Study of Electron Impact Excitation of Na-like Kr Ion for Impurity Seeding Experiment in Large Helical Device
Abstract
:1. Introduction
2. Kr Gas Impurity Seeding Experiment in LHD
2.1. Experimental Setup on LHD
2.2. LHD Plasma Behavior in Kr Seeding Experiment
3. Relativistic Theoretical Calculation Considerations
4. Results and Discussion
4.1. Relativistic Multiconfiguration Wave Functions of Ion
4.2. Electron Impact Excitation Cross-Section for Ion
5. Collisional-Radiative Model
- Electron impact excitation and de-excitation.
- Electron impact ionization and three-body recombination.
- Spontaneous radiative decay.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dong, C.; Morita, S.; Chowdhuri, M.B.; Goto, M. Survey of EUV impurity line spectra and EUV bremsstrahlung continuum in LHD. Plasma Fusion Res. 2011, 6, 2402078. [Google Scholar] [CrossRef]
- Denne, B.; Hinnov, E. Spectral lines of highly-ionized atoms for the diagnostics of fusion plasmas. Phys. Scr. 1987, 35, 811. [Google Scholar] [CrossRef]
- Martinelli, L.; Mikitchuck, D.; Duval, B.; Andrebe, Y.; Blanchard, P.; Février, O.; Gorno, S.; Elaian, H.; Linehan, B.; Perek, A.; et al. Implementation of high-resolution spectroscopy for ion (and electron) temperature measurements of the divertor plasma in the Tokamak à configuration variable. Rev. Sci. Instruments 2022, 93, 123505. [Google Scholar] [CrossRef] [PubMed]
- Oishi, T.; Morita, S.; Kobayashi, M.; Mukai, K.; Kawamura, G.; Masuzaki, S.; Hayashi, Y.; Suzuki, C.; Kawamoto, Y.; Goto, M.; et al. EUV and VUV Spectra of NeIII-NeX Line Emissions Observed in the Impurity Gas-Puffing Experiments of the Large Helical Device. Plasma Fusion Res. 2021, 16, 2402006. [Google Scholar] [CrossRef]
- Kallenbach, A.; Bernert, M.; Dux, R.; Casali, L.; Eich, T.; Giannone, L.; Herrmann, A.; McDermott, R.; Mlynek, A.; Müller, H.; et al. Impurity seeding for tokamak power exhaust: From present devices via ITER to DEMO. Plasma Phys. Control. Fusion 2013, 55, 124041. [Google Scholar] [CrossRef]
- Kallenbach, A.; Bernert, M.; Dux, R.; Reimold, F.; Wischmeier, M.; ASDEX Upgrade Team. Analytical calculations for impurity seeded partially detached divertor conditions. Plasma Phys. Control. Fusion 2016, 58, 045013. [Google Scholar] [CrossRef]
- Mukai, K.; Masuzaki, S.; Hayashi, Y.; Oishi, T.; Suzuki, C.; Kobayashi, M.; Tokuzawa, T.; Tanaka, H.; Tanaka, K.; Kinoshita, T.; et al. Steady-state sustainment of divertor detachment with multi-species impurity seeding in LHD. Nucl. Fusion 2021, 61, 126018. [Google Scholar] [CrossRef]
- Effenberg, F.; Brezinsek, S.; Feng, Y.; König, R.; Krychowiak, M.; Jakubowski, M.; Niemann, H.; Perseo, V.; Schmitz, O.; Zhang, D.; et al. First demonstration of radiative power exhaust with impurity seeding in the island divertor at Wendelstein 7-X. Nucl. Fusion 2019, 59, 106020. [Google Scholar] [CrossRef]
- Maddison, G.; Brix, M.; Budny, R.; Charlet, M.; Coffey, I.; Cordey, J.; Dumortier, P.; Erents, S.; Hawkes, N.; Von Hellermann, M.; et al. Impurity-seeded plasma experiments on JET. Nucl. Fusion 2002, 43, 49. [Google Scholar] [CrossRef]
- Reimold, F.; Wischmeier, M.; Bernert, M.; Potzel, S.; Kallenbach, A.; Müller, H.; Sieglin, B.; Stroth, U.; ASDEX Upgrade Team. Divertor studies in nitrogen induced completely detached H-modes in full tungsten ASDEX Upgrade. Nucl. Fusion 2015, 55, 033004. [Google Scholar] [CrossRef]
- Komm, M.; Khodunov, I.; Cavalier, J.; Vondracek, P.; Henderson, S.; Seidl, J.; Horacek, J.; Naydenkova, D.; Adamek, J.; Bilkova, P.; et al. Divertor impurity seeding experiments at the COMPASS tokamak. Nucl. Fusion 2019, 59, 106035. [Google Scholar] [CrossRef]
- Gałązka, K.; Ivanova-Stanik, I.; Stępniewski, W.; Zagórski, R.; Neu, R.; Romanelli, M.; Nakano, T. Numerical analyses of JT-60SA tokamak with tungsten divertor by COREDIV code. Plasma Phys. Control. Fusion 2017, 59, 045011. [Google Scholar] [CrossRef]
- Liping, D.; Yanmin, D.; Kaiyun, C.; Xiuda, Y.; Zhang, L.; Feng, X.; Jingbo, C.; Songtao, M.; Zhenwei, W.; Liqun, H. Influence of impurity seeding on the plasma radiation in the EAST tokamak. Plasma Sci. Technol. 2018, 20, 065102. [Google Scholar]
- Asakura, N.; Nakano, T.; Oyama, N.; Sakamoto, T.; Matsunaga, G.; Itami, K. Investigations of impurity seeding and radiation control for long-pulse and high-density H-mode plasmas in JT-60U. Nucl. Fusion 2009, 49, 115010. [Google Scholar] [CrossRef]
- Mukai, K.; Masuzaki, S.; Hayashi, Y.; Oishi, T.; Suzuki, C.; Kobayashi, M.; Tanaka, H.; Peterson, B.J.; LHD Experiment Group. Divertor Detachment with Multi-Species Impurity Seeding in LHD. Plasma Fusion Res. 2020, 15, 1402051. [Google Scholar] [CrossRef]
- Ingesson, L.; Rapp, J.; Matthews, G. Radiation in impurity-seeded discharges in the JET MkI, MkIIA and MkIIGB divertors. J. Nucl. Mater. 2003, 313, 1173–1177. [Google Scholar] [CrossRef]
- Suzuki, C.; Mukai, K.; Masuzaki, S.; Kobayashi, M.; Peterson, B.; Akiyama, T.; Murakami, I.; LHD Experiment Group. Spectroscopic studies on the enhanced radiation with high Z rare gas seeding for mitigating divertor heat loads in LHD plasmas. Nucl. Mater. Energy 2019, 19, 195–199. [Google Scholar] [CrossRef]
- Mukai, K.; Masuzaki, S.; Peterson, B.J.; Akiyama, T.; Kobayashi, M.; Suzuki, C.; Tanaka, H.; Pandya, S.N.; Sano, R.; Motojima, G.; et al. Development of impurity seeding and radiation enhancement in the helical divertor of LHD. Nucl. Fusion 2015, 55, 083016. [Google Scholar] [CrossRef]
- Ivanova-Stanik, I.; Zagórski, R.; Chomiczewska, A.; Bernert, M.; Glöggler, S.; Kallenbach, A. COREDIV modelling of nitrogen and krypton seeding at the ASDEX Upgrade tokamak. Plasma Phys. Control. Fusion 2022, 64, 045015. [Google Scholar] [CrossRef]
- Henderson, S.; Bernert, M.; Brida, D.; Cavedon, M.; David, P.; Dux, R.; Février, O.; Järvinen, A.; Kallenbach, A.; Komm, M.; et al. Divertor detachment and reattachment with mixed impurity seeding on ASDEX Upgrade. Nucl. Fusion 2023, 63, 086024. [Google Scholar] [CrossRef]
- Jönsson, P.; Godefroid, M.; Gaigalas, G.; Ekman, J.; Grumer, J.; Li, W.; Li, J.; Brage, T.; Grant, I.P.; Bieroń, J.; et al. An introduction to relativistic theory as implemented in GRASP. Atoms 2022, 11, 7. [Google Scholar] [CrossRef]
- Grant, I.; Quiney, H. GRASP: The Future? Atoms 2022, 10, 108. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Song, C.; Zhang, C.; Si, R.; Wang, K.; Godefroid, M.; Gaigalas, G.; Jönsson, P.; Chen, C. Performance Tests and Improvements on the rmcdhf and rci Programs of GRASP. Atoms 2023, 11, 12. [Google Scholar] [CrossRef]
- Fischer, C.F.; Gaigalas, G.; Jönsson, P.; Bieroń, J. GRASP2018—A Fortran 95 version of the general relativistic atomic structure package. Comput. Phys. Commun. 2019, 237, 184–187. [Google Scholar] [CrossRef]
- Gu, M.F. FAC: Flexible Atomic Code. Astrophysics Source Code Library. 2018, pp. ascl–1802. Available online: https://ui.adsabs.harvard.edu/abs/2018ascl.soft02001G/abstract (accessed on 31 October 2023).
- Gu, M.F. The flexible atomic code. Can. J. Phys. 2008, 86, 675–689. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database; (ver. 5.10), [Online]; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. Available online: https://physics.nist.gov/asd (accessed on 27 August 2023).
- Rathi, S.; Sharma, L. Extended calculations of atomic structure parameters for Na-like Ar, Kr and Xe ions using relativistic MCDHF and MBPT methods. Atoms 2022, 10, 131. [Google Scholar] [CrossRef]
- Takeiri, Y.; Morisaki, T.; Osakabe, M.; Yokoyama, M.; Sakakibara, S.; Takahashi, H.; Nakamura, Y.; Oishi, T.; Motojima, G.; Murakami, S.; et al. Extension of the operational regime of the LHD towards a deuterium experiment. Nucl. Fusion 2017, 57, 102023. [Google Scholar] [CrossRef]
- Oishi, T.; Kobayashi, M.; Takahashi, H.; Hayashi, Y.; Mukai, K.; Morita, S.; Goto, M.; Kawamoto, Y.; Kawate, T.; Masuzaki, S.; et al. Spatial Profiles of NeVI-NeX Emission in ECR-Heated Discharges of the Large Helical Device with Divertor Detachment Induced by RMP Application and Ne Impurity Seeding. Plasma Fusion Res. 2022, 17, 2402022. [Google Scholar] [CrossRef]
- Oishi, T.; Morita, S.; Kobayashi, M.; Kawamura, G.; Kawamoto, Y.; Kawate, T.; Masuzaki, S.; Suzuki, C.; Goto, M. EUV/VUV Spectroscopy for the Study of Carbon Impurity Transport in Hydrogen and Deuterium Plasmas in the Edge Stochastic Magnetic Field Layer of Large Helical Device. Plasma 2023, 6, 308–321. [Google Scholar] [CrossRef]
- Peterson, B.; Yoshimura, S.; Drapiko, E.; Seo, D.; Ashikawa, N.; Miyazawa, J. Bolometer Diagnostics on LHD. Fusion Sci. Technol. 2010, 58, 412–417. [Google Scholar] [CrossRef]
- Akiyama, T.; Kawahata, K.; Tanaka, K.; Tokuzawa, T.; Ito, Y.; Okajima, S.; Nakayama, K.; Michael, C.; Vyacheslavov, L.; Sanin, A.; et al. Interferometer systems on LHD. Fusion Sci. Technol. 2010, 58, 352–363. [Google Scholar] [CrossRef]
- Narihara, K.; Yamada, I.; Hayashi, H.; Yamauchi, K. Design and performance of the Thomson scattering diagnostic on LHD. Rev. Sci. Instruments 2001, 72, 1122–1125. [Google Scholar] [CrossRef]
- Chowdhuri, M.B.; Morita, S.; Goto, M.; Nishimura, H.; Nagai, K.; Fujioka, S. Spectroscopic comparison between 1200 grooves/mm ruled and holographic gratings of a flat-field spectrometer and its absolute sensitivity calibration using bremsstrahlung continuum. Rev. Sci. Instruments 2013, 78, 023501, Erratum in Rev. Sci. Instruments 2013, 84, 109901. [Google Scholar] [CrossRef] [PubMed]
- Funaba, H.; Yasuhara, R.; Uehara, H.; Yamada, I.; Sakamoto, R.; Osakabe, M.; Den Hartog, D. Electron temperature and density measurement by Thomson scattering with a high repetition rate laser of 20 kHz on LHD. Sci. Rep. 2022, 12, 15112. [Google Scholar] [CrossRef] [PubMed]
- Grant, I.P. Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Madison, D.H.; Bartschat, K. The distorted-wave method for elastic scattering and atomic excitation. In Computational Atomic Physics: Electron and Positron Collisions with Atoms and Ions; Springer: Berlin/Heidelberg, Germany, 1996; pp. 65–86. [Google Scholar]
- Srivastava, R.; Zuo, T.; McEachran, R.; Stauffer, A. Relativistic distorted-wave calculation of electron excitation of cadmium. J. Phys. At. Mol. Opt. Phys. 1992, 25, 1073. [Google Scholar] [CrossRef]
- Gupta, S.; Srivastava, R. Detailed electron impact fine-structure excitation cross-sections of Kr+ and linear polarization of its subsequently emitted photons. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 106992. [Google Scholar] [CrossRef]
- Sahoo, A.; Sharma, L. Electron Impact Excitation of Extreme Ultra-Violet Transitions in Xe7+–Xe10+ Ions. Atoms 2021, 9, 76. In Electron Scattering in Gases; MDPI: Basel, Switzerland, 2021; p. 207. [Google Scholar]
- Bharti, S.; Sharma, L.; Srivastava, R. Electron impact excitation of Ge-like to Cu-like xenon ions in the extreme ultraviolet. J. Phys. At. Mol. Opt. Phys. 2020, 53, 165001. [Google Scholar] [CrossRef]
- Lindgren, I. The Rayleigh-Schrodinger perturbation and the linked-diagram theorem for a multi-configurational model space. J. Phys. At. Mol. Phys. 1974, 7, 2441. [Google Scholar] [CrossRef]
- Safronova, M.; Johnson, W.; Safronova, U. Relativistic many-body calculations of the energies of n = 2 states for the berylliumlike isoelectronic sequence. Phys. Rev. A 1996, 53, 4036. [Google Scholar] [CrossRef]
- Vilkas, M.J.; Ishikawa, Y.; Koc, K. Relativistic multireference many-body perturbation theory for quasidegenerate systems: Energy levels of ions of the oxygen isoelectronic sequence. Phys. Rev. A 1999, 60, 2808. [Google Scholar] [CrossRef]
- Gu, M. Wavelengths of 2l→ 3l’Transitions in L-Shell Ions of Iron and Nickel: A Combined Configuration Interaction and Many-Body Perturbation Theory Approach. Astrophys. J. Suppl. Ser. 2005, 156, 105. [Google Scholar] [CrossRef]
- Gu, M. Many-body perturbation theory wavelengths of high-n x-ray transitions of Fe and Ni L-shell ions. Astrophys. J. Suppl. Ser. 2007, 169, 154. [Google Scholar] [CrossRef]
- Dong, C. Study on radial position of impurity ions in core and edge plasma of LHD using space-resolved EUV spectrometer. Plasma Sci. Technol. 2011, 13, 140. [Google Scholar] [CrossRef]
Configuration | Term | [28] | [28] | [27] | ||||
---|---|---|---|---|---|---|---|---|
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||
56.2050 | 56.5208 | 56.4692 | 56.4755 | 56.3534 | 56.3054 | 56.3400 | ||
69.1252 | 69.4334 | 69.3668 | 69.3860 | 69.2773 | 69.3022 | 69.2670 | ||
144.431 | 144.618 | 144.447 | 144.558 | 144.486 | 144.198 | 144.340 | ||
146.865 | 147.057 | 146.860 | 146.982 | 146.935 | 146.730 | 146.796 | ||
556.622 | 556.809 | 556.763 | 556.542 | 556.932 | 556.919 | 557.15 | ||
579.760 | 579.834 | 579.777 | 579.596 | 579.943 | 579.960 | 580.18 | ||
584.912 | 584.986 | 584.926 | 584.751 | 585.101 | 585.130 | 585.280 | ||
612.904 | 613.121 | 612.955 | 612.810 | 613.224 | 613.154 | 613.39 | ||
613.977 | 614.197 | 614.025 | 613.886 | 614.309 | 614.259 | 614.46 | ||
627.860 | 627.832 | 627.948 | 627.613 | 628.121 | 628.135 | 628.270 | ||
628.285 | 628.257 | 628.372 | 628.041 | 628.550 | 628.568 | 628.710 | ||
800.197 | 800.229 | 800.192 | 800.037 | 800.562 | 800.534 | 800.830 | ||
811.722 | 811.765 | 811.697 | 811.539 | 812.043 | 812.074 | 812.340 | ||
814.286 | 814.328 | 814.261 | 814.109 | 814.614 | 814.646 | 814.910 | ||
827.936 | 827.999 | 827.893 | 827.754 | 828.293 | 828.278 | 828.550 | ||
828.493 | 828.557 | 828.449 | 828.313 | 828.856 | 828.909 | 829.110 | ||
835.341 | 835.347 | 835.347 | 835.140 | 835.727 | 835.739 | 835.890 | ||
835.558 | 835.564 | 835.564 | 835.359 | 835.947 | 835.960 | 836.110 | ||
836.397 | 836.399 | 836.435 | 836.142 | 836.781 | 836.807 | 837.020 | ||
836.528 | 836.530 | 836.566 | 836.274 | 836.913 | 836.926 | 837.150 | ||
928.199 | 928.226 | 928.127 | 928.080 | 928.664 | 928.716 | 928.910 | ||
934.802 | 934.834 | 934.763 | 934.640 | 935.210 | 935.253 | 935.460 | ||
936.256 | 936.288 | 936.222 | 936.101 | 936.672 | 936.708 | 936.930 | ||
943.933 | 943.979 | 943.892 | 943.780 | 944.369 | 944.374 | 944.580 | ||
944.256 | 944.303 | 944.216 | 944.105 | 944.697 | 944.852 | 944.910 | ||
948.155 | 948.174 | 948.140 | 947.991 | 948.608 | 948.629 | 948.840 | ||
948.281 | 948.299 | 948.266 | 948.118 | 948.736 | 948.758 | 948.970 | ||
948.818 | 948.826 | 948.812 | 948.629 | 949.274 | 949.300 | - | ||
948.894 | 948.902 | 948.888 | 948.705 | 949.350 | 949.369 | - | ||
1003.78 | 1003.81 | 1003.75 | 1003.68 | 1004.29 | 1004.39 | - | ||
1007.89 | 1007.92 | 1007.85 | 1007.75 | 1008.36 | 1008.45 | - | ||
1008.80 | 1008.82 | 1008.76 | 1008.66 | 1009.27 | 1009.30 | - | ||
1013.54 | 1013.58 | 1013.51 | 1013.41 | 1014.03 | 1014.11 | - | ||
1013.74 | 1013.78 | 1013.71 | 1013.62 | 1014.24 | 1014.25 | - | ||
1016.18 | 1016.20 | 1016.16 | 1016.04 | 1016.67 | 1016.70 | - | ||
1016.26 | 1016.28 | 1016.23 | 1016.12 | 1016.75 | 1016.78 | - | ||
1016.61 | 1016.62 | 1016.59 | 1016.46 | 1017.11 | 1017.12 | - | ||
1016.66 | 1016.67 | 1016.64 | 1016.51 | 1017.16 | 1017.18 | - | ||
1204.56 | 1204.58 | - | - | - | - | 1205.23 |
Upper-Level j j-Coupling | Lower-Level j j-Coupling | ||||||
---|---|---|---|---|---|---|---|
Transition j j-Coupling | [27] | Transition | [27] | ||||||
---|---|---|---|---|---|---|---|---|---|
↪ | 22.0064 | 22.0590 | 21.9360 | 21.9510 | ↪ | - | 1.8577 | 1.8581 | 1.8570 |
↪ | 17.8994 | 17.9360 | 17.8570 | 17.8670 | ↪ | 4.811 | 4.8119 | 4.8146 | 4.8126 |
↪ | 2.1369 | 2.1385 | 2.1383 | 2.1379 | ↪ | 1.607 | 1.6066 | 1.6071 | 1.6062 |
↪ | 2.1185 | 2.1197 | 2.1194 | 2.1190 | ↪ | - | 1.6339 | 1.6345 | 1.6335 |
↪ | - | 1.5274 | 1.5273 | 1.5268 | ↪ | 1.634 | 1.6327 | 1.6333 | 1.6323 |
↪ | 1.5210 | 1.5226 | 1.5225 | 1.5220 | ↪ | 1.794 | 1.7945 | 1.7950 | 1.7937 |
↪ | - | 1.3263 | 1.3263 | 1.3257 | ↪ | - | 1.8009 | 1.8013 | 1.8800 |
↪ | - | 1.3243 | 1.3242 | 1.3237 | ↪ | - | 1.8003 | 1.8008 | 1.7995 |
↪ | - | 1.2301 | 1.2301 | 1.2296 | ↪ | - | 1.4218 | 1.4223 | 1.4213 |
↪ | - | 1.2290 | 1.2290 | 1.2285 | ↪ | - | 1.4432 | 1.4437 | 1.4427 |
↪ | - | 2.8481 | 2.8488 | 2.8472 | ↪ | - | 1.5687 | 1.5690 | 1.5680 |
↪ | - | 2.8147 | 2.8155 | 2.8139 | ↪ | - | 3.2784 | 3.2798 | 3.2776 |
↪ | - | 53.5850 | 53.8490 | 53.8810 | ↪ | - | 1.5658 | 1.5661 | 1.5651 |
↪ | - | 2.8304 | 2.8311 | 2.8139 | ↪ | - | 1.5706 | 1.5709 | 1.5700 |
↪ | - | 43.8260 | 44.0030 | 44.0710 | ↪ | - | 3.2659 | 3.2672 | 3.2650 |
↪ | 14.0891 | 14.0530 | 14.0730 | 14.0680 | ↪ | - | 1.3966 | 1.3971 | 1.3962 |
↪ | 16.5160 | 16.4640 | 16.4910 | 16.4850 | ↪ | - | 1.4173 | 1.4177 | 1.4168 |
↪ | 15.9920 | 15.9480 | 15.9720 | 15.9660 | ↪ | - | 1.4167 | 1.4172 | 1.4163 |
↪ | 2.4766 | 2.4776 | 2.4783 | 2.4768 | ↪ | - | 1.5426 | 1.5429 | 1.5419 |
↪ | 2.5416 | 2.5433 | 2.5439 | 2.5425 | ↪ | - | 1.5473 | 1.5476 | 1.5466 |
↪ | 2.2257 | 2.2271 | 2.2275 | 2.2265 | ↪ | - | 1.5471 | 1.5474 | 1.5464 |
↪ | - | 2.2801 | 2.2804 | 2.2794 | ↪ | - | 1.3084 | 1.3088 | 1.3079 |
↪ | 2.2743 | 2.2756 | 2.2759 | 2.2748 | ↪ | - | 1.3265 | 1.3269 | 1.3260 |
↪ | - | 42.6590 | 42.4440 | 42.4540 | ↪ | - | 1.4359 | 1.4362 | 1.4352 |
↪ | 2.5621 | 2.5647 | 2.5658 | 2.5638 | ↪ | - | 2.7474 | 2.7484 | 2.7465 |
↪ | - | 2.5777 | 2.5788 | 2.5767 | ↪ | - | 1.4344 | 1.4347 | 1.4337 |
↪ | 2.5728 | 2.5754 | 2.5766 | 2.5744 | ↪ | - | 1.4384 | 1.4387 | 1.4378 |
↪ | - | 1.6665 | 1.6671 | 1.6660 | ↪ | - | 2.7419 | 2.7429 | 2.7410 |
↪ | - | 1.6959 | 1.6966 | 1.6954 | ↪ | - | 1.4222 | 1.4225 | 1.4215 |
↪ | - | 1.8580 | 1.8584 | 1.8573 | ↪ | - | 1.4262 | 1.4265 | 1.4255 |
↪ | 4.859 | 4.8602 | 4.8630 | 4.8600 | ↪ | - | 1.4261 | 1.4264 | 1.4254 |
↪ | - | 1.8509 | 1.8513 | 1.8502 |
Upper-Level j j-Coupling | Lower-Level j j-Coupling | [27] | |||
---|---|---|---|---|---|
22.006 | −0.001 | 22.059 | |||
17.899 | 0.000 | 17.936 | |||
16.516 | 0.003 | 16.464 | |||
15.992 | 0.003 | 15.948 | |||
14.089 | 0.002 | 14.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S.; Oishi, T.; Murakami, I. Study of Electron Impact Excitation of Na-like Kr Ion for Impurity Seeding Experiment in Large Helical Device. Atoms 2023, 11, 142. https://doi.org/10.3390/atoms11110142
Gupta S, Oishi T, Murakami I. Study of Electron Impact Excitation of Na-like Kr Ion for Impurity Seeding Experiment in Large Helical Device. Atoms. 2023; 11(11):142. https://doi.org/10.3390/atoms11110142
Chicago/Turabian StyleGupta, Shivam, Tetsutarou Oishi, and Izumi Murakami. 2023. "Study of Electron Impact Excitation of Na-like Kr Ion for Impurity Seeding Experiment in Large Helical Device" Atoms 11, no. 11: 142. https://doi.org/10.3390/atoms11110142
APA StyleGupta, S., Oishi, T., & Murakami, I. (2023). Study of Electron Impact Excitation of Na-like Kr Ion for Impurity Seeding Experiment in Large Helical Device. Atoms, 11(11), 142. https://doi.org/10.3390/atoms11110142