Rigorous Negative Ion Binding Energies in Low-Energy Electron Elastic Collisions with Heavy Multi-Electron Atoms and Fullerene Molecules: Validation of Electron Affinities
Abstract
:1. Introduction
2. Method of Calculation
3. Results
3.1. Bk and Cf Atoms
3.2. Fm and Lr Atoms
3.3. Relativistic Effects in Electron Affinity Calculations
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Msezane, A.Z.; Felfli, Z. Recent Progress in Low-Energy Electron Elastic-Collisions with Multi-Electron Atoms and Fullerene Molecules. Atoms 2022, 10, 79. [Google Scholar] [CrossRef]
- Hotop, H.; Lineberger, W.C. Dye-laser photodetachment studies of Au−, Pt−, PtN−, and Ag−. J. Chem. Phys. 2003, 58, 2379–2387. [Google Scholar] [CrossRef]
- Andersen, T.; Haugen, H.K.; Hotop, H. Binding Energies in Atomic Negative Ions: III. J. Phys. Chem. Ref. Data 1999, 28, 1511–1533. [Google Scholar] [CrossRef]
- Zheng, W.; Li, X.; Eustis, S.; Grubisic, A.; Thomas, O.; De Clercq, H.; Bowen, K. Anion photoelectron spectroscopy of Au−(H2O)1,2, Au2−(D2O)1–4, and AuOH−. Chem. Phys. Lett. 2007, 444, 232–236. [Google Scholar] [CrossRef]
- Gibson, D.; Davies, B.J.; Larson, D.J. The electron affinity of platinum. J. Chem. Phys. 1993, 98, 5104–5105. [Google Scholar] [CrossRef]
- Bilodeau, R.C.; Scheer, M.; Haugen, H.K.; Brooks, R.L. Near-threshold laser spectroscopy of iridium and platinum negative ions: Electron affinities and the threshold law. Phys. Rev. A 1999, 61, 012505. [Google Scholar] [CrossRef]
- Leimbach, D.; Karls, J.; Guo, Y.; Ahmed, R.; Ballof, J.; Bengtsson, L.; Pamies, F.B.; Borschevsky, A.; Chrysalidis, K.; Eliav, E.; et al. The electron affinity of astatine. Nat. Commun. 2020, 11, 3824. [Google Scholar] [CrossRef]
- Huang, D.-L.; Dau, P.D.; Liu, H.T.; Wang, L.-S. High-resolution photoelectron imaging of cold C60− anions and accurate determination of the electron affinity of C60. J. Chem. Phys. 2014, 140, 224315. [Google Scholar] [CrossRef] [Green Version]
- Brink, C.; Andersen, L.H.; Hvelplund, P.; Mathur, D.; Voldstad, J.D. Laser photodetachment of C60− and C70− ions cooled in a storage ring. Chem. Phys. Lett. 1995, 233, 52–56. [Google Scholar] [CrossRef]
- Wang, X.-B.; Ding, C.F.; Wang, L.-S. High resolution photoelectron spectroscopy of C60−. J. Chem. Phys. 1999, 110, 8217–8220. [Google Scholar] [CrossRef] [Green Version]
- Boltalina, O.V.; Sidorov, L.N.; Sukhanova, E.V.; Skokan, E.V. Electron affinities of higher fullerenes. Rapid Commun. Mass Spectrom. 1993, 7, 1009–1011. [Google Scholar] [CrossRef]
- Palpant, B.; Otake, A.; Hayakawa, F.; Negishi, Y.; Lee, G.H.; Nakajima, A.; Kaya, K. Photoelectron spectroscopy of sodium-coated C60 and C70 cluster anions. Phys. Rev. B. 1999, 60, 4509. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, X.; Li, J.; Ning, C. Precision measurement of the electron affinity of niobium. Phys. Rev. A 2016, 93, 020501. [Google Scholar] [CrossRef]
- Feigerle, C.S.; Corderman, R.R.; Bobashev, S.V.; Lineberger, W.C. Binding energies and structure of transition metal negative ions. J. Chem. Phys. 1981, 74, 1580–1598. [Google Scholar] [CrossRef]
- Tang, R.; Chen, X.; Fu, X.; Wang, H.; Ning, C. Electron affinity of the hafnium atom. Phys. Rev. A 2018, 98, 020501. [Google Scholar] [CrossRef]
- Cheng, S.-B.; Castleman, A.W. Direct experimental observation of weakly-bound character of the attached electron in europium anion. Sci. Rep. 2015, 5, 12414. [Google Scholar] [CrossRef] [Green Version]
- Davis, V.T.; Thompson, J.S. An experimental investigation of the atomic europium anion. J. Phys. B 2004, 37, 1961. [Google Scholar] [CrossRef]
- Davis, V.T.; Thompson, J.S. Measurement of the electron affinity of thulium. Phys. Rev. A 2001, 65, 010501. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Si, R.; Fei, Z.; Fu, X.; Lu, Y.; Brage, T.; Liu, H.; Chen, C.; Ning, C. Candidate for Laser Cooling of a Negative Ion: High-Resolution Photoelectron Imaging of Th−. Phys. Rev. Lett. 2019, 123, 203002. [Google Scholar] [CrossRef]
- Tang, R.; Lu, Y.; Liu, H.; Ning, C. Electron affinity of uranium and bound states of opposite parity in its anion. Phys. Rev. A 2021, 103, L050801. [Google Scholar] [CrossRef]
- Ciborowski, S.M.; Liu, G.; Blankenhorn, M.; Harris, R.M.; Marshall, M.A.; Zhu, Z.; Bowen, K.H.; Peterson, K.A. The electron affinity of the uranium atom. J. Chem. Phys. 2021, 154, 224307. [Google Scholar] [CrossRef]
- O’Malley, S.M.; Beck, D.R. Valence calculations of lanthanide anion binding energies: 6p attachments to 4fn6s2 thresholds. Phys. Rev. A 2008, 78, 012510. [Google Scholar] [CrossRef]
- O’Malley, S.M.; Beck, D.R. Valence calculations of actinide anion binding energies: All bound 7p and 7s attachments. Phys. Rev. A 2009, 80, 032514. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Whitehead, M.A. Electron affinities of alkaline-earth and actinide elements calculated with the local-spin-density-functional theory. Phys. Rev. A 1989, 40, 28. [Google Scholar] [CrossRef] [PubMed]
- Eliav, E.; Kaldor, U.; Ishikawa, Y. Transition energies of ytterbium, lutetium, and lawrencium by the relativistic coupled-cluster method. Phys. Rev. A 1995, 52, 291. [Google Scholar] [CrossRef]
- Borschevsky, A.; Eliav, E.; Vilkas, M.J.; Ishikawa, Y.; Kaldor, U. Transition energies of atomic lawrencium. Eur. Phys. J. D 2007, 45, 115–119. [Google Scholar] [CrossRef]
- Cole, L.A.; Perdew, J.P. Calculated electron affinities of the elements. Phys. Rev. A 1982, 25, 1265. [Google Scholar] [CrossRef]
- Calaminici, P.; Mejia-Olvera, R.J. Structures, Frequencies, and Energy Properties of Small Neutral, Cationic, and Anionic Niobium Clusters. Phys. Chem. C 2011, 115, 11891–11897. [Google Scholar] [CrossRef]
- Felfli, Z.; Msezane, A.Z.J. Conundrum in Measured Electron Affinities of Complex Heavy Atoms. J. At. Mol. Condens. Matter Nano Phys. 2018, 5, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Felfli, Z.; Msezane, A.Z. Low-Energy Electron Elastic Total Cross Sections for Ho, Er, Tm, Yb, Lu, and Hf Atoms. Atoms 2020, 8, 17. [Google Scholar] [CrossRef]
- Müller, A.; Deblonde, G.J.P.; Ercius, P.; Zeltmann, S.E.; Abergel, R.J.; Minor, A.M. Probing electronic structure in berkelium and californium via an electron microscopy nanosampling approach. Nat. Commun. 2021, 12, 948. [Google Scholar] [CrossRef]
- Si, R.; Froese Fischer, C. Electron affinities of At and its homologous elements Cl, Br, I. Phys. Rev. A 2018, 98, 052504. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhao, Z.; Andersson, M.; Zhang, X.; Chen, C. Theoretical study for the electron affinities of negative ions with the MCDHF method. J. Phys. B 2012, 45, 165004. [Google Scholar] [CrossRef]
- Borschevsky, A.; Pašteka, L.F.; Pershina, V.; Eliav, E.; Kaldor, U. Ionization potentials and electron affinities of the superheavy elements 115–117 and their sixth-row homologues Bi, Po, and At. Phys. Rev. A 2015, 91, 020501. [Google Scholar] [CrossRef]
- Sergentu, D.; David, G.; Montavon, G.; Maurice, R.; Galland, N. Scrutinizing “Invisible” astatine: A challenge for modern density functionals. J. Comput. Chem. 2016, 37, 1345–1354. [Google Scholar] [CrossRef]
- Wesendrup, R.; Laerdahl, J.K.; Schwerdtfeger, P. Relativistic effects in gold chemistry. VI. Coupled cluster calculations for the isoelectronic series AuPt−, Au2, and AuHg+. J. Chem. Phys. 1999, 110, 9457–9462. [Google Scholar] [CrossRef]
- Pašteka, L.F.; Eliav, E.; Borschevsky, A.; Kaldor, U.; Schwerdtfeger, P. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold. Phys. Rev. Lett. 2017, 118, 023002. [Google Scholar] [CrossRef] [PubMed]
- Felfli, Z.; Msezane, A.Z.; Sokolovski, D. Near-threshold resonances in electron elastic scattering cross sections for Au and Pt atoms: Identification of electron affinities. J. Phys. B 2008, 41, 105201. [Google Scholar] [CrossRef]
- Nagase, S.; Kabayashi, K. Theoretical study of the lanthanide fullerene CeC82. Comparison with ScC82, YC82 and LaC82. Chem. Phys. Lett. 1999, 228, 106–110. [Google Scholar] [CrossRef]
- Zakrzewski, V.G.; Dolgounitcheva, O.; Ortiz, J.V. Electron propagator calculations on the ground and excited states of C60−. J. Phys. Chem. A 2014, 118, 7424–7429. [Google Scholar] [CrossRef]
- Felfli, Z.; Msezane, A.Z. Simple method for determining fullerene negative ion formation. Eur. Phys. J. D 2018, 72, 78. [Google Scholar] [CrossRef]
- Tiago, M.L.; Kent, P.R.C.; Hood, R.Q.; Reboredo, F. A Neutral and charged excitations in carbon fullerenes from first-principles many-body theories. J. Chem. Phys. 2008, 129, 084311. [Google Scholar] [CrossRef] [PubMed]
- Felfli, Z.; Msezane, A.Z.; Sokolovski, D. Complex angular momentum analysis of low-energy electron elastic scattering from lanthanide atoms. Phys. Rev. A 2010, 81, 042707. [Google Scholar] [CrossRef]
- Pan, L.; Beck, D.R. Calculations of Hf− has only one bound state, electron affinity and photodetachment partial cross sections. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 025002. [Google Scholar] [CrossRef] [Green Version]
- Felfli, Z.; Msezane, A.Z.; Sokolovski, D. Strong resonances in low-energy electron elastic total and differential cross sections for Hf and Lu atoms. Phys. Rev. A 2008, 78, 030703. [Google Scholar] [CrossRef]
- Felfli, Z.; Msezane, A.Z. Negative Ion Formation in Low-Energy Electron Collisions with the Actinide Atoms Th, Pa, U, Np and Pu. Appl. Phys. Res. 2019, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Dinov, K.D.; Beck, D.R. Electron affinities and hyperfine structure for U− and U I obtained from relativistic configuration-interaction calculations. Phys. Rev. A 1995, 52, 2632. [Google Scholar] [CrossRef]
- Frautschi, S.C. Regge Poles and S-Matrix Theory; Benjamin: New York, NY, USA, 1963; Chapter X. [Google Scholar]
- D’Alfaro, V.; Regge, T.E. Potential Scattering; North-Holland: Amsterdam, The Netherlands, 1965. [Google Scholar]
- Omnes, R.; Froissart, M. Mandelstam Theory and Regge Poles: An Introduction for Experimentalists; Benjamin: New York, NY, USA, 1963; Chapter 2. [Google Scholar]
- Hiscox, A.; Brown, B.M.; Marletta, M. On the low energy behavior of Regge poles. J. Math. Phys. 2010, 51, 102104. [Google Scholar] [CrossRef]
- Mulholland, H.P. An asymptotic expansion for Σ(2n+1)exp (Àσ(n+1/2)2). Proc. Camb. Philos. Soc. 1928, 24, 280–289. [Google Scholar] [CrossRef]
- Macek, J.H.; Krstic, P.S.; Ovchinnikov, S.Y. Regge Oscillations in Integral Cross Sections for Proton Impact on Atomic Hydrogen. Phys. Rev. Lett. 2004, 93, 183203. [Google Scholar] [CrossRef] [PubMed]
- Sokolovski, D.; Felfli, Z.; Ovchinnikov, S.Y.; Macek, J.H.; Msezane, A.Z. Regge oscillations in electron-atom elastic cross sections. Phys. Rev. A 2007, 76, 012705. [Google Scholar] [CrossRef]
- Felfli, Z.; Msezane, A.Z.; Sokolovski, D. Resonances in low-energy electron elastic cross sections for lanthanide atoms. Phys. Rev. A 2009, 79, 012714. [Google Scholar] [CrossRef] [Green Version]
- Thylwe, K.W. On relativistic shifts of negative-ion resonances. Eur. Phys. J. D 2012, 66, 7. [Google Scholar] [CrossRef]
- Dolmatov, V.K.; Amusia, M.Y.; Chernysheva, L.V. Electron elastic scattering off A@C60: The role of atomic polarization under confinement. Phys. Rev. A 2017, 95, 012709. [Google Scholar] [CrossRef] [Green Version]
- Felfli, Z.; Belov, S.; Avdonina, N.B.; Marletta, M.; Msezane, A.Z.; Naboko, S.N. Regge poles trajectories for nonsingular potentials: The Thomas-Fermi Potentials. In Proceedings of the Third International Workshop on Contemporary Problems in Mathematical Physics, Cotonou, Republic of Benin, 1–7 November 2003; Govaerts, J., Hounkonnou, M.N., Msezane, A.Z., Eds.; World Scientific: Singapore, 2004; pp. 217–232. [Google Scholar]
- Sokolovski, D.; Msezane, A.Z.; Felfli, Z.; Ovchinnikov, S.Y.; Macek, J.H. What can one do with Regge poles? Nucl. Instrum. Methods Phys. Res. Sect. B 2007, 261, 133–137. [Google Scholar] [CrossRef]
- Connor, J.N.L. New theoretical methods for molecular collisions: The complex angular-momentum approach. J. Chem. Soc. Faraday Trans. 1990, 86, 1627–1640. [Google Scholar] [CrossRef]
- Belov, S.; Thylwe, K.-E.; Marletta, M.; Msezane, A.Z.; Naboko, S.N. On Regge pole trajectories for a rational function approximation of Thomas–Fermi potentials. J. Phys. A 2010, 43, 365301. [Google Scholar] [CrossRef]
- Belov, S.; Avdonina, N.B.; Marletta, M.; Msezane, A.Z.; Naboko, S.N. Semiclassical approach to Regge poles trajectories calculations for nonsingular potentials: Thomas–Fermi type. J. Phys. A 2004, 37, 6943. [Google Scholar] [CrossRef]
- Burke, P.G.; Tate, C. A program for calculating regge trajectories in potential scattering. Comput. Phys. Commun. 1969, 1, 97–105. [Google Scholar] [CrossRef]
- Msezane, A.Z.; Felfli, Z. New insights in low-energy electron-fullerene interactions. Chem. Phys. 2018, 503, 50–55. [Google Scholar] [CrossRef]
- Felfli, Z.; Msezane, A.Z.; Sokolovski, D. Slow electron elastic scattering cross sections for In, Tl, Ga and At atoms. J. Phys. B 2012, 45, 045201. [Google Scholar] [CrossRef]
- Zollweg, R.J. Electron Affinities of the Heavy Elements. J. Chem. Phys. 1969, 50, 4251–4261. [Google Scholar] [CrossRef]
System Z | BEs GRS | BEs MS-1 | BEs MS-2 | EAs EXPT | BEs EXT-1 | BEs EXT-2 | R-T GRS | BEs/EAs Theory | EAs RCI [23] | EAs GW [24] |
---|---|---|---|---|---|---|---|---|---|---|
Au 79 | 2.26 | 0.832 | - | 2.309 [2] 2.301 [3] 2.306 [4] | 0.326 | - | 2.24 | 2.50 [27] 2.19 [36] 2.313 [37] 2.263 [38] | - | - |
Pt 78 | 2.16 | 1.197 | - | 2.128 [2] 2.125 [5] 2.123 [6] | 0.136 | - | 2.15 | 2.163 [38] | - | - |
At 85 | 2.42 | 0.918 | 0.412 | 2.416 [7] | 0.115 | 0.292 | 2.43 | 2.38 [32] 2.42 [33] 2.412 [34] 2.45 [35] | - | - |
C60 | 2.66 | 1.86 | 1.23 | 2.684 [8] 2.666 [9] 2.689 [10] | 0.203 | 0.378 | 2.67 | 2.57 [39] 2.63 [40] 2.663 [41] | - | - |
C70 | 2.70 | 1.77 | 1.27 | 2.676 [9] 2.72 [11] 2.74 [12] | 0.230 | 0.384 | 2.72 | 3.35 [42] 2.83 [42] | - | - |
Nb 41 | 2.48 | 0.902 | - | 0.917 [13] 0.894 [14] | 0.356 | - | 2.47 | 0.82 [27] 0.99 [28] | - | - |
Eu 63 | 2.63 | 1.08 | - | 0.116 [16] 1.053 [17] | 0.116 | - | 2.62 | 0.117 [22] 0.116 [43] | - | - |
Tm 69 | 3.36 | 1.02 | - | 1.029 [18] | 0.016 | 0.274 | 3.35 | - | - | - |
Hf 72 | 1.68 | 0.525 | - | 0.178 [15] | 0.017 | 0.113 | 1.67 | 0.114 [44] 0.113 [45] | - | - |
Th 90 | 3.09 | 1.36 | 0.905 | 0.608 [19] | 0.149 | 0.549 | 3.08 | 0.599 [19] 0.549 [46] | 0.368 | 1.17 |
U 92 | 3.03 | 1.44 | - | 0.315 [20] 0.309 [21] | 0.220 | 0.507 | 3.04 | 0.175 [47] 0.232 [21] | 0.373 | 0.53 |
Bk 97 | 3.55 | 1.73 | 0.997 | N/A | 0.267 | 0.505 | 3.56 | - | 0.031 | −0.276 −0.503 |
Cf 98 | 3.32 | 1.70 | 0.955 | N/A | 0.272 | 0.577 | 3.34 | - | 0.010 0.018 | −0.777 −1.013 |
Fm 100 | 3.47 | 1.79 | 1.02 | N/A | 0.268 | 0.623 | 3.49 | - | - | 0.354 0.597 |
Lr 103 | 3.88 | 1.92 | 1.10 | N/A | 0.321 | 0.649 | 3.90 | 0.160 [25] 0.310 [25] 0.476 [26] | 0.295 0.465 | −0.212 −0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Msezane, A.Z.; Felfli, Z. Rigorous Negative Ion Binding Energies in Low-Energy Electron Elastic Collisions with Heavy Multi-Electron Atoms and Fullerene Molecules: Validation of Electron Affinities. Atoms 2023, 11, 47. https://doi.org/10.3390/atoms11030047
Msezane AZ, Felfli Z. Rigorous Negative Ion Binding Energies in Low-Energy Electron Elastic Collisions with Heavy Multi-Electron Atoms and Fullerene Molecules: Validation of Electron Affinities. Atoms. 2023; 11(3):47. https://doi.org/10.3390/atoms11030047
Chicago/Turabian StyleMsezane, Alfred Z., and Zineb Felfli. 2023. "Rigorous Negative Ion Binding Energies in Low-Energy Electron Elastic Collisions with Heavy Multi-Electron Atoms and Fullerene Molecules: Validation of Electron Affinities" Atoms 11, no. 3: 47. https://doi.org/10.3390/atoms11030047
APA StyleMsezane, A. Z., & Felfli, Z. (2023). Rigorous Negative Ion Binding Energies in Low-Energy Electron Elastic Collisions with Heavy Multi-Electron Atoms and Fullerene Molecules: Validation of Electron Affinities. Atoms, 11(3), 47. https://doi.org/10.3390/atoms11030047