
- Jansen, K.; Ward, S.; Shertzer, J.; Macek, J. Absolute cross section for positron-impact ionization of hydrogen near threshold. Phys. Rev. A 2009, 79, 022704. [Google Scholar] [CrossRef]
- Christophorou, L.G.; Olthoff, J.K. Electron interactions with SF 6. J. Phys. Chem. Ref. Data 2000, 29, 267–330. [Google Scholar] [CrossRef]
- Johnson, R.D., III. Computational Chemistry Comparison and Benchmark DataBase. 2022. Available online: https://cccbdb.nist.gov/ (accessed on 12 September 2023).
- Blanco, F.; García, G. Interference effects in the electron and positron scattering from molecules at intermediate and high energies. Chem. Phys. Lett. 2015, 635, 321–327. [Google Scholar] [CrossRef]
- Hwang, W.; Kim, Y.K.; Rudd, M.E. New model for electron-impact ionization cross sections of molecules. J. Chem. Phys. 1996, 104, 2956–2966. [Google Scholar] [CrossRef]
- Ghosh, S.; Nixon, K.; Pires, W.; Amorim, R.; Neves, R.; Duque, H.V.; da Silva, D.; Jones, D.; Blanco, F.; Garcia, G.; et al. Electron impact ionization of 1-butanol: II. Total ionization cross sections and appearance energies. Int. J. Mass Spectrom. 2018, 430, 44–51. [Google Scholar] [CrossRef]
- Graves, V.; Cooper, B.; Tennyson, J. Calculated electron impact ionisation fragmentation patterns. J. Phys. B At. Mol. Opt. Phys. 2022, 54, 235203. [Google Scholar] [CrossRef]
Molecule | Polarzability | HOMO (eV) | IP (eV) | TICS cm) | ||
---|---|---|---|---|---|---|
Present | Literature | Present | Literature | Electron | Positron | |
4.033 | 4.490 a, 4.04 b | 18.450 | 15.33 c, 15.320 a, 16.5 d, 15.6 e | 7.415 | 8.304 | |
4.048 | 4.03 b | 16.405 | – | 7.021 | 8.264 | |
4.107 | 4.07 b | 15.619 | – | 6.629 | 7.787 | |
4.232 | 4.11 b | 13.474 | – | 6.310 | 7.417 | |
4.446 | 4.28 b | 12.704 | – | 6.037 | 7.102 | |
4.902 | 4.61 b | 10.198 | – | 6.014 | 7.103 | |
5.576 | 5.11 b | 9.577 | – | 6.642 | 7.078 | |
4.967 | – | 10.507 | 9.57 a | 4.522 | 5.309 | |
7.326 | – | 10.252 | 9.47 a | 6.912 | 8.103 | |
11.396 | – | 10.089 | – | 8.762 | 10.275 | |
15.692 | – | 9.822 | – | 11.553 | 12.777 | |
16.622 | – | 10.949 | – | 12.989 | 15.230 | |
17.363 | – | 12.217 | – | 15.475 | 17.143 | |
5.235 | – | 13.900 | – | 5.5833 | 6.534 | |
7.272 | – | 10.521 | – | 6.309 | 7.380 | |
6.355 | – | 10.622 | – | 7.216 | 8.444 | |
6.576 | – | 12.062 | – | 7.746 | 9.081 | |
6.004 | – | 12.664 | 12.335 a | 8.619 | 10.110 | |
5.985 | – | 14.256 | – | 9.037 | 10.638 | |
6.026 | – | 14.710 | – | 9.726 | 11.433 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suriyaprasanth, S.; Choi, H.; Gupta, D. Electron and Positron Impact Ionization of SF6−nHn(n = 0 − 6); {SCln, SFn−1Cl(n = 1 − 6)} and SF5X(X = CN, CFO). Atoms 2023, 11, 137. https://doi.org/10.3390/atoms11100137
Suriyaprasanth S, Choi H, Gupta D. Electron and Positron Impact Ionization of SF6−nHn(n = 0 − 6); {SCln, SFn−1Cl(n = 1 − 6)} and SF5X(X = CN, CFO). Atoms. 2023; 11(10):137. https://doi.org/10.3390/atoms11100137
Chicago/Turabian StyleSuriyaprasanth, S., Heechol Choi, and Dhanoj Gupta. 2023. "Electron and Positron Impact Ionization of SF6−nHn(n = 0 − 6); {SCln, SFn−1Cl(n = 1 − 6)} and SF5X(X = CN, CFO)" Atoms 11, no. 10: 137. https://doi.org/10.3390/atoms11100137
APA StyleSuriyaprasanth, S., Choi, H., & Gupta, D. (2023). Electron and Positron Impact Ionization of SF6−nHn(n = 0 − 6); {SCln, SFn−1Cl(n = 1 − 6)} and SF5X(X = CN, CFO). Atoms, 11(10), 137. https://doi.org/10.3390/atoms11100137