Modification of Vibrational Parameters of a CO2 Molecule by a Laser Field: Impact on Tunnel Ionization
Abstract
:1. Introduction
2. Methods
- 1.
- The overlap between the electron orbitals and vibrational states of the residual ion and the neutral core is accounted for using the Dyson orbital concept.
- 2.
- The excitation of the electronic configurations of the residual ion, as well as excitation and de-excitation of the vibrational states resulting from the tunnelling ionization, can be accounted for in the “inelastic tunnelling” model framework.
- 3.
- Under the influence of the laser field, the electron energy undergoes a quadratic (∼) Stark shift. This shift results, on the one hand, in modification of the vibrational parameters and, on the other hand, in deepening the energy level of the tunnelling electron.
2.1. The MO-ADK Model
2.2. Born–Oppenheimer Approximation and Dyson Orbitals
2.3. Modification of the Vibrational Parameters of CO in a Laser Field
2.4. Tunnelling with Excitation of Internal Degrees of Freedom
3. Numerical Results and Discussion
3.1. Franck–Condon Factors in CO Molecule
3.2. Ionization Rate
3.3. Ionization Signal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADK | Ammosov–Deloné–Krainov theory |
BOA | Born–Oppenheimer approximation |
FCF | Franck–Condon factor |
FWHM | full width at half maximum |
HOMO | highest occupied molecular orbital |
ITE | inelastic tunneling effect |
MO-ADK | ADK theory for molecular orbitals |
NIR | near infra-red |
PES | potential energy surface |
PPT | Perelomov–Popov–Terent’ev theory |
Appendix A. Calculation of the Overlap Integrals
Appendix A.1. Electronic Integral (11)
Appendix A.2. Vibrational Integral (27)
References
- Zuo, W.L.; Lv, H.; Liang, H.J.; Shan, S.M.; Ma, R.; Yan, B.; Xu, H.F. Enhanced ionization of vibrational hot carbon disulfide molecules in strong femtosecond laser fields. Chin. Phys. B 2018, 27, 063301. [Google Scholar] [CrossRef]
- Zhao, S.; Jochim, B.; Feizollah, P.; Rajput, J.; Ziaee, F.; Kanaka Raju, P.; Kaderiya, B.; Borne, K.; Malakar, Y.; Berry, B.; et al. Strong-field-induced bond rearrangement in triatomic molecules. Phys. Rev. A 2019, 99, 053412. [Google Scholar] [CrossRef]
- Howard, A.J.; Cheng, C.; Forbes, R.; McCracken, G.A.; Mills, W.H.; Makhija, V.; Spanner, M.; Weinacht, T.; Bucksbaum, P.H. Strong-field ionization of water: Nuclear dynamics revealed by varying the pulse duration. Phys. Rev. A 2021, 103, 043120. [Google Scholar] [CrossRef]
- Cheng, C.; Streeter, Z.L.; Howard, A.J.; Spanner, M.; Lucchese, R.R.; McCurdy, C.W.; Weinacht, T.; Bucksbaum, P.H.; Forbes, R. Strong-field ionization of water. II. Electronic and nuclear dynamics en route to double ionization. Phys. Rev. A 2021, 104, 023108. [Google Scholar] [CrossRef]
- Severt, T.; Daugaard, D.R.; Townsend, T.; Ziaee, F.; Borne, K.; Bhattacharyya, S.; Carnes, K.D.; Rolles, D.; Rudenko, A.; Wells, E.; et al. Two-body dissociation of formic acid following double ionization by ultrafast laser pulses. Phys. Rev. A 2022, 105, 053112. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, T.; Yu, X.; Ren, D.; Zhang, X.; Li, X.; Ma, P.; Wang, C.; Zhang, D.; Wang, Q.; et al. Tracking the nuclear movement of the carbonyl sulfide cation after strong-field ionization by time-resolved Coulomb-explosion imaging. Phys. Rev. A 2021, 103, 053103. [Google Scholar] [CrossRef]
- Kern, C.W.; Matcha, R.L. Nuclear Corrections to Electronic Expectation Values: Zero-Point Vibrational Effects in the Water Molecule. J. Chem. Phys. 1968, 49, 2081–2091. [Google Scholar] [CrossRef]
- Pandey, P.K.K.; Santry, D.P. Vibrational contribution to molecular polarizabilities and hyperpolarizabilities. J. Chem. Phys. 1980, 73, 2899–2901. [Google Scholar] [CrossRef]
- Zon, B.; Sholokhov, E. Quasienergy spectra of a dipolar molecule and of the hydrogen atom. J. Exp. Theor. Phys. 1976, 43, 461–466. [Google Scholar]
- Zon, B.A. Born–Oppenheimer approximation for molecules in a strong light field. Chem. Phys. Lett. 1996, 262, 744–746. [Google Scholar] [CrossRef]
- Kornev, A.S.; Zon, B.A. Anti-Stokes-enhanced tunneling ionization of molecules. Phys. Rev. A 2012, 86, 043401. [Google Scholar] [CrossRef]
- Kornev, A.S.; Chernov, V.E.; Zon, B.A. Stability of normal modes of a polyatomic molecule under laser-induced modification of its geometry. Laser Phys. Lett. 2017, 14, 125301. [Google Scholar] [CrossRef]
- Kornev, A.S.; Chernov, V.E.; Zon, B.A. Laser-induced deformation of triatomic molecules: Influence on tunnel ionization. Phys. Rev. A 2017, 96, 053408. [Google Scholar] [CrossRef]
- Kornev, A.S.; Chernov, V.E.; Kubelík, P.; Ferus, M. Modification of Vibrational Parameters of a D∞h-Symmetric Triatomic Molecule in a Laser Plasma. Symmetry 2022, 14, 2382. [Google Scholar] [CrossRef]
- Tong, X.M.; Zhao, Z.X.; Lin, C.D. Theory of molecular tunneling ionization. Phys. Rev. A 2002, 66, 033402. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.F.; Xu, J.; Jin, C.; Le, A.T.; Lin, C.D. Effect of orbital symmetry on the orientation dependence of strong field tunnelling ionization of nonlinear polyatomic molecules. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 035601. [Google Scholar] [CrossRef]
- Tolstikhin, O.I.; Morishita, T.; Madsen, L.B. Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects. Phys. Rev. A 2011, 84, 053423. [Google Scholar] [CrossRef]
- Madsen, L.B.; Tolstikhin, O.I.; Morishita, T. Application of the weak-field asymptotic theory to the analysis of tunneling ionization of linear molecules. Phys. Rev. A 2012, 85, 053404. [Google Scholar] [CrossRef]
- Tolstikhin, O.I.; Wörner, H.J.; Morishita, T. Effect of nuclear motion on tunneling ionization rates of molecules. Phys. Rev. A 2013, 87, 041401. [Google Scholar] [CrossRef] [Green Version]
- Madsen, L.B.; Jensen, F.; Tolstikhin, O.I.; Morishita, T. Application of the weak-field asymptotic theory to tunneling ionization of H2O. Phys. Rev. A 2014, 89, 033412. [Google Scholar] [CrossRef]
- Svensmark, J.; Tolstikhin, O.I.; Madsen, L.B. Coulomb and dipole effects in tunneling ionization of molecules including nuclear motion. Phys. Rev. A 2015, 91, 013408. [Google Scholar] [CrossRef]
- Trinh, V.H.; Pham, V.N.T.; Tolstikhin, O.I.; Morishita, T. Weak-field asymptotic theory of tunneling ionization including the first-order correction terms: Application to molecules. Phys. Rev. A 2015, 91, 063410. [Google Scholar] [CrossRef]
- Svensmark, J.; Tolstikhin, O.I.; Morishita, T. Adiabatic theory of strong-field ionization of molecules including nuclear motion. Phys. Rev. A 2020, 101, 053422. [Google Scholar] [CrossRef]
- Matsui, H.; Tolstikhin, O.I.; Morishita, T. Weak-field asymptotic theory of tunneling ionization of the hydrogen molecule including core polarization, spectator nucleus, and internuclear motion effects. Phys. Rev. A 2021, 103, 033102. [Google Scholar] [CrossRef]
- Kornev, A.S.; Zon, B.A. Tunneling ionization of vibrationally excited nitrogen molecules. Phys. Rev. A 2015, 92, 033420. [Google Scholar] [CrossRef]
- Kopytin, I.V.; Kornev, A.S.; Zon, B.A. Tunnel ionization of diatomic atmospheric gases (N2, O2) by laser radiation. Laser Phys. 2019, 29, 095301. [Google Scholar] [CrossRef]
- Kornev, A.S.; Semiletov, I.M.; Zon, B.A. The influence of a permanent dipole moment on the tunnelling ionization of a CO molecule. Laser Phys. 2016, 26, 055302. [Google Scholar] [CrossRef]
- O’Connor, S.P.; Marble, C.B.; Nodurft, D.T.; Noojin, G.D.; Boretsky, A.R.; Wharmby, A.W.; Scully, M.O.; Yakovlev, V.V. Filamentation in Atmospheric Air with Tunable 1100–2400 nm Near-Infrared Femtosecond Laser Source. Sci. Rep. 2019, 9, 12049. [Google Scholar] [CrossRef] [Green Version]
- Caytan, E.; Remaud, G.S.; Tenailleau, E.; Akoka, S. Precise and accurate quantitative 13C NMR with reduced experimental time. Talanta 2007, 71, 1016–1021. [Google Scholar] [CrossRef]
- ‘Diamond-Age’ of Power Generation as Nuclear Batteries Developed. 2016. Available online: http://www.bristol.ac.uk/news/2016/november/diamond-power.html (accessed on 26 April 2023).
- Zon, B.A. Tunneling ionization of atoms with excitation of the core. J. Exp. Theor. Phys. 2000, 91, 899–904. [Google Scholar] [CrossRef]
- Ammosov, M.V.; Delone, N.B.; Krainov, V.P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. J. Exp. Theor. Phys. 1986, 64, 1191–1194. [Google Scholar]
- Perelomov, A.M.; Popov, V.S.; Terent’ev, M.V. Ionization of Atoms in an Alternating Electric Field. J. Exp. Theor. Phys. 1966, 23, 924–934. [Google Scholar]
- Kornev, A.S.; Zon, B.A. Stokes-attenuated tunneling ionization of molecules. Phys. Rev. A 2018, 97, 033413. [Google Scholar] [CrossRef]
- Keldysh, L.V. Ionization in field of a strong electromagnetic wave. J. Exp. Theor. Phys. 1965, 20, 1307–1314. [Google Scholar]
- Murray, R.; Spanner, M.; Patchkovskii, S.; Ivanov, M.Y. Tunnel Ionization of Molecules and Orbital Imaging. Phys. Rev. Lett. 2011, 106, 173001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotur, M.; Zhou, C.; Matsika, S.; Patchkovskii, S.; Spanner, M.; Weinacht, T.C. Neutral-Ionic State Correlations in Strong-Field Molecular Ionization. Phys. Rev. Lett. 2012, 109, 203007. [Google Scholar] [CrossRef] [Green Version]
- Mikosch, J.; Boguslavskiy, A.E.; Wilkinson, I.; Spanner, M.; Patchkovskii, S.; Stolow, A. Channel- and Angle-Resolved Above Threshold Ionization in the Molecular Frame. Phys. Rev. Lett. 2013, 110, 023004. [Google Scholar] [CrossRef] [PubMed]
- Tolstikhin, O.I.; Madsen, L.B.; Morishita, T. Weak-field asymptotic theory of tunneling ionization in many-electron atomic and molecular systems. Phys. Rev. A 2014, 89, 013421. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Mechanics; Elsevier Science: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Wahab, M.A. Symmetry Representations of Molecular Vibrations; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Sharp, T.E.; Rosenstock, H.M. Franck–Condon Factors for Polyatomic Molecules. J. Chem. Phys. 1964, 41, 3453–3463. [Google Scholar] [CrossRef]
- Carlson, T.A. Electron Shake-Off Following the Beta Decay of Na23. Phys. Rev. 1963, 130, 2361–2365. [Google Scholar] [CrossRef]
- Shiff, L. Quantum Mechanics; McGrow-Hill: New York, NY, USA, 1955. [Google Scholar]
- Kheifets, A.S. Shake-Off Process in Non-Sequential Single-Photon Double Ionization of Closed-Shell Atomic Targets. Atoms 2022, 10, 89. [Google Scholar] [CrossRef]
- Kornev, A.S.; Tulenko, E.B.; Zon, B.A. Kinetics of multiple ionization of rare-gas atoms in a circularly polarized laser field. Phys. Rev. A 2003, 68, 043414. [Google Scholar] [CrossRef]
- Fittinghoff, D.N.; Bolton, P.R.; Chang, B.; Kulander, K. Polarization dependence of tunneling ionization of helium and neon by 120-fs pulses at 614 nm. Phys. Rev. A 1994, 49, 2174–2177. [Google Scholar] [CrossRef]
- Yamakawa, K.; Akahane, Y.; Fukuda, Y.; Aoyama, M.; Inoue, N.; Ueda, H. Ionization of many-electron atoms by ultrafast laser pulses with peak intensities greater than 1019W/cm2. Phys. Rev. A 2003, 68, 065403. [Google Scholar] [CrossRef]
- Yamakawa, K.; Akahane, Y.; Fukuda, Y.; Aoyama, M.; Inoue, N.; Ueda, H.; Utsumi, T. Many-Electron Dynamics of a Xe Atom in Strong and Superstrong Laser Fields. Phys. Rev. Lett. 2004, 92, 123001. [Google Scholar] [CrossRef]
- Albeck, Y.; Lerner, G.; Kandhasamy, D.; Chandrasekaran, V.; Strasser, D. Intense field double detachment of atomic versus molecular anions. Phys. Rev. A 2015, 92, 061401. [Google Scholar] [CrossRef]
- Bryan, W.A.; Stebbings, S.L.; Mckenna, J.; English, E.M.L.; Suresh, M.; Wood, J.; Srigengan, B.; Turcu, I.C.E.; Smith, J.M.; Divall, E.J.; et al. Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization. Nat. Phys. 2006, 2, 379–383. [Google Scholar] [CrossRef]
- Urbain, X.; Fabre, B.; Staicu-Casagrande, E.M.; de Ruette, N.; Andrianarijaona, V.M.; Jureta, J.; Posthumus, J.H.; Saenz, A.; Baldit, E.; Cornaggia, C. Intense-Laser-Field Ionization of Molecular Hydrogen in the Tunneling Regime and Its Effect on the Vibrational Excitation of . Phys. Rev. Lett. 2004, 92, 163004. [Google Scholar] [CrossRef]
- Kornev, A.S.; Semiletov, I.M.; Zon, B.A. Keldysh theory in a few-cycle laser pulse, inelastic tunneling and Stark shift: Comparison with ab initio calculation. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 204026. [Google Scholar] [CrossRef]
- Augst, S.; Meyerhofer, D.D.; Strickland, D.; Chin, S.L. Laser ionization of noble gases by Coulomb-barrier suppression. J. Opt. Soc. Am. B 1991, 8, 858–867. [Google Scholar] [CrossRef]
- NIST Computational Chemistry Comparison and Benchmark Database (Release 18). 2018. Available online: http://cccbdb.nist.gov (accessed on 26 April 2023).
- Thompson, W.E.; Jacox, M.E. The vibrational spectra of trapped in solid neon. J. Chem. Phys. 1999, 111, 4487–4496. [Google Scholar] [CrossRef]
- Aprá, E.; Bylaska, E.J.; de Jong, W.A.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Valiev, M.; van Dam, H.J.J.; Alexeev, Y.; Anchell, J.; et al. NWChem: Past, present, and future. J. Chem. Phys. 2020, 152, 184102. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.F.; Jin, C.; Le, A.T.; Jiang, T.F.; Lin, C.D. Determination of structure parameters in strong-field tunneling ionization theory of molecules. Phys. Rev. A 2010, 81, 033423. [Google Scholar] [CrossRef] [Green Version]
- Krainov, V.P.; Shokri, B. Energy and angular distributions of electrons resulting from barrier-suppression ionization of atoms by strong low-frequency radiation. Sov. Phys.-JETP 1995, 80, 657–661. [Google Scholar]
- Tolstikhin, O.I.; Madsen, L.B. Retardation effects and the Born-Oppenheimer approximation: Theory of tunneling ionization of molecules revisited. Phys. Rev. Lett. 2013, 111, 153003. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, H.; Yang, H.; Gong, Q.; Song, D.; Su, H. Tunneling ionization of carbon dioxide from lower-lying orbitals. Phys. Rev. A 2011, 83, 033410. [Google Scholar] [CrossRef]
- Jiawei, L.; Peng, L.; Hua, Y.; Liwei, S.; Shitong, Z.; Hui, L.; Ruxin, L.; Zhizhan, X. High harmonic spectra contributed by HOMO-1 orbital of aligned CO2 molecules. Opt. Express 2013, 21, 7599–7607. [Google Scholar]
- Zon, B.A. Classical theory of the molecule alignment in a laser field. Eur. Phys. J. D 2000, 8, 377–384. [Google Scholar] [CrossRef]
- Alnaser, A.S.; Kübel, M.; Siemering, R.; Bergues, B.; Kling, N.G.; Betsch, K.J.; Deng, Y.; Schmidt, J.; Alahmed, Z.A.; Azzeer, A.M.; et al. Subfemtosecond steering of hydrocarbon deprotonation through superposition of vibrational modes. Nat. Commun. 2014, 5, 3800. [Google Scholar] [CrossRef] [Green Version]
- Borzunov, S.V.; Frolov, M.V.; Ivanov, M.Y.; Manakov, N.L.; Marmo, S.S.; Starace, A.F. Zero-range-potential model for strong-field molecular processes: Dynamic polarizability and photodetachment cross section. Phys. Rev. A 2013, 88, 033410. [Google Scholar] [CrossRef] [Green Version]
- Frolov, M.; Manakov, N.; Marmo, S.; Starace, A.F. Photodetachment of a model molecular system by an elliptically polarized field. J. Mod. Opt. 2015, 62, S21–S33. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09 Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2016; Available online: https://gaussian.com (accessed on 26 April 2023).
- Hutchisson, E. Band Spectra Intensities for Symmetrical Diatomic Molecules. Phys. Rev. 1930, 36, 410–420. [Google Scholar] [CrossRef]
Molecule | , Å | , cm | ||
---|---|---|---|---|
CO [55] | 1.1621 | 1333 | 2349 | 677 |
CO [56] | 1.1781 | 1324.5 | 1421.7 | 462.6 |
Quantity | CO | CO | ||||||
---|---|---|---|---|---|---|---|---|
Static | Dynamic | Static | Dynamic | |||||
, Å | 4.088 | 1.790 | 4.135 | 1.801 | 3.802 | 1.412 | 3.947 | 1.426 |
, Å | 4.026 | 0.885 | 4.125 | 0.899 | 3.259 | 0.643 | 3.659 | 0.646 |
, Å | 3.483 | 3.699 | 1.229 | 2.315 | ||||
, Å | 13.44 | 14.46 | – | – | – | – | ||
, Å * | 1.587 | 1.306 | 1.685 | 1.327 | – | – | – | – |
0.562 | 0.573 | – | – | – | – | |||
, Å * | 1.587 | 0.562 | 1.685 | 0.573 | – | – | – | – |
1.306 | 1.327 | – | – | – | – |
K | L | |||
---|---|---|---|---|
0 | 0.797 | 4.58 | 2.02 | |
4.58 | 2.00 | |||
4.57 | 1.99 | |||
1 | 0.748 | 4.22 | 1.72 | |
4.21 | 1.68 | |||
4.19 | 1.65 | |||
2 | 0.656 | 3.56 | 1.18 | |
3.53 | 1.12 | |||
3.50 | 1.05 | |||
3 | 0.535 | 2.71 | 0.535 | |
2.66 | 0.428 | |||
2.61 | 0.320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kornev, A.S.; Chernov, V.E. Modification of Vibrational Parameters of a CO2 Molecule by a Laser Field: Impact on Tunnel Ionization. Atoms 2023, 11, 92. https://doi.org/10.3390/atoms11060092
Kornev AS, Chernov VE. Modification of Vibrational Parameters of a CO2 Molecule by a Laser Field: Impact on Tunnel Ionization. Atoms. 2023; 11(6):92. https://doi.org/10.3390/atoms11060092
Chicago/Turabian StyleKornev, Aleksei S., and Vladislav E. Chernov. 2023. "Modification of Vibrational Parameters of a CO2 Molecule by a Laser Field: Impact on Tunnel Ionization" Atoms 11, no. 6: 92. https://doi.org/10.3390/atoms11060092
APA StyleKornev, A. S., & Chernov, V. E. (2023). Modification of Vibrational Parameters of a CO2 Molecule by a Laser Field: Impact on Tunnel Ionization. Atoms, 11(6), 92. https://doi.org/10.3390/atoms11060092