A Theoretical Study of Scattering of e± by Tl Atom
Abstract
:1. Introduction
2. Outline of the Theory
2.1. The Relativistic Dirac Equation
2.2. Interaction Potential: The OPM Approach
3. Potentials and Numerics
4. Results and Discussion
4.1. Electron Scattering
4.1.1. Angle Dependent DCS
4.1.2. Angle Dependent Sherman Function
4.1.3. Energy Dependent DCS and Spin Polarization Parameters
4.1.4. Energy Dependent IECS, MTCS, VCS, INCS, TCS and TICS
4.1.5. Critical Minima and Maximum Spin Polarization
4.2. Positron Scattering
4.2.1. Angle Dependent DCS
4.2.2. Angle Dependent Sherman Function
4.2.3. Energy-Dependent DCS and Spin Polarization Parameters
4.2.4. Energy Dependent IECS, MTCS, VCS, INCS, TCS and TICS
4.2.5. Comparison of Electron and Positron Impact Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Christophorou, L.; Hunter, S. From basic research to application. Electron-Mol. Interact. Their Appl. 1984, 2, 318. [Google Scholar]
- Gargioni, E.; Grosswendt, B. Electron scattering from argon: Data evaluation and consistency. Rev. Mod. Phys. 2008, 80, 451. [Google Scholar] [CrossRef]
- Hosain, M.E.; Patoary, M.A.R.; Haque, M.; Haque, A.F.; Hossain, M.I.; Uddin, M.A.; Basak, A.K.; Maaza, M.; Saha, B.C. Elastic scattering of e± by Na atoms. Mol. Phys. 2018, 116, 631–648. [Google Scholar] [CrossRef]
- Ismail Hossain, M.; Haque, A.; Atiqur, M.; Patoary, R.; Uddin, M.; Basak, A. Elastic scattering of electrons and positrons by atomic magnesium. Eur. Phys. J. D 2016, 70, 1–9. [Google Scholar] [CrossRef]
- Khandker, M.H.; Haque, A.; Maaza, M.; Uddin, M.A. Scattering of e±from the neon isonuclear series over the energy range 1 eV–0.5 GeV. Jpn. J. Appl. Phys. 2020, 59, SHHA05. [Google Scholar] [CrossRef]
- Afroz, S.; Haque, M.; Haque, A.F.; Jakubassa-Amundsen, D.; Patoary, M.A.R.; Shorifuddoza, M.; Khandker, M.H.; Uddin, M.A. Elastic scattering of electrons and positrons from 115In atoms over the energy range 1 eV–0.5 GeV. Results Phys. 2020, 18, 103179. [Google Scholar] [CrossRef]
- Khatun, M.M.; Haque, M.; Patoary, M.A.R.; Shorifuddoza, M.; Khandker, M.H.; Haque, A.F.; Watabe, H.; Uddin, M.A. Theoretical study of e±scattering by the Au atom. Results Phys. 2021, 29, 104742. [Google Scholar] [CrossRef]
- Shorifuddoza, M.; Patoary, M.A.R.; Jakubassa-Amundsen, D.; Haque, A.; Uddin, M.A. Scattering of e± from ytterbium atoms. Eur. Phys. J. D 2019, 73, 1–23. [Google Scholar] [CrossRef]
- Marinković, B.; Pejčev, V.; Filipović, D.; Šević, D.; Milosavljević, A.; Milisavljević, S.; Rabasović, M.; Pavlović, D.; Maljković, J. Cross section data for electron collisions in plasma physics. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2007; Volume 86, p. 012006. [Google Scholar]
- Fortov, V.; Iakubov, I.; Khrapak, A. Physics of Strongly Coupled Plasma; OUP: Oxford, UK, 2006; Volume 135. [Google Scholar]
- Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of neutral zinc spectral lines. Astron. Astrophys. Suppl. Ser. 1999, 140, 193–196. [Google Scholar] [CrossRef]
- dos Santos, R.M.; da Cunha, W.F.; Giozza, W.F.; de Sousa Júnior, R.T.; Roncaratti, L.F.; Júnior, L.A.R. Electronic and structural properties of Janus MoSSe/MoX2 (X= S, Se) in-plane heterojunctions: A DFT study. Chem. Phys. Lett. 2021, 771, 138495. [Google Scholar] [CrossRef]
- Thorén, P. Removal of the calcium underabundance in cool metal rich Galactic disk dwarfs. arXiv 2000, arXiv:astro-ph/0005404. [Google Scholar]
- Hulett Jr, L.; Donohue, D.; Xu, J.; Lewis, T.; McLuckey, S.; Glish, G. Mass spectrometry studies of the ionization of organic molecules by low-energy positrons. Chem. Phys. Lett. 1993, 216, 236–240. [Google Scholar] [CrossRef]
- Somieski, B.; Hulett, L.D.; Xu, J.; Pint, B.A.; Tortorelli, P.F.; Nielsen, B.; Asoka-Kumar, P.; Suzuki, R.; Ohdaira, T. Microstructure of thermally grown and deposited alumina films probed with positrons. Phys. Rev. B 1999, 59, 6675. [Google Scholar] [CrossRef]
- Schultz, P.J.; Lynn, K.G. Interaction of positron beams with surfaces, thin films, and interfaces. Rev. Mod. Phys. 1988, 60, 701. [Google Scholar] [CrossRef]
- Guessoum, N. Positron astrophysics and areas of relation to low-energy positron physics. Eur. Phys. J. D 2014, 68, 1–6. [Google Scholar] [CrossRef]
- Surko, C.; Leventhal, M.; Crane, W.; Passner, A.; Wysocki, F.; Murphy, T.; Strachan, J.; Rowan, W. Use of positrons to study transport in tokamak plasmas. Rev. Sci. Instrum. 1986, 57, 1862–1867. [Google Scholar] [CrossRef]
- Surko, C.; Greaves, R. Emerging science and technology of antimatter plasmas and trap-based beams. Phys. Plasmas 2004, 11, 2333–2348. [Google Scholar] [CrossRef]
- Bartschat, K.; Tennyson, J.; Zatsarinny, O. Quantum-Mechanical Calculations of Cross Sections for Electron Collisions With Atoms and Molecules. Plasma Process. Polym. 2017, 14, 1600093. [Google Scholar] [CrossRef]
- Sinha, N.; Singh, S.; Antony, B. Positron total scattering cross-sections for alkali atoms. J. Phys. B At. Mol. Opt. Phys. 2017, 51, 015204. [Google Scholar] [CrossRef]
- Ratnavelu, K.; Brunger, M.J.; Buckman, S.J. Recommended positron scattering cross sections for atomic systems. J. Phys. Chem. Ref. Data 2019, 48, 023102. [Google Scholar] [CrossRef]
- Haque, A.F.; Uddin, M.A.; Jakubassa-Amundsen, D.; Saha, B.C. Comparative study of eV to GeV electrons and positrons scattering elastically from neutral atoms. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 175202. [Google Scholar] [CrossRef]
- Jakubassa-Amundsen, D.; Ponomarev, V.Y. Electric dipole excitation of 208Pb by polarized electron impact. Eur. Phys. J. A 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Jakubassa-Amundsen, D.; Ponomarev, V.Y. Coincident excitation and radiative decay in electron-nucleus collisions. Phys. Rev. C 2017, 95, 024310. [Google Scholar] [CrossRef]
- Dapor, M. Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization; Springer: Berlin/Heidelberg, Germany, 2016; Volume 999. [Google Scholar]
- Green, D. ANTICOOL: Simulating positron cooling and annihilation in atomic gases. Comput. Phys. Commun. 2018, 224, 362–370. [Google Scholar] [CrossRef]
- Arretche, F.; Barp, M.V.; Scheidt, A.; Seidel, E.P.; Tenfen, W. Semiempirical models for low energy positron scattering by Ar, Kr and Xe. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 215201. [Google Scholar] [CrossRef]
- Jakubassa-Amundsen, D.H.; Haque, A.K.F.; Haque, M.M.; Billah, M.M.; Basak, A.K.; Saha, B.C.; Uddin, M.A. Electron and Positron Scattering from Precious Metal Atoms in the eV to MeV Energy Range. Atoms 2022, 10, 82. [Google Scholar] [CrossRef]
- Schlimme, B.; Achenbach, P.; Aulenbacher, K.; Baunack, S.; Bender, D.; Beričič, J.; Bosnar, D.; Correa, L.; Dehn, M.; Distler, M.; et al. Vertical beam polarization at MAMI. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 850, 54–60. [Google Scholar] [CrossRef]
- Lebowitz, E.; Greene, M.; Fairchild, R.; Bradley-Moore, P.; Atkins, H.; Ansari, A.; Richards, P.; Belgrave, E. Thallium-201 for medical use. I. J. Nucl. Med. 1975, 16, 151–155. [Google Scholar]
- Feller, P.A.; Sodd, V.J. Dosimetry of four heart-imaging radionuclides: 43K, 81Rb, 129Cs, and 201Tl. J. Nucl. Med. 1975, 16, 1070–1075. [Google Scholar]
- Viraraghavan, T.; Srinivasan, A. Thallium: Environmental Pollution and Health Effects; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Kaussen, F.; Geesmann, H.; Hanne, G.; Kessler, J. Study of spin polarisation in elastic scattering of electrons from Hg, Tl, Pb and Bi atoms. J. Phys. B At. Mol. Phys. (1968–1987) 1987, 20, 151. [Google Scholar] [CrossRef]
- Haberland, R.; Fritsche, L. On the elastic scattering of low-energy electrons by Hg, Tl, Pb and Bi atoms. J. Phys. B At. Mol. Phys. (1968–1987) 1987, 20, 121. [Google Scholar] [CrossRef]
- Tawara, H.; Kato, T. Total and partial ionization cross sections of atoms and ions by electron impact. At. Data Nucl. Data Tables 1987, 36, 167–353. [Google Scholar] [CrossRef]
- Mayol, R.; Salvat, F. Total and transport cross sections for elastic scattering of electrons by atoms. At. Data Nucl. Data Tables 1997, 65, 55–154. [Google Scholar] [CrossRef]
- Dapor, M.; Miotello, A. Differential, total, and transport cross sections for elastic scattering of low energy positrons by neutral atoms (Z = 1–92, E = 500–4000 eV). At. Data Nucl. Data Tables 1998, 69, 1–100. [Google Scholar] [CrossRef]
- Rose, M.E. Relativistic Electron Theory; Wiley: New York, NY, USA, 1961. [Google Scholar]
- Salvat, F.; Fernández-Varea, J.; Williamson, W., Jr. Accurate numerical solution of the radial Schrödinger and Dirac wave equations. Comput. Phys. Commun. 1995, 90, 151–168. [Google Scholar] [CrossRef]
- Salvat, F. Optical-model potential for electron and positron elastic scattering by atoms. Phys. Rev. A 2003, 68, 012708. [Google Scholar] [CrossRef]
- Haque, A.; Hossain, M.I.; Uddin, M.A.; Patoary, M.A.R.; Basak, A.; Maaza, M.; Saha, B. Elastic scattering of electrons and positrons by cadmium atoms. Mol. Phys. 2017, 115, 566–578. [Google Scholar] [CrossRef]
- Abdullah, M.; Alam, N.; Kumar, A.; Haque, A.K.F.; Alfaz Uddin, M. A study of critical minima and spin polarization in the e±–Ba elastic scattering. Eur. Phys. J. D 2020, 74, 1–25. [Google Scholar] [CrossRef]
- Salvat, F.; Jablonski, A.; Powell, C.J. ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput. Phys. Commun. 2005, 165, 157–190. [Google Scholar] [CrossRef]
- Furness, J.; McCarthy, I. Semiphenomenological optical model for electron scattering on atoms. J. Phys. B At. Mol. Phys. (1968–1987) 1973, 6, 2280. [Google Scholar] [CrossRef]
- Desclaux, J. A multiconfiguration relativistic Dirac–Fock program. Comput. Phys. Commun. 1975, 9, 31–45. [Google Scholar] [CrossRef]
- Sun, J.; Yu, G.; Jiang, Y.; Zhang, S. Total cross-sections for positron scattering by a series of molecules. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 1998, 4, 83–88. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048. [Google Scholar] [CrossRef]
- Jain, A. Low-energy positron-argon collisions by using parameter-free positron correlation polarization potentials. Phys. Rev. A 1990, 41, 2437. [Google Scholar] [CrossRef]
- Radzig, A.A.; Smirnov, B.M. Interaction potentials between atomic and molecular species. In Reference Data on Atoms, Molecules, and Ions; Springer: Berlin/Heidelberg, Germany, 1985; pp. 307–315. [Google Scholar]
- Mott, N.F.; Massey, H.S.W.; of Monographs on Physics, T.I.S. The Theory of Atomic Collisions; Clarendon Press: Oxford, UK, 1965; Volume 35. [Google Scholar]
- Kessler, J. Relativistic calculations for spin-polarization of elastic electron-mercury scattering. Adv. At. Mol. Opt. Phys. 1990, 27, 81–163. [Google Scholar]
- Haque, A.; Haque, M.; Bhattacharjee, P.P.; Uddin, M.A.; Patoary, M.A.R.; Hossain, M.I.; Basak, A.; Mahbub, M.S.; Maaza, M.; Saha, B. Relativistic calculations for spin-polarization of elastic electron—Mercury scattering. J. Phys. Commun. 2017, 1, 035014. [Google Scholar] [CrossRef]
- Joshipura, K.; Antony, B. Total (including ionization) cross sections of electron impact on ground state and metastable Ne atoms. Phys. Lett. A 2001, 289, 323–328. [Google Scholar] [CrossRef]
- Saha, B.C.; Jakubassa-Amundsen, D.; Basak, A.; Haque, A.; Haque, M.; Khandker, M.H.; Uddin, M.A. Chapter One -Elastic scattering of electrons and positrons from alkali atoms. Adv. Quantum Chem. 2022, 86, 1–149. [Google Scholar] [CrossRef]
- Beiser, A. Concepts of Modern Physics, 2nd ed.; McGraw-Hill Co.: New York, NY, USA, 1973. [Google Scholar]
- Ramsauer, C. Uber den wirkungsquerschnitt der gasmolekule Gegenuber Langsamen electronen. I. Fortsetzung. Ann. Phys. 1921, 66, 546. [Google Scholar]
- Townsend, J.; Bailey, V. LXX. The motion of electrons in argon. London, Edinb. Dublin Philos. Mag. J. Sci. 1922, 43, 593–600. [Google Scholar] [CrossRef]
- McFarland, R.H. Electron-impact ionization measurements of surface-ionizable atoms. Phys. Rev. 1967, 159, 20. [Google Scholar] [CrossRef]
- Shimon, L.; Nepiipov, E.; Zapesochnyi, I. Effective total electron-impact ionization cross sections for aluminum gallium, indium, and thallium. Sov. Phys. Tech. Phys. 1975, 20, 434. [Google Scholar]
- Haque, A.; Haque, M.; Hossain, M.S.; Hossain, M.I.; Patoary, M.A.R.; Maaza, M.; Basak, A.; Saha, B.; Uddin, M.A. A study of the critical minima and spin polarization in the elastic electron scattering by the lead atom. J. Phys. Commun. 2018, 2, 125013. [Google Scholar] [CrossRef]
- Haque, M.; Haque, A.; Jakubassa-Amundsen, D.; Patoary, M.A.R.; Basak, A.; Maaza, M.; Saha, B.; Uddin, M.A. e±-Ar scattering in the energy range 1 eV ≤ Ei ≤ 0.5 GeV. J. Phys. Commun. 2019, 3, 045011. [Google Scholar] [CrossRef]
- Walker, D. Relativistic effects in low energy electron scattering from atoms. Adv. Phys. 1971, 20, 257–323. [Google Scholar] [CrossRef]
- Lucas, M.; Jakubassa-Amundsen, D.; Kuzel, M.; Groeneveld, K. Quasifree electron scattering in atomic collisions: The Ramsauer–Townsend effect revisited. Int. J. Mod. Phys. A 1997, 12, 305–378. [Google Scholar] [CrossRef]
(eV) | (deg) | (cm) | (cm) |
---|---|---|---|
8.3 | 108.5 | 1.64 × 10−9 | 1.95 × 10−9 |
18.3 | 40.0 | 1.52 × 10−9 | 1.16 × 10−9 |
19.1 | 127.5 | 2.43 × 10−10 | 9.52 × 10−10 |
25.7 | 85.0 | 5.06 × 10−10 | 1.28 × 10−9 |
149.1 | 112.0 | 1.59 × 10−10 | 3.40 × 10−10 |
156.9 | 161.5 | 9.39 × 10−12 | 1.14 × 10−10 |
226.6 | 84.5 | 1.05 × 10−10 | 5.28 × 10−10 |
268.7 | 147.0 | 4.48 × 10−11 | 1.56 × 10−10 |
334.3 | 119.0 | 1.09 × 10−11 | 2.80 × 10−10 |
457.5 | 69.0 | 1.76 × 10−10 | 3.60 × 10−10 |
564.0 | 153.0 | 4.27 × 10−11 | 1.03 × 10−10 |
911.7 | 100.0 | 4.50 × 10−11 | 2.52 × 10−10 |
1696.0 | 137.0 | 1.31 × 10−11 | 1.81 × 10−10 |
(eV) | (deg) | (eV) | (deg) | |
---|---|---|---|---|
+1.00 | 8.9 | 102.0 | 0.6 | 6.5 |
−1.00 | 4.6 | 117.5 | 3.7 | 9.0 |
+0.99 | 17.3 | 41.0 | 1.0 | 1.0 |
+1.00 | 17.2 | 121.5 | 1.9 | 6.0 |
−1.00 | 19.9 | 130.0 | 0.8 | 2.5 |
+1.00 | 30.9 | 83.0 | 5.2 | 2.0 |
−0.97 | 15.9 | 70.5 | 9.8 | 14.5 |
+1.00 | 149.5 | 110.0 | 0.4 | 2.0 |
−0.78 | 151.0 | 114.5 | 1.9 | 2.5 |
+1.00 | 155.8 | 162.6 | 1.1 | 1.1 |
−0.95 | 158.1 | 160.5 | 1.2 | 1.0 |
+0.98 | 216.4 | 85.0 | 10.2 | 0.5 |
−0.92 | 239.9 | 83.5 | 13.3 | 1.0 |
+0.98 | 270.7 | 146.0 | 2.0 | 1.0 |
−0.99 | 267.0 | 147.5 | 1.7 | 0.5 |
+1.00 | 321.4 | 120.5 | 12.9 | 1.5 |
−1.00 | 353.4 | 117.5 | 19.1 | 1.5 |
+1.00 | 455.9 | 68.0 | 1.6 | 1.0 |
−0.80 | 480.5 | 69.0 | 23.0 | 0.0 |
−0.89 | 565.8 | 152.5 | 4.0 | 0.5 |
+1.00 | 558.3 | 153.5 | 3.5 | 0.5 |
+1.00 | 912.9 | 98.5 | 1.2 | 1.5 |
−0.95 | 925.8 | 101.0 | 14.1 | 1.0 |
+0.99 | 1748.0 | 135.5 | 52.0 | 1.5 |
−0.97 | 1639.0 | 138.5 | 57.0 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvin, S.; Billah, M.M.; Khandker, M.H.; Hossain, M.I.; Haque, M.M.; Shahmohammadi Beni, M.; Watabe, H.; Haque, A.K.F.; Uddin, M.A. A Theoretical Study of Scattering of e± by Tl Atom. Atoms 2023, 11, 37. https://doi.org/10.3390/atoms11020037
Parvin S, Billah MM, Khandker MH, Hossain MI, Haque MM, Shahmohammadi Beni M, Watabe H, Haque AKF, Uddin MA. A Theoretical Study of Scattering of e± by Tl Atom. Atoms. 2023; 11(2):37. https://doi.org/10.3390/atoms11020037
Chicago/Turabian StyleParvin, Sunzida, M. Masum Billah, Mahmudul H. Khandker, M. Ismail Hossain, M. M. Haque, Mehrdad Shahmohammadi Beni, Hiroshi Watabe, A. K. Fazlul Haque, and M. Alfaz Uddin. 2023. "A Theoretical Study of Scattering of e± by Tl Atom" Atoms 11, no. 2: 37. https://doi.org/10.3390/atoms11020037
APA StyleParvin, S., Billah, M. M., Khandker, M. H., Hossain, M. I., Haque, M. M., Shahmohammadi Beni, M., Watabe, H., Haque, A. K. F., & Uddin, M. A. (2023). A Theoretical Study of Scattering of e± by Tl Atom. Atoms, 11(2), 37. https://doi.org/10.3390/atoms11020037