Deep Laser Cooling of Thulium Atoms to Sub-µK Temperatures in Magneto-Optical Trap
Abstract
:1. Introduction
2. Results
2.1. Loading of Broadband MOT
2.2. Optimal MOT Parameters
2.3. Temperature Measurement with Clock Transition Spectroscopy
2.4. Effect of the 2nd-Stage MOT on Recapture Efficiency
2.5. Two Atomic Clouds Producing
3. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MOT | Magneto-optical trap |
BEC | Bose-Einstein condensate |
PSD | phase-space density |
AOM | acousto-optic modulator |
ULE | ultra-low expansion glass |
Appendix A. Laser Frequency Stabilization and Calibration
References
- Blume, D. Few-body physics with ultracold atomic and molecular systems in traps. Rep. Prog. Phys. 2012, 75, 046401. [Google Scholar] [CrossRef] [PubMed]
- Bloch, I.; Dalibard, J.; Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 2012, 8, 267–276. [Google Scholar] [CrossRef]
- Janvier, C.; Ménoret, V.; Desruelle, B.; Merlet, S.; Landragin, A.; dos Santos, F.P. Compact differential gravimeter at the quantum projection-noise limit. Phys. Rev. A 2022, 105, 022801. [Google Scholar] [CrossRef]
- Ménoret, V.; Vermeulen, P.; Le Moigne, N.; Bonvalot, S.; Bouyer, P.; Landragin, A.; Desruelle, B. Gravity measurements below 10-9g with a transportable absolute quantum gravimeter. Sci. Rep. 2018, 8, 21–23. [Google Scholar] [CrossRef]
- Del Aguila, R.P.; Mazzoni, T.; Hu, L.; Salvi, L.; Tino, G.M.; Poli, N. Bragg gravity-gradiometer using the 1S0-3P1 intercombination transition of 88Sr. New J. Phys. 2018, 20, 043002. [Google Scholar] [CrossRef]
- Ketterle, W.; Andrews, M.; Davis, K.; Durfee, D.; Kurn, D.; Mewes, M.O.; Van Druten, N. Bose–Einstein condensation of ultracold atomic gases. Phys. Scr. 1996, 1996, 31. [Google Scholar] [CrossRef]
- Warner, C.; Lam, A.Z.; Bigagli, N.; Liu, H.C.; Stevenson, I.; Will, S. Overlapping Bose-Einstein condensates of Na 23 and Cs 133. Phys. Rev. A 2021, 104, 033302. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Inoue, R.; Matsui, H.; Nomura, G.; Kozuma, M. Bose-Einstein condensation of europium. Phys. Rev. Lett. 2022, 129, 223401. [Google Scholar] [CrossRef]
- Schreck, F.; Druten, K.v. Laser cooling for quantum gases. Nat. Phys. 2021, 17, 1296–1304. [Google Scholar] [CrossRef]
- Davletov, E.; Tsyganok, V.; Khlebnikov, V.; Pershin, D.; Shaykin, D.; Akimov, A. Machine learning for achieving Bose-Einstein condensation of thulium atoms. Phys. Rev. A 2020, 102, 011302. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637. [Google Scholar] [CrossRef]
- Collaboration, Boulder Atomic Clock Optical Network BACON. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 2021, 591, 564–569. [Google Scholar] [CrossRef]
- Griesmaier, A.; Werner, J.; Hensler, S.; Stuhler, J.; Pfau, T. Bose-Einstein condensation of chromium. Phys. Rev. Lett. 2005, 94, 160401. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Burdick, N.Q.; Youn, S.H.; Lev, B.L. Strongly dipolar Bose-Einstein condensate of dysprosium. Phys. Rev. Lett. 2011, 107, 190401. [Google Scholar] [CrossRef] [PubMed]
- Kraft, S.; Vogt, F.; Appel, O.; Riehle, F.; Sterr, U. Bose-Einstein condensation of alkaline earth atoms: Ca 40. Phys. Rev. Lett. 2009, 103, 130401. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, K.; Frisch, A.; Mark, M.; Baier, S.; Rietzler, A.; Grimm, R.; Ferlaino, F. Bose-Einstein condensation of erbium. Phys. Rev. Lett. 2012, 108, 210401. [Google Scholar] [CrossRef] [PubMed]
- Stellmer, S.; Tey, M.K.; Huang, B.; Grimm, R.; Schreck, F. Bose-Einstein condensation of strontium. Phys. Rev. Lett. 2009, 103, 200401. [Google Scholar] [CrossRef]
- Ushijima, I.; Takamoto, M.; Katori, H. Operational Magic Intensity for Sr Optical Lattice Clocks. Phys. Rev. Lett. 2018, 121, 198–201. [Google Scholar] [CrossRef]
- Blatt, S.; Thomsen, J.W.; Campbell, G.K.; Ludlow, A.D.; Swallows, M.D.; Martin, M.J.; Boyd, M.M.; Ye, J. Rabi Spectroscopy and Excitation Inhomogeneity in a 1D Optical Lattice Clock. Phys. Rev. A 2009, 80, 052703. [Google Scholar] [CrossRef]
- Fedorova, E.S.; Tregubov, D.O.; Golovizin, A.A.; Mishin, D.A.; Provorchenko, D.I.; Khabarova, K.Y.; Sorokin, V.N.; Kolachevsky, N.N. Rabi spectroscopy of the clock transition in thulium atoms in a one-dimensional optical lattice. Quantum Electron. 2020, 50, 220–224. [Google Scholar] [CrossRef]
- Golovizin, A.; Fedorova, E.; Tregubov, D.; Sukachev, D.; Khabarova, K.; Sorokin, V.; Kolachevsky, N. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift. Nat. Commun. 2019, 10, 1724. [Google Scholar] [CrossRef]
- Khlebnikov, V.A.; Pershin, D.A.; Tsyganok, V.V.; Davletov, E.T.; Cojocaru, I.S. Random to chaotic temperature transition in low-field Fano-Feshbach resonances of cold thulium atoms. arXiv 2019, arXiv:1902.00201. [Google Scholar]
- Golovizin, A.A.; Tregubov, D.O.; Fedorova, E.S.; Mishin, D.A.; Provorchenko, D.I.; Khabarova, K.Y.; Sorokin, V.N.; Kolachevsky, N.N. Simultaneous bicolor interrogation in thulium optical clock providing very low systematic frequency shifts. Nat. Commun. 2021, 12, 5171. [Google Scholar] [CrossRef]
- Khlebnikov, V.; Tsyganok, V.; Pershin, D.; Davletov, E.; Kuznetsova, E.; Akimov, A. Characterizing the temperature dependence of Fano-Feshbach resonances of ultracold polarized thulium. Phys. Rev. A 2021, 103, 023306. [Google Scholar] [CrossRef]
- Mishin, D.A.; Provorchenko, D.I.; Tregubov, D.O.; Golovizin, A.A.; Khabarova, K.Y.; Sorokin, V.N.; Kolachevsky, N.N. Effect of optical lattice field on characteristics of a clock transition in thulium atoms. Quantum Electron. 2022, 52, 505. [Google Scholar] [CrossRef]
- Sukachev, D.D.; Kalganova, E.S.; Sokolov, A.V.; Fedorov, S.A.; Vishnyakova, G.A.; Akimov, A.V.; Kolachevsky, N.N.; Sorokin, V.N. Secondary laser cooling and capturing of thulium atoms in traps. Quantum Electron. 2014, 44, 515–520. [Google Scholar] [CrossRef]
- Kalganova, E.; Prudnikov, O.; Vishnyakova, G.; Golovizin, A.; Tregubov, D.; Sukachev, D.; Khabarova, K.; Sorokin, V.; Kolachevsky, N. Two-temperature momentum distribution in a thulium magneto-optical trap. Phys. Rev. A 2017, 96, 033418. [Google Scholar] [CrossRef]
- Katori, H.; Ido, T.; Isoya, Y.; Kuwata-Gonokami, M. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 1999, 82, 1116. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Safronova, M.; Gibble, K.; Katori, H. Narrow-line cooling and determination of the magic wavelength of Cd. Phys. Rev. Lett. 2019, 123, 113201. [Google Scholar] [CrossRef]
- Maier, T.; Kadau, H.; Schmitt, M.; Griesmaier, A.; Pfau, T. Narrow-line magneto-optical trap for dysprosium atoms. Opt. Lett. 2014, 39, 3138–3141. [Google Scholar] [CrossRef]
- Lett, P.D.; Watts, R.N.; Westbrook, C.I.; Phillips, W.D.; Gould, P.L.; Metcalf, H.J. Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 1988, 61, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bothwell, T.; Kennedy, C.J.; Aeppli, A.; Kedar, D.; Robinson, J.M.; Oelker, E.; Staron, A.; Ye, J. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 2022, 602, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Dolde, J.; Lochab, V.; Merriman, B.N.; Li, H.; Kolkowitz, S. Differential clock comparisons with a multiplexed optical lattice clock. Nature 2022, 602, 425–430. [Google Scholar] [CrossRef]
- Golovizin, A.; Tregubov, D.; Mishin, D.; Provorchenko, D.; Kolachevsky, N. Compact magneto-optical trap of thulium atoms for a transportable optical clock. Opt. Express 2021, 29, 36734–36744. [Google Scholar] [CrossRef]
- Degenhardt, C.; Stoehr, H.; Lisdat, C.; Wilpers, G.; Schnatz, H.; Lipphardt, B. Calcium optical frequency standard with ultracold atoms: Approaching 10-15 relative uncertainty. Phys. Rev. A 2005, 72, 062111. [Google Scholar] [CrossRef]
- Provorchenko, D.I.; Tregubov, D.O.; Mishin, D.A.; Golovizin, A.A.; Fedorova, E.S.; Khabarova, K.Y.; Sorokin, V.N.; Kolachevsky, N.N. Investigation of the transition at a wavelength of 506 nm, intended for deep cooling of thulium atoms. Quantum Electron. 2021, 51, 479. [Google Scholar] [CrossRef]
- Martin, W.; Zalubas, R.; Hagan, L. Atomic Energy Levels—The Rare Earth Elements.(The Spectra of Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, and Lutetium); [66 Atoms and Ions]; Technical Report; Department of Chemistry, Manchester College of Science and Technology (UK): Manchester, UK, 1978. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Provorchenko, D.; Tregubov, D.; Mishin, D.; Yaushev, M.; Kryuchkov, D.; Sorokin, V.; Khabarova, K.; Golovizin, A.; Kolachevsky, N. Deep Laser Cooling of Thulium Atoms to Sub-µK Temperatures in Magneto-Optical Trap. Atoms 2023, 11, 30. https://doi.org/10.3390/atoms11020030
Provorchenko D, Tregubov D, Mishin D, Yaushev M, Kryuchkov D, Sorokin V, Khabarova K, Golovizin A, Kolachevsky N. Deep Laser Cooling of Thulium Atoms to Sub-µK Temperatures in Magneto-Optical Trap. Atoms. 2023; 11(2):30. https://doi.org/10.3390/atoms11020030
Chicago/Turabian StyleProvorchenko, Daniil, Dmitry Tregubov, Denis Mishin, Mikhail Yaushev, Denis Kryuchkov, Vadim Sorokin, Ksenia Khabarova, Artem Golovizin, and Nikolay Kolachevsky. 2023. "Deep Laser Cooling of Thulium Atoms to Sub-µK Temperatures in Magneto-Optical Trap" Atoms 11, no. 2: 30. https://doi.org/10.3390/atoms11020030
APA StyleProvorchenko, D., Tregubov, D., Mishin, D., Yaushev, M., Kryuchkov, D., Sorokin, V., Khabarova, K., Golovizin, A., & Kolachevsky, N. (2023). Deep Laser Cooling of Thulium Atoms to Sub-µK Temperatures in Magneto-Optical Trap. Atoms, 11(2), 30. https://doi.org/10.3390/atoms11020030