Shape and Satellite Studies of Highly Charged Ions X-ray Spectra Using Bayesian Methods
Abstract
:1. Introduction
2. Bayesian Model Selection
3. Method
4. Model Comparison Results
4.1. Profile Selection
4.2. Search of Satellites
4.3. Spectral Line or Parabola
5. Conclusions
Funding
Conflicts of Interest
References
- von der Linden, W.; Dose, V.; von Toussaint, U. Bayesian Probability Theory: Applications in the Physical Sciences; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Bernitt, S.; Brown, G.V.; Rudolph, J.K.; Steinbrugge, R.; Graf, A.; Leutenegger, M.; Epp, S.W.; Eberle, S.; Kubicek, K.; Mackel, V.; et al. An unexpectedly low oscillator strength as the origin of the Fe[thinsp]xvii emission problem. Nature 2012, 492, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Kühn, S.; Shah, C.; López-Urrutia, J.R.C.; Fujii, K.; Steinbrügge, R.; Stierhof, J.; Togawa, M.; Harman, Z.; Oreshkina, N.S.; Cheung, C.; et al. High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem. Phys. Rev. Lett. 2020, 124, 225001. [Google Scholar] [CrossRef]
- Kühn, S.; Cheung, C.; Oreshkina, N.S.; Steinbrügge, R.; Togawa, M.; Shah, C.; Bernitt, S.; Buck, J.; Hoesch, M.; Seltmann, J. Oscillator-strength ratio of two Fe XVII soft X-ray transitions essential for plasma diagnostics finally agrees with theory. arXiv 2022, arXiv:2201.09070. [Google Scholar]
- Hirtl, A.; Anagnostopoulos, D.F.; Covita, D.S.; Fuhrmann, H.; Gorke, H.; Gotta, D.; Gruber, A.; Hennebach, M.; Indelicato, P.; Jensen, T.S.; et al. Redetermination of the strong-interaction width in pionic hydrogen. Eur. J. Phys. A 2021, 57, 70. [Google Scholar] [CrossRef]
- Gotta, D.; Amaro, F.; Anagnostopoulos, D.; Bühler, P.; Covita, D.; Fuhrmann, H.; Gorke, H.; Gruber, A.; Hennebach, M.; Hirtl, A.; et al. Pionic hydrogen and deuterium. EPJ Web Conf. 2022, 262, 01005. [Google Scholar] [CrossRef]
- Cox, D.; Hinkley, D. Theoretical Statistics; CRC Press LLC: Boca Raton, FL, USA, 2017. [Google Scholar]
- King, G.; Lovell, A.; Neufcourt, L.; Nunes, F. Direct Comparison between Bayesian and Frequentist Uncertainty Quantification for Nuclear Reactions. Phys. Rev. Lett. 2019, 122, 232502. [Google Scholar] [CrossRef] [Green Version]
- Sivia, D.S.; Skilling, J. Data Analysis: A Bayesian Tutorial, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 2008, 49, 71–104. [Google Scholar] [CrossRef] [Green Version]
- von Toussaint, U. Bayesian inference in physics. Rev. Mod. Phys. 2011, 83, 943–999. [Google Scholar] [CrossRef] [Green Version]
- Skilling, J. Nested Sampling. AIP Conf. Proc. 2004, 735, 395–405. [Google Scholar] [CrossRef]
- Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 2006, 1, 833–859. [Google Scholar] [CrossRef]
- Ashton, G.; Bernstein, N.; Buchner, J.; Chen, X.; Csányi, G.; Fowlie, A.; Feroz, F.; Griffiths, M.; Handley, W.; Habeck, M.; et al. Nested sampling for physical scientists. Nat. Rev. Methods Prim. 2022, 2, 39. [Google Scholar] [CrossRef]
- Lötzsch, R.; Beyer, H.; Duval, L.; Spillmann, U.; Banas, D.; Dergham, P.; Glorius, J.; Grisenti, R.; Guerra, M.; Gumberidze, A.; et al. Testing quantum electrodynamics in few electrons heavy highly charged ions. 2023; in preparation. [Google Scholar]
- Trassinelli, M.; Kumar, A.; Beyer, H.F.; Indelicato, P.; Märtin, R.; Reuschl, R.; Kozhedub, Y.S.; Brandau, C.; Bräuning, H.; Geyer, S.; et al. Observation of the 2p3/2→2s1/2 intra-shell transition in He-like uranium. Eur. Phys. Lett. 2009, 87, 63001. [Google Scholar] [CrossRef] [Green Version]
- Weber, G.; Herdrich, M.; DuBois, R.D.; Hillenbrand, P.M.; Beyer, H.; Bozyk, L.; Gassner, T.; Grisenti, R.; Hagmann, S.; Litvinov, Y.A.; et al. Total projectile electron loss cross sections of U28+ ions in collisions with gaseous targets ranging from hydrogen to krypton. Phys. Rev. ST AB 2015, 18, 034403. [Google Scholar] [CrossRef] [Green Version]
- Gassner, T.; Beyer, H.F. Spatial characterization of the internal gas target at the ESR for the FOCAL experiment. Phys. Scr. 2015, 2015, 014052. [Google Scholar] [CrossRef]
- Trassinelli, M. Bayesian data analysis tools for atomic physics. Nucl. Instrum. Methods B 2017, 408, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Trassinelli, M. The Nested_fit Data Analysis Program. Proceedings 2019, 33, 14. [Google Scholar]
- Trassinelli, M.; Ciccodicola, P. Mean Shift Cluster Recognition Method Implementation in the Nested Sampling Algorithm. Entropy 2020, 22, 185. [Google Scholar] [CrossRef] [Green Version]
- Maillard, L.; Finocchi, F.; Trassinelli, M. Assessing Search and Unsupervised Clustering Algorithms in Nested Sampling. Entropy 2023, 25, 347. [Google Scholar] [CrossRef]
- Baker, S.; Cousins, R.D. Clarification of the use of CHI-square and likelihood functions in fits to histograms. Nucl. Instrum. Methods 1984, 221, 437–442. [Google Scholar] [CrossRef]
- Hauschild, T.; Jentschel, M. Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments. Nucl. Instrum. Methods B 2001, 457, 384–401. [Google Scholar] [CrossRef]
- Sellke, T.; Bayarri, M.J.; Berger, J.O. Calibration of ρ Values for Testing Precise Null Hypotheses. Am. Stat. 2001, 55, 62–71. [Google Scholar] [CrossRef]
- Gordon, C.; Trotta, R. Bayesian calibrated significance levels applied to the spectral tilt and hemispherical asymmetry. Mon. Not. R. Astron. Soc. 2007, 382, 1859–1863. [Google Scholar] [CrossRef]
- Authier, A. Dynamical Theory of X-ray Diffraction; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Zachariasen, W. Theory of X-ray Diffraction in Crystals; Dover: Mineola, NY, USA, 1994. [Google Scholar]
Evidence Difference | Equivalent p-Value | Mean Line Position Difference | Relative Satellite Position | Relative Satellite Amplitude | |
---|---|---|---|---|---|
Inner arm | |||||
Outer arm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trassinelli, M. Shape and Satellite Studies of Highly Charged Ions X-ray Spectra Using Bayesian Methods. Atoms 2023, 11, 64. https://doi.org/10.3390/atoms11040064
Trassinelli M. Shape and Satellite Studies of Highly Charged Ions X-ray Spectra Using Bayesian Methods. Atoms. 2023; 11(4):64. https://doi.org/10.3390/atoms11040064
Chicago/Turabian StyleTrassinelli, Martino. 2023. "Shape and Satellite Studies of Highly Charged Ions X-ray Spectra Using Bayesian Methods" Atoms 11, no. 4: 64. https://doi.org/10.3390/atoms11040064
APA StyleTrassinelli, M. (2023). Shape and Satellite Studies of Highly Charged Ions X-ray Spectra Using Bayesian Methods. Atoms, 11(4), 64. https://doi.org/10.3390/atoms11040064