Collision Strengths of Astrophysical Interest for Multiply Charged Ions
Abstract
:1. Introduction
2. Theory and Implementation
2.1. Electron Impact Excitation versus Dielectronic Capture with Subsequent Re-Autoionization
2.2. Collision Strengths and Electron Impact Excitation Cross-Sections
2.3. Generation and Use of Collision Strengths for Astrophysical Modeling
2.4. Data Structures for Symmetry-Adapted Collision Strengths
2.5. Computation of Collision Strengths with the Jena Atomic Calculator
3. Level- and Energy-Dependent Collision Strengths for Multiply and Highly Charged Ions
3.1. Collision Strengths for Lithium-like Neon and Iron
3.2. Collision Strengths for Chlorine-like Ions
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
1 | Julia comes with a full-featured interactive and command-line REPL (read-eval-print loop) that is built into the executable of the language. |
References
- Boffard, J.B.; Lin, C.C.; DeJoseph, C.A., Jr. Application of excitation cross-sections to optical plasma diagnostics. J. Phys. D 2004, 37, R143. [Google Scholar] [CrossRef]
- Gupta, S.; Gangwar, R.K.; Srivastava, R. Diagnostics of Ar/N2 mixture plasma with detailed electron impact argon fine-structure excitation cross-sections. Spectrochim. Acta B 2018, 149, 213. [Google Scholar] [CrossRef]
- Fisher, V.; Bernshtam, V.; Golten, H.; Maron, Y. Electron-impact excitation cross-sections for allowed transitions in atoms. Phys. Rev. A 1996, 53, 2425. [Google Scholar] [CrossRef]
- Fontes, C.J.; Zhang, H.L.; Abdallah, J., Jr. An overview of relativistic distorted-wave cross-sections. AIP Conf. Proc. 2004, 730, 41. [Google Scholar]
- Kowalski, P.M.; Saumon, D. Radiative transfer in the refractive atmospheres of very cool white dwarfs. Astrophys. J. 2004, 607, 970. [Google Scholar] [CrossRef]
- Schreier, R.; Eviatar, A.; Vasyliūnas, V.M. A two-dimensional model of plasma transport and chemistry in the Jovian magnetosphere. J. Geophys. Res. Planets 1998, 103, 19901. [Google Scholar] [CrossRef]
- Kim, Y.K. Scaling of plane wave Born cross-sections for electron impact excitation of neutral atoms. Phys. Rev. A 2001, 64, 032713. [Google Scholar] [CrossRef]
- Elizarov, A.Y.; Tupitsyn, I.I. Calculation by plane wave Born approximation of the electron impact ionization of Ne, Ar, Kr and Xe. Phys. Scr. 2007, 76, 706. [Google Scholar] [CrossRef]
- Pradhan, E.K. Collision strength for [O II] and [S II]. Mon. Not. R. Astron. Soc. 1976, 177, 31. [Google Scholar] [CrossRef]
- Itikawa, Y. Distorted-wave methods in electron impact excitation. Phys. Rep. 1986, 143, 69. [Google Scholar] [CrossRef]
- Madison, D.H.; Al-Hagan, O. The distorted wave Born approach for calculating electron impact ionization of molecules. J. Atom. Mol. Phys. 2010, 2010, 367180. [Google Scholar] [CrossRef]
- Zhang, H.L.; Sampson, D.H.; Mohanty, A.K. Fully relativistic and quasirelativistic distorted wave methods for calculating collision strengths for highly charged ions. Phys. Rev. A 1989, 40, 616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.L.; Sampson, D.H.; Clark, R.E.H. Relativistic cross-sections for excitation of highly charged ions to specific magnetic sublevels by an electron beam. Phys. Rev. A 1990, 41, 198. [Google Scholar] [CrossRef]
- Zhang, H.L.; Sampson, D.H.; Fontes, C.J. Relativistic distorted wave collision strengths and oscillator strengths for the 85 Li-like ions with 8 ≤ Z ≤ 92. At. Data Nucl. Data Tables 1990, 44, 31. [Google Scholar] [CrossRef]
- Fritzsche, S. A fresh computational approach to atomic structures, processes and cascades. Comp. Phys. Commun. 2019, 240, 1. [Google Scholar] [CrossRef]
- Sharma, L.; Surzhykov, A.; Srivastava, R.; Fritzsche, S. Electron-impact excitation of singly charged metal ions. Phys. Rev. A 2011, 83, 062701. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Desclaux, J.P. Relativistic effects in electron-atom collisions. Phys. Scr. 1987, 36, 796. [Google Scholar] [CrossRef]
- Fritzsche, S. Ratip – A toolbox for studying the properties of open-shell atoms and ions. J. Elec. Spec. Rel. Phenom. 2001, 114–116, 1155. [Google Scholar] [CrossRef]
- Fritzsche, S. Dielectronic recombination strengths and plasma rate coefficients of multiply charged ions. Astron. Astrophys. 2021, 656, A163. [Google Scholar] [CrossRef]
- Fritzsche, S. Application of symmetry-adapted atomic amplitudes. Atoms 2022, 10, 127. [Google Scholar] [CrossRef]
- Fritzsche, S. JAC: User Guide, Compendium & Theoretical Background. Available online: https://github.com/OpenJAC/JAC.jl (accessed on 10 March 2023).
- Seaton, M.J. Electron excitation of forbidden lines occurring in gaseous nebulae. Proc. R. Soc. A 1953, 218, 400. [Google Scholar]
- Jauch, J.M.; Rohrlich, F. The Theory of Photons and Electrons; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Sochi, T.; Storey, P.J. Methods for analyzing resonances in atomic scattering. Eur. Phys. J. Plus 2013, 128, 82. [Google Scholar] [CrossRef]
- Grant, I.P. Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Fritzsche, S. The Ratip program for relativistic calculations of atomic transition, ionization and recombination properties. Comp. Phys. Commun. 2012, 183, 1525. [Google Scholar] [CrossRef]
- Eliav, E.; Fritzsche, S.; Kaldor, U. Electronic structure theory of the superheavy elements. Nucl. Phys. A 2015, 944, 518. [Google Scholar] [CrossRef]
- Tuilkki, J. Multiple excitation at xenon 5s photoionization threshold. Phys. Rev. Lett. 1987, 62, 2817. [Google Scholar] [CrossRef]
- Fritzsche, S.; Fricke, B.; Sepp, W.D. Reduced L1 level-width and Coster-Kronig yields by relaxation and continuum interactions in atomic zinc. Phys. Rev. A 1992, 45, 1465. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, K.M.; Owada, R.; Igarashi, A. Collision strengths and effective collision strengths for allowed transitions among the nle5 degenerate levels of atomic hydrogen. Atoms 2018, 6, 37. [Google Scholar] [CrossRef]
- Fritzsche, S. Large–scale accurate structure calculations for open–shell atoms. Phys. Scr. 2002, T100, 37. [Google Scholar] [CrossRef]
- Fritzsche, S.; Zschornack, G.; Musiol, G.; Soff, G. Interchannel interactions in highly energetic radiationless transitions of neonlike ions. Phys. Rev. A 1991, 44, 388. [Google Scholar] [CrossRef]
- Fritzsche, S.; Surzhykov, A.; Stöhlker, T. Dominance of the Breit interaction in the X-ray emission of highly charged ions following dielectronic recombination. Phys. Rev. Lett. 2009, 103, 113001. [Google Scholar] [CrossRef]
- Gaigalas, G.; Fritzsche, S.; Grant, I.P. Calculation of angular coefficients in jj-coupling. Comput. Phys. Commun. 2001, 139, 263. [Google Scholar] [CrossRef]
- Gaigalas, G.; Fritzsche, S. Angular coefficients for symmetry-adapted configuration states in jj-coupling. Comput. Phys. Commun. 2021, 267, 108086. [Google Scholar] [CrossRef]
- Bar-Shalom, A.; Klapisch, M.; Oreg, J. Electron collision excitations in complex spectra of ionized heavy atoms. Phys. Rev. A 1988, 38, 1773. [Google Scholar] [CrossRef] [PubMed]
- Pindzola, M.S.; Badnell, N.R.; Henry, R.J.W.; Griffin, D.C.; Van Wyngaarden, W.L. Close-coupling calculations for the electron impact excitation of Zn+. Phys. Rev. A 1991, 44, 5628. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Vilkas, M.J. Relativistic R-matrix close-coupling method based on the effective many-body Hamiltonian: Benchmarks on the electron impact excitations of the Kr6+ ion. Phys. Rev. A 2008, 77, 052701. [Google Scholar] [CrossRef]
- Pindzola, M.S.; Colgan, J.; Robicheaux, F.; Griffin, D.C. Time-dependent close-coupling calculations for the electron impact ionization of carbon and neon. Phys. Rev. A 2000, 62, 042705. [Google Scholar] [CrossRef]
- Zatsarinny, O. A compilation of Atomic Code for Bound-State and R-Matrix Computations. Available online: https://github.com/zatsaroi (accessed on 10 April 2021).
- Zhang, H.L.; Pradhan, A.K. Atomic data from the Iron Project-XXVII. Electron impact excitation collision strengths and rate coefficients for Fe IV. Astron. Astrophys. Suppl. Ser. 1997, 126, 373–378. [Google Scholar] [CrossRef]
- Aggarwal, K.M.; Keenan, F.P.; Lawson, K.D. Electron impact excitation of N IV: Calculations with the DARC code and a comparison with ICFT results. Mon. Not. R. Astron. Soc. 2016, 461, 3997. [Google Scholar] [CrossRef]
- Tayal, S.S. Oscillator strengths and effective collision strengths for electron excitation of Mg VI. Astron. Astrophys. 2012, 548, A27. [Google Scholar] [CrossRef]
- Fritzsche, S. Level structure and properties of open f-shell elements. Atoms 2022, 10, 7. [Google Scholar] [CrossRef]
- Available online: https://docs.julialang.org/ (accessed on 10 February 2021).
- Fritzsche, S.; Maiorova, A.V.; Wu, Z.W. Radiative recombination plasma rate coefficients for multiply charged ions. Atoms 2023, 11, 50. [Google Scholar] [CrossRef]
- Fritzsche, S.; Palmeri, P.; Schippers, S. Atomic cascade computations. Symmetry 2021, 13, 520. [Google Scholar] [CrossRef]
- Schippers, S.; Martins, M.; Beerwerth, R.; Bari, S.; Holste, K.; Schubert, K.; Jens, V.; Savin Daniel, W.; Fritzsche, S.; Müller, A. Near L-edge single and multiple photoionization of singly charged iron ions. Astrophys. J. 2017, 849, 5. [Google Scholar] [CrossRef]
- Beerwerth, R.; Buhr, T.; Perry-Sassmannshausen, A.; Stock, S.O.; Bari, S.; Holste, K.; Kilcoyne, A.L.D.; Reinwardt, S.; Ricz, S.; Savin, D.W.; et al. Near L-edge single and multiple photoionization of triply charged iron ions. Astrophys. J. 2019, 887, 189. [Google Scholar] [CrossRef]
- Schippers, S.; Beerwerth, R.; Bari, S.; Buhr, T.; Holste, K.; Kilcoyne, A.L.D.; Perry-Sassmannshausen, A.; Phaneuf, R.A.; Reinwardt, S.; Savin, D.W.; et al. Near L-edge single and multiple photoionization of doubly charged iron ions. Astrophys. J. 2021, 908, 52. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sharma, L. Electron impact excitation of extreme ultra-violet transitions in Xe7+–Xe10+ ions. Atoms 2021, 9, 76. [Google Scholar] [CrossRef]
- Zhang, H.L.; Sampson, D.H. Relativistic distorted wave collision strengths and oscillator strengths for all possible n = 2 – n = 3 transitions in B-like ions. At. Data Nucl. Data Tables 1994, 58, 255. [Google Scholar] [CrossRef]
- Bhatia, A.K. Superstructure and distorted wave codes and their application. Atoms 2022, 10, 47. [Google Scholar] [CrossRef]
- Malker, P.; Sharma, L. Electron impact excitation of Ge-like Te20+ - Cd16+ ions. Atoms 2022, 10, 17. [Google Scholar] [CrossRef]
- Storey, P.J.; Sochi, A. Collision strengths and transition probabilities for Co III forbidden lines. Mon. Not. R. Astron. Soc. 2016, 459, 2558. [Google Scholar] [CrossRef]
- Inal, M.K.; Dubau, J. Theory of excitation of He-like and Li-like atomic sublevels by directive electrons: Application to X-ray line polarisation. J. Phys. B 1987, 20, 4221. [Google Scholar] [CrossRef]
- Kohstall, C.; Fritzsche, S.; Fricke, B.; Sepp, W.-D. Calculated level energies, transition probabilities and lifetimes of silicon–like ions. At. Data Nucl. Data Tables 1998, 70, 63. [Google Scholar] [CrossRef]
- Jupen, C.; Bengtsson, P.; Engström, L.; Livingston, A.E. The 2s22p33s,3p and 3d configurations in nine times ionized chlorine, Cl X. Phys. Scr. 2001, 64, 329. [Google Scholar] [CrossRef]
- Judge, P.; Bryans, P.; Casini, R.; Kleint, L.; Lacatus, D.; Paraschiv, A.; Schmit, D. Optimal spectral lines for measuring chromospheric magnetic fields. Astrophys. J. 2022, 941, 159. [Google Scholar] [CrossRef]
- Moomey, D.; Federman, S.R.; Sheffer, Y. Revisiting the chlorine abundance in diffuse interstellar clouds from measurements with the copernicus satellite. Astrophys. J. 2012, 744, 174. [Google Scholar] [CrossRef]
- Dong, C.Z.; Fritzsche, S.; Fricke, B.; Sepp, W.-D. Branching ratios and lifetimes of the low–lying levels of Fe X. Mon. Not. R. Astron. Soc. 1999, 307, 809. [Google Scholar] [CrossRef]
Struct and Brief Explanation. |
---|
AbstractEeInteraction: defines an abstract, as well as a number of singleton types for specifying the e–e interaction; valid subtypes are CoulombInteraction(), BreitInteraction(), and CoulombBreit(). |
AbstractProcessSettings: defines an abstract type to distinguish between different settings of atomic processes, such as AutoIonization.Settings, PhotoIonization.Settings, PhotoRecombination. Settings, …, and several others. |
Level: a data type for an atomic level in terms of its quantum numbers, energy, and a representation with regard to a given relativistic CSF basis. |
LevelSymmetry: specifies the overall symmetry of a level. |
LineSelection: helps specify a list of level pairs by means of their (level) indices or level symmetries. |
ImpactExcitation.Channel: characterizes the incoming and outgoing (scattering) states of many-electron atoms or ions with a single free electron; cf. the upper panel of Figure 2. |
ImpactExcitation.Line: specifies an EIE line, based on the definition of the initial and final levels, the impact excitation channels above, and the e–e interaction amplitudes; cf. the middle panel of Figure 2. |
ImpactExcitation.Settings: specifies all control parameters for the computation of the EIE lines. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritzsche, S.; Jiao, L.-G.; Wang, Y.-C.; Sienkiewicz, J.E. Collision Strengths of Astrophysical Interest for Multiply Charged Ions. Atoms 2023, 11, 80. https://doi.org/10.3390/atoms11050080
Fritzsche S, Jiao L-G, Wang Y-C, Sienkiewicz JE. Collision Strengths of Astrophysical Interest for Multiply Charged Ions. Atoms. 2023; 11(5):80. https://doi.org/10.3390/atoms11050080
Chicago/Turabian StyleFritzsche, Stephan, Li-Guang Jiao, Yuan-Cheng Wang, and Jozef E. Sienkiewicz. 2023. "Collision Strengths of Astrophysical Interest for Multiply Charged Ions" Atoms 11, no. 5: 80. https://doi.org/10.3390/atoms11050080
APA StyleFritzsche, S., Jiao, L. -G., Wang, Y. -C., & Sienkiewicz, J. E. (2023). Collision Strengths of Astrophysical Interest for Multiply Charged Ions. Atoms, 11(5), 80. https://doi.org/10.3390/atoms11050080