Ideas and Tools for Error Detection in Opacity Databases
Abstract
:1. Introduction
2. Opacity Bounds
2.1. The Rosseland Mean Opacity
2.2. From the Schwarz Inequality to the Bernstein and Dyson Bound
2.3. Relation between Planck and Rosseland Means
2.4. Hölder Inequality
2.5. Introduction of an Alternative Mean Opacity
2.6. Milne Inequalities for Mixtures
2.7. A New Bound: Compton Scattering and Inverse Bremsstrahlung
3. Detection of Errors: Benford and the Law of Anomalous Numbers
3.1. Generation and Development
3.2. Explanations
3.2.1. Multiplicative Stochastic Processes
3.2.2. Scale Invariance
3.3. Improvement Methods
- In general, the quality of the data set with the first digit obeying Benford’s law is good, but when the distribution probabilities of different digit combinations (such as the first-second, second-third, first-third digits, etc.) conform to the law, the test results are even more accurate.
- “Multi-dimensional” detection data. If the conclusions of several tests (concerning different relevant quantities of the system) are consistent, the data can be considered reliable.
4. The Learner Rule
5. Quantifying the Precision of Interpolations
6. Convergence with Respect to the Number of Superconfigurations
7. Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GOE | Gaussian Orthogonal Ensemble |
LTE | Local Thermodynamic Equilibrium |
NIF | National Ignition Facility |
RMT | Random Matrix Theory |
STA | Super Transition Arrays |
Appendix A. Klein–Nishina Scattering Rosseland Mean
Appendix B. Additional Mathematical Inequality Likely to Provide New Bounds
References
- Hui-Bon-Hoa, A. Stellar models with self-consistent Rosseland opacities–Consequences for stellar structure and evolution. Astron. Astrophys. 2021, 646, L6. [Google Scholar] [CrossRef]
- Seaton, M.J.; Yan, Y.; Mihalas, D.; Pradhan, A.K. Opacities for stellar envelopes. Mon. Not. R. Astron. Soc. 1994, 266, 805–828. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Rogers, F.J. Updated OPAL opacities. Astrophys. J. 1996, 464, 943–953. [Google Scholar] [CrossRef]
- Krief, M.; Feigel, A.; Gazit, D. A New Implementation of the STA Method for the Calculation of Opacities of Local Thermodynamic Equilibrium Plasmas. Atoms 2018, 6, 35. [Google Scholar] [CrossRef]
- Mendoza, C. Computation of Atomic Astrophysical Opacities. Atoms 2018, 6, 28. [Google Scholar] [CrossRef]
- Pain, J.-C.; Gilleron, F.; Comet, M. Detailed Opacity Calculations for Astrophysical Applications. Atoms 2017, 5, 22. [Google Scholar] [CrossRef]
- Pain, J.-C.; Gilleron, F.; Comet, M. Detailed Opacity Calculations for Stellar Models. In Proceedings of the Workshop on Astrophysical Opacities, Michigan University, Kalamazoo, MI, USA, 1–4 August 2017; Mendoza, C., Turck-Chièze, S., Colgan, J., Eds.; ASP Conference Series. Astronomical Society of the Pacific: San Francisco, CA, USA, 2018; Volume 515, p. 35. [Google Scholar]
- Mondet, G.; Gilleron, F.; Pain, J.-C.; Calisti, A.; Benredjem, D. Opacity calculations in ICF plasmas. High Energy Density Phys. 2013, 9, 553–559. [Google Scholar] [CrossRef]
- Dyson, G.B. Project Orion; Henry Holt: New York, NY, USA, 2002. [Google Scholar]
- Bernstein, J.; Dyson, F.J. The Continuous Opacity and Equations of State of Light Elements at Low Densities; General Atomic Report GA-848; unpublished.
- Bernstein, J.; Dyson, F. Opacity bounds. Publ. Astron. Soc. Pac. 2003, 115, 1383–1387. [Google Scholar] [CrossRef]
- Huebner, W.F. Some estimates of the radiative Rosseland mean opacity. J. Quant. Spectrosc. Radiat. Transf. 1967, 7, 943–949. [Google Scholar] [CrossRef]
- Dogliani, H.O.; Bailey, W.F. A relativistic correction to the Thomas-Kuhn sum rule. J. Quant. Spectrosc. Radiat. Transf. 1965, 9, 1643–1645. [Google Scholar] [CrossRef]
- Armstrong, B.H.; Nicholls, R.W. Emission, Absorption and Transfer of Radiation in Heated Atmospheres; Pergamon Press: Oxford, UK, 1973. [Google Scholar]
- Armstrong, B.H. Maximum opacity theorem. Astrophys. J. 1962, 136, 309–310. [Google Scholar] [CrossRef]
- Armstrong, B.H.; Johnston, R.R.; Kelly, P.S. The atomic line contribution to the radiation absorption coefficient of air. J. Quant. Spectrosc. Radiat. Transf. 1965, 5, 55–65. [Google Scholar] [CrossRef]
- Ribicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.; Shvarts, D.; Zigler, A. Super-transition-arrays: A model for the spectral analysis of hot, dense plasmas. Phys. Rev. A 1989, 40, 3183–3193. [Google Scholar] [CrossRef] [PubMed]
- Salzmann, D. Atomic Physics in Hot Plasmas; Oxford University Press: New York, NY, USA; Oxford, UK, 1998. [Google Scholar]
- Pain, J.-C. Super Transition Arrays: A tool for studying spectral properties of hot plasmas. Plasma 2021, 3, 42–64. [Google Scholar] [CrossRef]
- Pain, J.-C. Adaptive algorithm for the generation of superconfigurations in hot-plasma opacity calculations. Plasma 2022, 5, 154–175. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Rose, S.J. Corrections to Bremsstrahlung and Thomson scattering at the solar center. Astrophys. J. 1996, 466, L115–L118. [Google Scholar] [CrossRef]
- Bekefi, G. Radiation Processes in Plasmas; Wiley: New York, NY, USA, 1966. [Google Scholar]
- Schwarz, H.A. Über ein Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrechnung. Acta Soc. Sci. Fenn. 1885, 15, 315–362. [Google Scholar]
- Thomas, W. Über die Zahl der Dispersionselektronen, die einem stationären Zustande zugeordnet sind (Vorläufige Mitteilung). Naturwissenschaften 1925, 13, 627–628. [Google Scholar] [CrossRef]
- Reiche, F.; Thomas, W. Über die Zahl der Dispersionselektronen, die einem stationären Zustand zugeordnet sind. Z. Phys. 1925, 34, 510–525. [Google Scholar] [CrossRef]
- Kuhn, W. Über die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien. Z. Phys. 1925, 33, 408–412. [Google Scholar] [CrossRef]
- Bethe, H.; Salpeter, E. Quantum Mechanics of One- and Two-Electron Atoms; Academic Press: New York, NY, USA, 1957. [Google Scholar]
- Bethe, H.A.; Jackiw, R. Intermediate Quantum Mechanics; W.A. Benjamin: New York, NY, USA, 1968. [Google Scholar]
- Vepštas, L. On Plouffe’s Ramanujan identities. Ramanujan J. 2012, 27, 387–408. [Google Scholar] [CrossRef] [Green Version]
- Hölder, O.L. Über einen Mittelwerthsatz. Nachrichten von der Königl. Ges. der Wiss. und der Georg-Augusts-Univ. zu Göttingen 1889, 1889, 38–47. [Google Scholar]
- Milne, E.A. Note on Rosseland’s integral for the stellar absorption coefficient. Mon. Not. R. Astron. Soc. 1925, 43, 979–984. [Google Scholar] [CrossRef]
- Pain, J.-C.; Blenski, T. New approach to dense plasma thermodynamics in the superconfiguration approximation. Laser Part. Beams 2002, 20, 211–216. [Google Scholar] [CrossRef]
- Pain, J.-C.; Blenski, T. Self-consistent approach for the thermodynamics of ions in dense plasmas in the superconfiguration approximation. J. Quant. Spectrosc. Radiat. Transf. 2003, 81, 355–369. [Google Scholar] [CrossRef]
- Bailey, J.E.; Nagayama, T.; Loisel, G.P.; Rochau, G.A.; Blancard, C.; Colgan, J.; Cossé, P.; Faussurier, G.; Fontes, C.J.; Gilleron, F.; et al. A higher-than-predicted measurement of iron opacity at solar interior temperatures. Nature 2015, 517, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, C.A. Enigmatic photon absorption in plasmas near solar interior conditions. High Energy Density Phys. 2015, 15, 4–7. [Google Scholar] [CrossRef]
- Carson, T.R. Stellar opacity. Ann. Rev. Ast. Ap. 1976, 14, 95–117. [Google Scholar] [CrossRef]
- Tarafdar, S.P.; Vardya, M.S. The Rayleigh Scattering Cross-Sections of He, C, N and O. Mon. Not. R. Astron. Soc. 1969, 145, 171–180. [Google Scholar] [CrossRef]
- Colgan, J.; Kilcrease, D.P.; Magee, N.H.; Sherrill, M.E.; Abdallah, J., Jr.; Hakel, P.; Fontes, C.J.; Guzik, J.A.; Mussack, K.A. A New Generation of Los Alamos Opacity Tables. Astrophys. J. 2016, 817, 116. [Google Scholar] [CrossRef]
- Schwerdtfeger, X. Atomic Static Dipole Polarizabilities. Computational Aspects of Electric Polarizability Calculations. World Scientific. 2006. Available online: http://ctcp.massey.ac.nz/Tablepol-2.8.pdf (accessed on 26 January 2023).
- Kramers, H.A. On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag. 1923, 46, 836–871. [Google Scholar] [CrossRef]
- Newcomb, S. Note on the frequency of use the different digits in natural numbers. Am. J. Math. 1881, 4, 39–40. [Google Scholar] [CrossRef] [Green Version]
- Benford, F. The law of anomalous numbers. Proc. Am. Philos. Soc. 1938, 78, 551–572. [Google Scholar]
- Launay, M. Le Théorème du Parapluie ou l’Art d’Observer le Monde Dans le Bon Sens; Flammarion: Paris, France, 2019. (In French) [Google Scholar]
- Hill, T.P. The significant-digit phenomenon. Am. Math. Mon. 1995, 102, 322–327. [Google Scholar] [CrossRef]
- Li, F.; Han, S.; Zhang, H.; Ding, J.; Zhang, J.; Wu, J. Application of Benford’s law in Data Analysis. J. Phys. Conf. Ser. 2019, 1168, 032133. [Google Scholar] [CrossRef]
- Zhu, W.M.; Wang, H.; Chen, W. Research on Fraud Detection Method Based on Benford’s Law. J. Appl. Stat. Manag. 2007, 1, 41–46. [Google Scholar]
- Torres, J.; Fernández, S.; Gamero, A.; Sola, A. How do numbers begin? (The first digit law). Eur. J. Phys. 2007, 28, 17–25. [Google Scholar] [CrossRef]
- Leemis, L.M.; Schmeiser, B.W.; Evans, D.L. Survival distributions satisfying Benford’s law. Am. Stat. 2000, 54, 236–241. [Google Scholar]
- Pain, J.-C. Benford’s law and complex atomic spectra. Phys. Rev. E 2008, 77, 012102. [Google Scholar] [CrossRef]
- Pain, J.-C. Structure Atomique, Équation d’État et Propriétés Radiatives des Plasmas Chauds. Ph.D. Thesis, Paris-Saclay University, Orsay, France, 2021. Available online: https://tel.archives-ouvertes.fr/tel-03325468 (accessed on 26 January 2023). (In French).
- Shao, L.; Ma, B.Q. Empirical mantissa distributions of pulsars. Astropar. Phys. 2010, 33, 255–262. [Google Scholar] [CrossRef]
- Alexopoulos, T.; Leontsinis, S. Benford’s Law in Astronomy. Astron. Astrophys. 2014, 35, 639–648. [Google Scholar] [CrossRef]
- Cai, Z.; Faust, M.; Hildebrand, A.J.; Li, J.; Zhang, Y. Leading Digits of Mersenne Numbers. Exp. Math. 2021, 30, 405–421. [Google Scholar] [CrossRef]
- Liu, Y.X.; Wu, X.M.; Zeng, W.Y. Research on the Comprehensive Use of Benford’s law and Panel Model for Detecting the Quality of Statistical Data. Stat. Res. 2012, 11, 74–78. [Google Scholar]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
- Pietronero, L.; Tossati, E.; Tossati, V.; Vespignani, A. Explaining the uneven distribution of numbers in nature: The laws of Benford and Zipf. Phys. A 2001, 293, 297–304. [Google Scholar] [CrossRef]
- Mehta, M.L. Random Matrices and the Statistical Theory of Energy Levels; Academic Press: New York, NY, USA; London, UK, 1967. [Google Scholar]
- Wilson, B.G.; Rogers, F.; Iglesias, C. Random-matrix method for the simulation of large atomic E1 transition arrays. Phys. Rev. A 1998, 37, 2695–2697. [Google Scholar] [CrossRef]
- Hill, T.P. Base-invariance implies Benford’s law. Proc. Am. Math. Soc. 1995, 123, 887–895. [Google Scholar]
- Bauche, J.; Bauche-Arnoult, C.; Peyrusse, O. Atomic Properties in Hot Plasmas: From Levels to Superconfigurations; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Pain, J.-C. From Second Quantization to the Statistical Modeling of Complex Atomic Spectra. Colloquium in Memoriam J. Bauche, P. Jaeglé and J.-F. Wyart. 22–33 June 2022. Available online: https://zenodo.org/record/6686809#.Y1WsFrbP3Dc (accessed on 26 January 2023).
- Learner, R.C.M. A simple (and unexpected) experimental law relating to the number of weak lines in a complex spectrum. J. Phys. B Atom. Mol. Phys. 1982, 15, L891–L895. [Google Scholar] [CrossRef]
- Pain, J.-C. Regularities and symmetries in atomic structure and spectra. High Energy Density Phys. 2013, 9, 392–401. [Google Scholar] [CrossRef]
- Dzuba, V.A.; Flambaum, V.V. Exponential increase of energy level density in atoms: Th and Th II. Phys. Rev. Lett. 2010, 104, 213002. [Google Scholar] [CrossRef]
- Fujii, K.; Berengut, J.-C. A Simple Explanation for the Observed Power Law Distribution of Line Intensity in Complex Many-Electron Atoms. Phys. Rev. Lett. 2019, 124, 185002. [Google Scholar] [CrossRef]
- Imshennik, V.S.; Mikhailov, I.N.; Basko, M.M.; Molodtsov, S.V. Lower bound on the Rosseland mean free path. Sov. Phys. JETP 1986, 63, 980–985. [Google Scholar]
- Molodtsov, S.V. A complete system of estimates of the minimal Rosseland mean free path of photons on the basis of sum rules. J. Exp. Theor. Phys. 1993, 77, 406–412. [Google Scholar]
- Tennyson, J.; Yurchenko, S.N. The ExoMol Atlas of Molecular Opacities. Atoms 2018, 6, 26. [Google Scholar] [CrossRef]
- Heeter, R.; Perry, T.; Johns, H.; Opachich, K.; Ahmed, M.; Emig, J.; Holder, J.; Iglesias, C.; Liedahl, D.; London, R.; et al. Iron X-ray Transmission at Temperature Near 150 eV Using the National Ignition Facility: First Measurements and Paths to Uncertainty Reduction. Atoms 2018, 6, 57. [Google Scholar] [CrossRef]
- Pain, J.-C.; Gilleron, F. A quantitative study of some sources of uncertainty in opacity measurements. High Energy Density Phys. 2020, 34, 100745. [Google Scholar] [CrossRef]
- Masjed-Jamei, M. A functional generalization of the Cauchy-Schwarz inequality and some subclasses. Appl. Math. Lett. 2009, 22, 1335–1339. [Google Scholar] [CrossRef]
- Minkowski, H. Geometrie der Zahlen; Teubner: Leipzig, Germany, 1896. [Google Scholar]
- Woeginger, G.J. When Cauchy and Hölder met Minkowski: A tour through well-known inequalities. Math. Mag. 2009, 82, 202–207. [Google Scholar] [CrossRef]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Pólya, G.; Szegö, G. Aufgaben aus der Analysis; Springer: Berlin, Germany, 1925; Volume I. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Zhao, C.-J.; Chaung, W.-S. On Pólya-Szegö’s inequality. J. Inequalities Appl. 2013, 591, 2013. [Google Scholar] [CrossRef] [Green Version]
- Karamata, J. Sur certaines inégalités relatives aux quotients et à la différence de ∫ f g et ∫ f ∫ g. Acad. Serbe Sci. Publ. Inst. Math. 1948, 2, 131–145. [Google Scholar]
- Young, W.H. On classes of summable functions and their Fourier series. Proc. R. Soc. Lond. Ser. A 1912, 87, 225–229. [Google Scholar]
p | ||
---|---|---|
2 | ||
3 | 158.959 | |
4 | ||
5 | 59327.7 |
T (eV) | (g·cm−3) | 1.05349 | |||
---|---|---|---|---|---|
100 | 0.025 | 527.061 | 2019.74 | 2127.78 | 2429.02 |
100 | 0.250 | 2002.09 | 5483.03 | 5776.32 | 4416.30 |
100 | 2.500 | 3592.02 | 9046.83 | 9530.74 | 7030.24 |
200 | 0.025 | 175.315 | 1585.92 | 1670.75 | 2066.34 |
200 | 0.250 | 720.411 | 2802.98 | 2952.91 | 3286.03 |
200 | 2.500 | 1963.08 | 4291.18 | 4520.72 | 4369.74 |
500 | 0.025 | 2.79900 | 17.3435 | 18.2710 | 14.9021 |
500 | 0.250 | 25.1619 | 131.022 | 138.030 | 98.9192 |
500 | 2.500 | 139.576 | 627.261 | 660.813 | 460.387 |
T (eV) | (g·cm−3) | [Fe] (g·cm−3) | [Mg] (g·cm−3) |
---|---|---|---|
100 | 0.025 | 2.875 × 10−2 | 1.923 × 10−2 |
100 | 0.250 | 0.290 | 0.190 |
100 | 2.500 | 2.905 | 1.893 |
200 | 0.025 | 2.716 × 10−2 | 2.114 × 10−2 |
200 | 0.250 | 0.276 | 0.205 |
200 | 2.500 | 2.802 | 2.004 |
500 | 0.025 | 2.587 × 10−2 | 2.320 × 10−2 |
500 | 0.250 | 0.262 | 0.226 |
500 | 2.500 | 2.662 | 2.193 |
T (eV) | (g·cm−3) | [Fe] (cm2·g−1) | [Mg] (cm2·g−1) |
---|---|---|---|
100 | 0.025 | 628.2 | 153 |
100 | 0.250 | 2002 | 742.9 |
100 | 2.500 | 3746 | 1767 |
200 | 0.025 | 230.8 | 7.696 |
200 | 0.250 | 902.6 | 45.03 |
200 | 2.500 | 2262 | 247.6 |
500 | 0.025 | 3.073 | 1.407 |
500 | 0.250 | 26.92 | 11.54 |
500 | 2.500 | 137.4 | 97.38 |
T (eV) | (g·cm−3) | [Fe] (cm2·g) | [Mg] (cm2·g) |
---|---|---|---|
100 | 0.025 | 2520 | 869 |
100 | 0.250 | 5483 | 3978 |
100 | 2.500 | 8857 | 9490 |
200 | 0.025 | 2076 | 458.8 |
200 | 0.250 | 3663 | 823.6 |
200 | 2.500 | 5412 | 1715 |
500 | 0.025 | 20.74 | 9.007 |
500 | 0.250 | 154.7 | 76.11 |
500 | 2.500 | 712.1 | 432.4 |
T (eV) | (g·cm−3) | [Fe] (cm2·g) | [Mg] (cm2·g) |
---|---|---|---|
100 | 0.025 | 3216.72 | 617.054 |
100 | 0.250 | 5165.67 | 2692.51 |
100 | 2.500 | 7356.89 | 6278.83 |
200 | 0.025 | 2623.45 | 785.185 |
200 | 0.250 | 4195.74 | 1193.88 |
200 | 2.500 | 5532.09 | 1696.46 |
500 | 0.025 | 17.881 | 8.06600 |
500 | 0.250 | 113.319 | 65.9050 |
500 | 2.500 | 500.596 | 368.511 |
T (eV) | (g·cm−3) | (cm2·g) | Lower Bound (cm2·g) |
---|---|---|---|
100 | 0.025 | 527.061 | 484.214 |
100 | 0.250 | 2002.09 | 1620.49 |
100 | 2.500 | 3592.02 | 3146.36 |
200 | 0.025 | 175.315 | 163.199 |
200 | 0.250 | 720.411 | 642.756 |
200 | 2.500 | 1963.08 | 1651.64 |
500 | 0.025 | 2.79900 | 2.56820 |
500 | 0.250 | 25.1619 | 22.2599 |
500 | 2.500 | 139.576 | 125.274 |
First Significant | Number of Lines | Benford’s Law | Error |
---|---|---|---|
Digit in the Strength | (See Equation (34)) (%) | ||
1 | 20850 | 20919.80 | −0.33 |
2 | 12197 | 12232.18 | −0.29 |
3 | 8792 | 8687.625 | 1.19 |
4 | 6844 | 6741.597 | 1.50 |
5 | 5436 | 5490.579 | −1.00 |
6 | 4663 | 4656.567 | 0.14 |
7 | 3969 | 4031.058 | −1.56 |
8 | 3456 | 3544.551 | −2.56 |
9 | 3294 | 3197.046 | 2.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pain, J.-C.; Croset, P. Ideas and Tools for Error Detection in Opacity Databases. Atoms 2023, 11, 27. https://doi.org/10.3390/atoms11020027
Pain J-C, Croset P. Ideas and Tools for Error Detection in Opacity Databases. Atoms. 2023; 11(2):27. https://doi.org/10.3390/atoms11020027
Chicago/Turabian StylePain, Jean-Christophe, and Patricia Croset. 2023. "Ideas and Tools for Error Detection in Opacity Databases" Atoms 11, no. 2: 27. https://doi.org/10.3390/atoms11020027
APA StylePain, J. -C., & Croset, P. (2023). Ideas and Tools for Error Detection in Opacity Databases. Atoms, 11(2), 27. https://doi.org/10.3390/atoms11020027