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Abstract: In this paper, we theoretically study the laser-induced modification of the vibrational
parameters of a carbon dioxide molecule regarding its tunnel ionization. Our study predicts a
5% increase in the ionization rate in anti-Stokes channels that corresponds to pumping the Σu

mode up to vai = 10. The molecule is imparted with an additional energy from the pre-pumped
vibrational states, which is absorbed during ionization. As a result, the tunneling rate increases.
This amplification of tunnel ionization of the CO2 gas target can potentially be used for the laser
separation of carbon isotopes.

Keywords: CO2 molecule; laser-modified vibrational parameters; Franck–Condon factors; tunnel
ionization; anti-Stokes channels

1. Introduction

At present, the interaction of laser radiation with polyatomic molecules is studied
both experimentally and theoretically with increasing interest in terms of nuclear motion.
Ref. [1] reports on the measurement of the yield of CS+2 ions created by exposure to a
laser pulse on heated plasma as a function of temperature. The rearrangement of atoms
as a result of the two-electron dissociative ionization of triatomic CO2, OCS and D2O
molecules by near-infrared laser radiation was experimentally studied in ref. [2], where
the ions O+

2 + C+, SO+ + C+, D+
2 + O+ were detected in the resulting laser plasma. For

molecules with different isotopic compositions (with H substituted by D), experiments were
performed to investigate the two-electron dissociative ionization of water (by near-infrared
(NIR) laser pulses with FWHMs of 10 and 40 fs [3,4]) and formaldehyde (by pulses with
100 fs FWHM [5]). An experimental and theoretical study of Coulomb explosions after
OCS+ ionization using a strong IR-laser pump–probe technique was performed in ref. [6].

Besides the direct influence on the electrons, the laser field also indirectly affects the
motion of the nuclei in a neutral molecule and the resulting molecular ion. The mechanism
of this effect is simply explained theoretically by the concept of “laser dressing” of the atom,
i.e., the laser field polarizes electron shells. This results in deforming the potential energy
surface (PES) of the nuclei. This approach in a d.c. field was proposed in ref. [7] and was
further developed in ref. [8] to calculate the nonadiabatic susceptibilities of molecules. In
terms of perturbation theory, the d.c. field-induced modification of PES contains both odd
and even powers of the field strength, F. The modifications due to a.c. (optical) fields are
expressed in terms of the integer powers of the radiation intensity, I, because the odd-order
corrections in F disappear [9].

Laser-induced modification of the vibrational parameters (frequencies and bond
lengths) of diatomics having C∞v or D∞h symmetry was studied theoretically by Zon [10].
An account for such a modification results in substantial correction (up to a factor of 2.5)
of theoretical tunnel ionization rate of molecular hydrogen (and therefore the ionization
signal in the focal volume) [11].

The laser-modified PES model proposed in ref. [10] was generalized to polyatomic
molecules using the normal mode formalism [12]. In ref. [13], the laser-induced deformation
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of nonlinear (C2v-symmetric) triatomic molecules was studied using H2O and SO2 as
examples. These molecules have three non-degenerate modes. Two of these modes are
A1-symmetric; e.g., in the water molecule they correspond to symmetric stretching H–O
vibrations and to scissoring vibrations. The third, B1 mode, corresponds to asymmetric
stretching H–O vibrations. The vibrational parameters of these molecules, i.e., the sizes
(O–H bond length) and the shapes (H–O–H bond angle) are only quantitatively modified
by the laser field. The frequencies undergo some shifts, larger for H2O and considerably
smaller for SO2, because mH � mO. All the modifications will be proportional to the
radiation intensity, I (in the lowest order in I, the C2v symmetry being preserved in the
laser field). However, the H2O tunnel ionization rate can be modified by a factor of up to
20 (via the Franck–Condon factors) due to the small mass of the hydrogen atom.

The laser-induced modification of vibrational parameters of linear triatomics possess-
ing a higher D∞h symmetry was studied in ref. [14]. On the examples of CO2 and CS2,
it was shown that, within the accuracy of ∼I, the geometry of these molecules are not
influenced by the radiation. Nevertheless, the radiation removes the degeneracy of the
bending Πu vibrations. This reduces the D∞h symmetry to D2h.

The motion of the nuclei can also affect the laser-field ionization of the molecule.
An important feature of tunnel ionization of molecules is its anti-Stokes enhancement,
when vibrational degrees of freedom are preliminary excited (pumped) selectively by
monochromatic radiation of low intensity, and then the molecule is exposed to a high
intensity laser pulse. As a result, the rate of the tunnelling ionization from the excited
state can increase appreciably compared to that from the ground vibrational state, e.g., by
several times for a hydrogen molecule [11]. Note that the anti-Stokes enhancement was not
taken into account by other authors [15–24]. This effect can be potentially used for the laser
separation of hydrogen [11], nitrogen and oxygen [25,26] isotopes in gas targets. Due to the
specific vibrational structure of CO and CO+, the carbon monoxide, CO, was shown to be
useless for the laser separation of carbon isotopes [27].

The purpose of this work is to investigate the effect of modifying the vibrational
parameters of the carbon dioxide molecule, CO2, on tunnel ionization, including anti-
Stokes channels. Due to the significant abundance of carbon dioxide, CO2, in the Earth’s
atmosphere, it influences substantially the propagation of laser radiation and filamentation
of laser plasma [28]. The stable isotope 13C is interesting in terms of the magnetic resonance
method (13C NMR) [29], and its abundance is 1.06% in the natural mixture. The radioisotope
14C (t1/2 = 5.70× 103 years) is used for radiocarbon dating in archaeology and paleontology
and to determine gastrointestinal Helicobacter pylori contamination in medicine. This isotope
may eventually serve as the basis for nuclear batteries [30].

The necessary formulas are derived in Section 2. Section 2.1 contains the basics of the
tunnel ionization theory for a model molecule with a structureless core (so-called ADK
or PPT models). In Section 2.2, we present the Born–Oppenheimer approximation and
the Dyson orbital formalism to account for the internal structure of the molecular core.
In Section 2.3, we present the general formalism developed in our papers [12,14] for the
calculation of the laser-modified vibrational parameters and apply this formalism to the
CO2 molecule. In Section 2.4, a method is discussed for accounting for the excitation of
internal degrees of freedom in the “inelastic tunnel effect” model [31]. The numerical
results are given and discussed in Section 3. The main conclusions are given in Section 4.
Wherever not specifically stated, the atomic system of units (h̄ = e = me = 1) is used.

2. Methods

The basis of the tunnel ionization theory is the Ammosov–Deloné–Krainov model for
molecular orbitals (MO-ADK), proposed in ref. [15] and developed in refs. [16–24]. MO-
ADK is a generalization of the atomic ADK model [32], or Perelomov–Popov–Terentiev
(PPT) model [33], to account for the non-spherical symmetry of the molecular core potential.
The main drawback of this model is that the molecular core is assumed to be structureless,
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and only a single electron is supposed to tunnel through the potential barrier formed by
this core and laser electric field.

In our papers [11,13,25–27,34], a tunnel ionization theory is developed that accounts
for internal degrees of freedom of the molecular target. The molecular core effects taken
into account can be roughly divided into three groups:

1. The overlap between the electron orbitals and vibrational states of the residual ion
and the neutral core is accounted for using the Dyson orbital concept.

2. The excitation of the electronic configurations of the residual ion, as well as excitation
and de-excitation of the vibrational states resulting from the tunnelling ionization,
can be accounted for in the “inelastic tunnelling” model framework.

3. Under the influence of the laser field, the electron energy undergoes a quadratic (∼F2)
Stark shift. This shift results, on the one hand, in modification of the vibrational param-
eters and, on the other hand, in deepening the energy level of the tunnelling electron.

The above-listed effects are considered in detail below.

2.1. The MO-ADK Model

In the MO-ADK model, the tunnel ionization rate is determined by the asymptotic
form of the wave function of the tunneling electron. In particular, for a D∞h-symmetric
molecule (e.g., CO2),

ψmp(r) ∼ Cκ3/2(κr)ν−1e−κr ∑
l=lp ,lp+2,...

ClYlm(r̂), κr � 1. (1)

Here, κ = (2Eion)
1/2 is the tunneling electron’s wavenumber, Eion > 0 is the ionization

energy, ν = κ−1 is the electron’s effective principal quantum number and Ylm is the spherical
function of the unit vector, r̂ ≡ r/r, m being the electron orbital momenum projection onto
the molecular axis. The dimensionless structural coefficients C and Cl satisfy

∑
l=lp ,lp+2,...

|Cl |2 = 1,

where p is the spatial parity of the electron in its bound state (p = g for the even and
p = u for the odd states);

lg = 2[(|m|+ 1)/2], lu = 2[|m|/2] + 1,

where [·] denotes the integer part.
The asymptotic form (1) is a generalization of the Bates–Damgaard approximation on

the non-spherical (in our case, D∞h-symmetric) potential.
For simplicity, let us consider tunnelling ionization of the model molecule by the

linearly polarized monochromatic field:

F(t) = uF cos ωt, (2)

where F is the electric field amplitude, ω is the frequency and u is the constant unit
polarization vector.

The (averaged over optical half-cycle) tunnelling ionization rate in the MO-ADK model
does not depend on the frequency, ω, and is given by the following expression [15,16]:

W(MO-ADK)
m (θ, κ, I) = C2κ2 ∑

m′

B2
m′(θ)

2|m′ ||m′|!

√
3F

πκ3

(
2κ3

F

)2ν−|m′ |−1

exp
(
−2κ3

3F

)
. (3)
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Here, θ is the angle between the molecular axis and the polarization vector, u (see
Figure 1),

Bm′(θ) = (−1)(|m|−m)/2 ∑
l=lp ,lp+2,...

Cldl
m′m(θ)

√
2l + 1

2
(l + |m′|)!
(l − |m′|)! ;

d stands for Wigner’s small d-function; I = F2 is the intensity of the linearly polarized
monochromatic radiation (2) (we recall the atomic unit for the electric field strength,
Fa = 5.142× 109 V/cm, and for the radiation intensity, Ia = 3.510× 1016 W/cm2).

Formula (3) is applicable in a limited interval of the laser field intensity. The up-
per limit is determined by the Coulomb barrier height and the validity condition of the
WKB approximation:

F < κ2/8, κ3/F & 1. (4)

The lower limit is determined by the Keldysh condition [35]:

κω/F < 1. (5)

The latter enables the use of adiabatic (in time) approximation, also called quasistatic
approximation. When condition (5) is valid, the classical time of the under-barrier travelling
of the electron is much less than the optical cycle, so that the ionization in such an a.c. field
goes in the tunneling regime. While the applicability of Equation (3) formally requires
the condition (κω/F)2 � 1, the less regorous condition (5) is quite sufficient for practical
calculations.
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Figure 1. Normal modes of the CO2 molecule. Here, u is the linear polarization vector of the laser
radiation. The subscripts “1” and “2” enumerate the oxygen atoms. The blue arrows indicate the
directions of instantaneous velocities in the classical interpretation of the vibrations.

2.2. Born–Oppenheimer Approximation and Dyson Orbitals

Unlike the above model case, a real molecule is a multi-body system that does not allow
the Schrödinger equation to be solved exactly. The Born–Oppenheimer Approximation
(BOA) is widely used in the theoretical description, not only of molecular spectra, but also
of the interaction of molecules with the electromagnetic field. Due to the small mass of the
electron compared to the nuclei, the motion of electrons and nuclei in a molecule can be
considered independently. As a result, the wave function of the molecule (in the reference
frame attached to the center of mass of the nuclei) is factorized as follows:

Ψµ{vµ}({R}, {r}) ≈ χ
(vib)
µ{vµ}({R})Φµ({Re}, {r}). (6)

Here, {R} and {r} are coordinates of the nuclei and electrons, respectively, and
Φµ({Re}, {r}) is the wave function of the electrons moving in the field of nuclei “frozen”

at their equilibrium positions, {Re}. The nuclei wave function, χ
(vib)
µ{vµ}({R}), includes

the electron and vibrational quantum numbers, µ and {vµ}, respectively. Formally, the
BOA expression (6) should include {R} instead of {Re} because the electron motion
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should “follow” the nuclei (and therefore BOA can be considered as a spatial adiabatic
approximation). Nevertheless, the form (6) is more convenient for practical calculations
and is acceptable because the amplitude of the classical vibrations of the nuclei is small
compared to the equilibrium inter-nuclear distances (or with the size of the atoms).

Formula (6) does not include the rotational wavefunction. As will be shown below, we
can neglect the orientation effect of the ionizing femtosecond laser pulse on the molecule.

It is convenient to take into account the effect of internal degrees of freedom on the
laser ionization of a molecule with the help of the Dyson orbital [36–39], which effectively
accounts for the difference between the states of the molecular core and the created ion. The
Dyson orbital is the overlap integral between the configurations of the neutral molecule
and the ion. In the single active electron approximation, one has

Ψ(Dyson)
µ f {v f },µi{vi}

(r) =
∫
{d3R} χ

(vib)∗
µ f {v f }

({R}) χ
(vib)
µi{vi}

({R})

×
∫
{d3r′}Φ∗µ f

({Rei}, {r′})Φµi
({Rei}, {r′}; r). (7)

Here, r is the active (tunnelling) electron coordinate and {r′} is the coordinates of the
electrons of the neutral molecule’s core. The subscripts i and f mark the initial (neutral
molecule) and final (the created ion) states. The following notations for the integration
volume elements are used:

{d3R} ≡
Na

∏
j=1

d3Rj, {d3r′} ≡
Ne

∏
i=1

d3r′i ,

where Na is the number of electrons in the molecule and Ne is the number of electrons in
the core or in the ion.

Ionization is a bound–free electron transition. According to the Franck–Condon
principle, such a transition occurs so rapidly that during this time the nuclei cannot shift
appreciably compared to the equilibrium inter-nuclear distances. Therefore, the electronic
wave functions, Φµi , in the neutral molecule and those in the ion, Φµ f , are entered into the
Equation (7) at the same values of {Rei}.

In the one-electron (Hartree–Fock) approximation, the dependence of Φµi
on r is

factorized together with the Dyson orbital (7):

Ψ(Dyson)
µ f {v f },µi{vi}

(r) ≈ I (vib)
µ f {v f },µi{vi}

I (el)
µ f µi ψmp(r). (8)

Here, ψmp(r) is the active electron’s wavefunction, which has the asymptotic form (1)
for D∞h-symmetric molecules. In the tunnel ionization calculations, this electron wave-
function is typically taken from the highest occupied molecular orbital (HOMO). For small
vibrations, the vibrational overlap integral, I (vib), is reduced to

I (vib)
µ f v f ,µivi =

∫
χ
(vib)∗
µ f v f ({Re f }, Q) χ

(vib)
µivi ({Rei}, Q) dNv Q, (9)

where Q ≡ {Q1, Q2, . . . , QNv} are normal coordinates, v ≡ {v1, v2, . . . , vNv} are the corre-
sponding vibrational quantum numbers and Nv is the number of the vibrational degrees
of freedom,

dNv Q ≡
Nv

∏
i=1

dQi.

For linear molecules, one has Nv = 3Na − 5, and for the nonlinear molecules,
Nv = 3Na − 6. The overlap integral between the electronic wavefunctions of the neu-
tral atom, Φ̃µi , and the ion, Φµ f is

I (el)
µ f µi =

∫
Φ∗µ f

({Rei}, {r′}) Φ̃µi
({Rei}, {r′}) {d3r′} (10)
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In the Hartree–Fock approximation, integral (10) is factorized by one-electron integrals,∫
φ∗µ f

({Rei}, r′) φ̃µi
({Rei}, r′) d3r′ (11)

with one-electron wave functions, φµi and φµ f . Integral (11) can be calculated analytically
using Gaussian-type orbitals (see Appendix A.1).

The Dyson orbital (8) differs from the electron wave function of a model molecule (1)
by the multipliers I (vib)

µ f v f ,µiviI
(el)
µ f µi , which are determined by the internal structure of the

molecule.

2.3. Modification of the Vibrational Parameters of CO2 in a Laser Field

In the laser field (2), the molecule’s energy undergoes a dynamical quadratic Stark shift:

∆(2)
Stark(ω) = −1

4
α(ω, u)F2. (12)

Here,
α(ω, u) = uT α̂(ω)u, (13)

where uT is the row-vector and α̂(ω) is the symmetric tensor of frequency-dependent
electric polarizability. In the Cartesian coordinates,

α(ω, u) = ∑
i,j=x,y,z

αij(ω)uiuj, αij(ω) = αji(ω). (14)

As the basis of major axes of axially-symmetric molecules, one has α̂ = diag(α⊥, α⊥, α‖), so
in the case of linearly polarized radiation, Equation (13) takes the form

α(ω, u) = α⊥(ω) sin2 θ + α‖(ω) cos2 θ, (15)

where θ is the angle between the molecular axis and the polarization vector.
As was shown in ref. [12], the Stark shift (12) in the Born–Oppenheimer approximation

leads to a deformation of the nuclei potential energy surface (PES) in the molecule. In
particular, the stable equilibrium positions of the nuclei may shift, resulting in a deformation
of the molecule, and the curvature of the PES at these points may change, which will affect
the vibrational frequencies.

The study of vibrations of polyatomic molecules is conveniently carried out in the
normal mode formalism. In the classical interpretation, instead of true coupled small
vibrations of Na nuclei, one can consider independent harmonic vibrations of Nv dummy
particles. These oscillations are linear combinations of true oscillations and are called
normal modes. The value of Nv is equal to the number of vibrational degrees of freedom of
the molecule. For the CO2 molecule, one has Nv = 4.

Neglecting anharmonicity, the vibrational Lagrangian in normal coordinates takes
the form:

L(Q) =
f

∑
k=1
Lk(Qk), Lk(Qk) =

1
2

MkQ̇2
k +

1
2

MkΩ2
0k(Qk −Qek)

2. (16)

Here, Qk, Mk and Ω0k are the coordinate, reduced mass and frequency, respectively, of
the k-th normal mode; Qek is the equilibrium normal coordinate value. The observable
quantities are Ω0k; they are considered to be known for the molecule. The reduced masses
and normal coordinates are determined ambiguously within the simultaneous substitutions

Mk → βk Mk, Qk → Qk/
√

βk, Q0k → Q0k/
√

βk, βk = const, (17)

which leave the Lagrangian (16) invariant.
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The CO2 molecule, with equilibrium bond length (C−O) = Re, has four vibrational
degrees of freedom, as shown in Figure 1 (see also [40], Section 24).

In the classical interpretation, the Σg mode is due to anti-phase vibrations of the O
atoms along the resting molecular axis, z, the C–O bond lengths changing symmetrically.
We therefore name these vibrations symmetric and denote the corresponding quantities
(e.g., frequency Ω(Σg) ≡ Ωs) by subscript “s” for brevity.

The Σu mode is due to the equal in-phase vibrations of the O atoms along the molecular
axis, while the C atom makes a counter-motion along the z axis, preserving the center
of mass rested. The C–O bond lengths are changed asymmetrically, so we name them
asymmetric and denote them by an “a” subscript.

The Σs and Σu modes can be named longitudinal as well. Ref. [40] introduces the
longitudinal normal coordinates, Qs, Qa, for the CO2 molecule in the following way:

Z1 = (Qa + Qs)/2, ZC = −mO

mC
Qa, Z2 = (Qa −Qs)/2, (18)

where Z1,2 and ZC are the z-coordinates of the O and C atoms, respectively.
The Πu mode corresponds to bending of the molecule, with both the C–O bond lengths

being equal. We denote this mode by the subscript “b”. This mode is double degenerate
due to the axial symmetry of the non-deformed molecule. Indeed, such bending is possible
in two mutually orthogonal directions, for instance, along the x or the y axis. Therefore,
we will also call these modes transverse and denote them as “x” and “y”. If the linear
polarization vector of the laser field, u, and the x axis lay in the (uz) plane, then the “x”
vibrations occur in the (uz) plain, and the “y” mode vibrations occur in the perpendicular
plane. Both these vibrations will be perpendicular to the molecular z axis. It is convenient
to chose the normal coordinates Qx = Reδx and Qy = Reδy, where δx,y are the bending
angles (see Figure 1). The connection between the transverse normal coordinates for the
motion along the x axis and the nuclei coordinates, X1,2 and XC, is given by the following
equations:

X1 = X2 =
mC

2M
Qbx, XC = −mO

M
Qbx, M = 2mO + mC (19)

and by similar equations for the motion along the y axis. All the normal coordinates
introduced here have dimension of length. Transformations (18) and (19) exclude both the
motion of the center of mass and rotation of the whole molecule.

Normal coordinates in molecules of other symmetry types are given, e.g., in the
monograph [41].

In the normal coordinates, the vibrational Lagrangian of CO2 is separated into the
sum of Lagrangians of independent harmonic oscillators:

L = Ls + La + Lx + Ly,

where each term has the form of Equation (16). The reduced masses, Mk, of the normal
mode oscillators are expressed through the nuclei masses:

Ms = mO/2, Ma =
mOM
2mC

, Mx = My = Mb =
mCmO

2M
. (20)

The deformation of the molecule is given by changes in its normal coordinates, Q,
and results in a dependence of the polarizability tensor components α̂ on Q. The laser
field (2) modifies the normal modes, Ω0k, and the equilibrium normal coordinates, Qe, by
deforming the PES. The change in the vibrational parameters of the CO2 molecule in the
laser field (2) has been recently investigated in detail in ref. [14]. In the lowest order, this
change is linear in the radiation intensity.
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The D∞h-symmetry of the CO2 molecule and the linear polarization of the radiation
cause the molecule to retain its linear shape (within ∼F2 accuracy) and equal C–O bond
lengths in the laser field. However, the C–O length changes by an amount of

∆Re =
α(1s)(ω, u)

8MsΩ2
0s

F2. (21)

The above-mentioned symmetry results in uniform modification of all the normal
mode frequencies:

∆Ωk = −
α(2kk)(ω, u)

8MkΩ0k
F2, k = s, a, x, y. (22)

Equations (21) and (22) contain the derivatives of the polarizability tensor with respect
to normal coordinates in the equilibrium positions, Qe:

α(1k)(ω, u) =
∂α(ω, u)

∂Qk

∣∣∣∣
Qe

, α(2kk′)(ω, u) =
∂2α(ω, u)
∂Qk ∂Qk′

∣∣∣∣
Qe

. (23)

Quantities (23) can be calculated numerically using quantum chemistry methods.
In the lowest perturbation order, the change of arbitrary vibrational parameter, G, in

the D∞h-symmetric molecule can be parametrized by the orientation angle, θ, as follows:

∆G = (C cos2 θ + S sin2 θ)F2, (24)

where C and S are θ-independent quantities.
In ref. [14], it is shown that the relative change of the C–O bond length amounts to

0.43%, and that of the Ωy frequency is −1.0%, at the laser field intensity of
1.00× 1014 W/cm2.

Due to degeneracy, one has Mx = My = Mb, Ω0x = Ω0y = Ω0b. The reduced
masses, Mk, are calculated according to (20). However, due to the specific structure of the
tensors α̂(2xx) = diag (axx, ayy, azz) and α̂(2yy) = diag (ayy, axx, azz), the double degenerate
Πu mode (“b” in our notation) is split by two “x” and “y” modes. Indeed, the laser field
violates the physical equivalence of mutually orthogonal vibrations of the Πu mode (see
also Figure 1). Note that from Equation (24) it follows that Cx = Cy, Sx 6= Sy, i.e., the
vibrational levels are not splitted at θ = 0◦, while at θ = 90◦ their splitting is maximal and
amounts to ∆Ωy/∆Ωx

∣∣
θ=90◦ = 2.33 for CO2 [14].

Thus, removal of the degeneracy leads to reduction in the CO2 molecule’s symmetry
from D∞h to D2h.

Modification of the vibrational parameters in the laser field can affect the vibrational
overlap integrals (9). In particular, for a triatomic D∞h-symmetric molecule, the vibrational
wave function is factorized in harmonic approximation:

χ
(vib)
(MΩ),v(Qe, Q) = ∏

k
χ
(vib)
MkΩk ,vk

(Qek, Qk), k = s, a, x, y. (25)

where each vector is four-dimensinal: G = {Gs, Ga, Gx, Gy}, Qes = 2(Re + ∆Re) (see
Equations (18) and (21)), Qea = Qex = Qey = 0, Ωk = Ω0k + ∆Ωk (see (22)). The multipliers

χ
(vib)
MΩ,v(Qe, Q) denote the wave function of the v-th stationary state of the linear harmonic

oscillator characterized by its mass, M, frequency, Ω, and equilibrium position, Qe.
Multidimensional overlap integrals in the harmonic approximation are generally

calculated analytically by the Sharp–Rosenstock method [42]. However, for D∞h-symmetric
triatomic molecules, a simpler method is admissible, whereby the integral (9) is factorized:

I (vib)
(MΩ f ),v f ; (MΩi),vi

(Qe f , Qei) = ∏
k
I (vib,1D)

MkΩk f ,vk f ; MkΩki ,vki
(Qek f , Qeki), (26)
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where

I (vib,1D)
MΩ f ,v f ; MΩi ,vi

(Qe f , Qei) =
∫ +∞

−∞
χ
(vib)
MΩ f ,v f

(Qe f , Q) χ
(vib)
MΩi ,vi

(Qei, Q) dQ (27)

is a one-dimensional vibrational overlap integral, whose explicit form is given in
Appendix A.2.

We do not account for anharmonicity because anharmonic normal vibrations are not
independent for polyatomic molecules.

2.4. Tunnelling with Excitation of Internal Degrees of Freedom

The influence of the internal degrees of freedom of a molecule on its tunnel ionization
by laser radiation can be taken into account within the framework of the Dyson orbital
concept. In refs. [15,16,39], the nuclei motion is taken into account by the WKB method.
However, the Dyson orbital does not allow us to fully account for the excitation of the
internal degrees of freedom of the molecule.

An account for the ion excitation in the ionization of atoms was first proposed by Carl-
son [43] and Zon [31] based on the method of quasienergy in sudden approximation [44].
The further development of the method was given in ref. [45] using Green’s function formal-
ism. Besides the using the Dyson orbital, the essence of the Carlson–Zon method consists
of replacing Eion with Eion + ∆′, where ∆′ � Eion is the excitation energy of the ion created.
One of the advantages of the Carlson–Zon method is the inclusion of additional ionization
channels besides those described by (MO)ADK theory. In our paper [46], they were called
“inelastic tunneling effect” (ITE) by analogy with inelastic scattering. The concept of ITE
allowed us to explain available experimental data from refs. [47–50], which differ from
ADK predictions by 1–2 orders of magnitude, by the excitation of the fine structure in the
ion. A special experiment [51] delivered at the CCLRC Rutherford Appleton Lab confirmed
our theory [46].

In refs. [11,25,26,34], the ITE model was expanded onto the molecules by the account
for the vibrational degrees of freedom. In our theory, this is reflected in the change of the
term ∆′ and modification of the Dyson orbital by the vibrational multiplier (see (8)). As a
result, we obtain the following expression for the cycle-averaged rate of tunnel ionization
accompanied by the transition from the vibrational state, |vi〉, of the neutral molecule to
the vibrational state, |v f 〉, of the ion (with possible electron excitation of the ion):

W(µ f v f , µivi)m(θ, κ f i, I)

= NHOMO I
(el)2
µ f µi I

(vib)2
(MΩ f ),v f ; (MΩi),vi

(Qe f , Qei)W(MO-ADK)
m (θ, κ f i, I). (28)

Here, NHOMO is the number of equivalent electrons in HOMO (the tunnel ionization
from deeper shells of HOMO-1, HOMO-2, etc., are generally suppressed due to higher ion-
ization energy—see also discussion in Section 3.2); the second, third and fourth multipliers
are given by Equations (3), (10) and (26), respectively; the square of the vibrational overlap
integral is called the Franck–Condon factor (FCF); µi, f is the quantum numbers defining
the electronic states of the neutral molecule or its ion:

κ f i =
√

2
[

Eion + ∆(vib)
v f ,vi + ∆(el)

exc + |∆(2)
Stark|

]1/2
. (29)

The second term in (29) takes into account the change in vibrational energy due to
ionization. In the approximation of harmonic vibrations, one has

∆(vib)
v f ,vi = E(vib)

f ,v f
− E(vib)

f ,0 − E(vib)
i,vi

+ E(vib)
i,0 = ∑

k
(Ωk f vk f −Ωkivki),
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where k = s, a, x, y in the case of D∞h-symmetric triatomic molecule. The possible
combinations of vi and v f give rise to the ionization channels, which differ by the value of
κ f i and Franck–Condon factors.

If, at some values of vi and v f , the quantity ∆(vib)
v f ,vi is positive, then the value (29)

effectively increases, which leads to a decrease in the tunnel ionization rate. This conclusion
follows from the high sensitivity of (28) to the value of κ f i in the tunneling regime. The
decrease occurs due to additional energy absorption needed to populate the excited states.
By analogy with Raman light scattering, such channels are called Stokes channels. In these
channels, we will characterize ionization as Stokes-attenuated. This process was observed,
for example, in experiments in [52] and was subsequently interpreted theoretically in
ref. [34].

If ∆(vib)
v f ,vi < 0, then κ f i decreases, which leads to an increase in the tunnel ionization

rate. This situation can take place if the molecule is pre-selectively excited to vibrations by
a monochromatic probe laser of low intensity at a resonant frequency, and is then ionized
by a laser pulse of high intensity. The molecule is imparted with an additional energy
from the pre-pumped vibrational states, which is absorbed during ionization. As a result,
the tunneling rate increases. By analogy with Raman light scattering, we will call such
ionization anti-Stokes-enhanced. This mechanism was first proposed in ref. [11] for the
ionization of the H2 molecule. This theory was further developed in refs. [25,26]. It was
shown that this method can be used for laser isotope separation. Indeed, the frequencies of
normal modes are determined by the rigidity of chemical bonds and the masses of atoms.
Therefore, the isotopologues (identical molecules with different isotopes) will differ in their
natural frequencies. Selective pumping will only excite molecules with the desired isotopes.
The anti-Stokes-enhanced ionization by a high intensity pulse will then produce a plasma
enrichment in the isotope of interest.

The third term in (29), ∆(el)
exc , is responsible for the electronic excitation of the ion

formed. Its role is the same as in the Carlson–Zon theory for the ionization of atoms. An
increase in ∆(el)

exc dramatically decreases the ionization rate in the corresponding channel.
The fourth term in (29),

∆(2)
Stark = −1

2
α(0, u)F2,

takes into account the quadratic Stark shift of the neutral molecule level by the ionizing
field, which slightly decreases the ionization rate (see also Equation (12)). The shift is
taken as static because the adiabatic (in time) approximation is inherently quasistatic, and
ionization occurs predominantly at times when the laser field strength reaches its amplitude
values. The Stark shift can significantly suppress the ionization of atoms and molecules
with large polarizability. We have predicted this effect theoretically for Kr and Xe atoms
in [53].

It can be argued that all the additional terms to Eion in (29) are due to the electron-
vibrational spectra of the neutral molecule and its ion.

If we are not interested in ionic states, the ionization rates in all channels of (28) must
be summed up. As a rule, ∆(el)

exc � Ωi, f , and so the summation can be limited to the
vibrational quantum numbers of the ion:

W(µivi)m(θ, κ, I) = ∑
v f

W(µ f v f , µivi)m(θ, κ f i, I). (30)

Formula (30) is written for a monochromatic spatially homogeneous laser beam with
an infinitely large diameter. However, real high-intensity laser radiation has a finite
duration and is focused in a finite spatial domain. Let us first assume that the intensity
distribution is spatially homogeneous with a Gaussian envelope:

I(t) = I exp
(
−4t2 log 2

τ2

)
, (31)
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where I is peak intensity and τ is full width at half maximum (FWHM). Then the total
population of the created ion’s states (or the probability of ionization of the molecule) after
passing the pulse (31), will be

P(µivi)m(θ, κ, I) = 1− exp
[
−
∫ +∞

−∞
W(µivi)m(θ, κ, I(t)) dt

]
= 1− exp

[
− τ

2
√

log 2

∫ I

0

W(µivi)m(θ, κ, I′)√
log(I/I′)

dI′

I′

]
. (32)

Note that the use of the time-dependent intensity (31) instead of the oscillatory field
strength, F(t), is an approximation. As shown in ref. [53], this approximation is valid if
the number of oscillations in the pulse exceeds 5. For a few-cycle pulse, the expression
(32) becomes more complicated and depends on the absolute phase of the oscillations in
the pulse (the limiting cases correspond to maximum amplitude or zero value of the field
strength at t = 0).

We will also assume that the laser beam is axially symmetric, focused, and has a
Gaussian distribution of intensity across its diameter:

I(r, z) = I0
r2

0
w2(z)

exp
[
−2

r2

w2(z)

]
. (33)

Here, r, z are the cylindric coordinates (z is measured from the focus along the beam
axis), r0 is the waist radius of the beam (the minimal beam radius in the focus, at which the
intensity decreases by the factor of e2 as compared to its value at the axis), I0 is the peak
intensity at the focus (absolute intensity);

w(z) = r0

√
1 + z2/z2

0,

where z0 = πr2
0/λ is Rayleigh range and λ is the central wavelength of the laser.

The signal from the ions oriented at an angle, θ, to the direction of the radiation
polarization vector is calculated by integrating the focal volume in the beam (33). The
corresponding formula is derived in ref. [54]; we give here the final result only:

S(µivi)m(θ, κ, I0) =
π2n0r4

0
3λ

∫ I0

0
P(µivi)m(θ, κ, I)

(
I0

I
+ 2
)√

I0

I
− 1

dI
I

, (34)

where n0 is the concentration of neutral molecules before exposure to the laser pulse and
P(µivi)m(θ, κ, I) is the ion states’ population calculated by Formula (32).

Equations (30) and (34) are the main formulas in this work.

3. Numerical Results and Discussion

We will now study the tunnel ionization of the CO2 molecule. First, we will give
the values of the necessary parameters. Generally, reference databases assume that the
CO2 molecule and the CO+

2 cation consist of the most abundant isotopes, 12C and 16O,
and have the ground electronic states X 1Σ+

g and X̃ 2Πg,3/2, respectively. In the present
paper, the vibrational parameters were taken from the NIST database [55] for CO2, and
from [56] for CO+

2 (see Table 1). Note that in the classical interpretation, no dipole moment
is induced with the Σg vibrations, and therefore their experimental investigation is difficult.
In particular, ref. [56] lacks the corresponding frequency, Ω0s, for CO+

2 . We reconstructed it
as follows. The corresponding frequency was calculated for the neutral CO+

2 molecule in
the Gaussian package using the CCSD(T)/6-311++G(3df,3pd) method. From comparison
with its reference value from [55], the scaling factor was calculated. Then, by the same
method, the vibration frequency Σg in the CO+

2 cation was calculated and scaled with
the factor found earlier for CO2 (the corresponding data for CCSD(T)/6-311++G(3df,3pd)
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are missing in the NIST database [55]; the frequencies calculated by other methods have
a significant scatter of values up to 50%). A similar analysis of Σu and Πu vibrations in
CO+

2 is difficult because quantum chemistry packages exhibit physically unreasonable
D∞h-symmetry violation in the presence of open electron shells.

The 13CO2 and 14CO2 isotopologues will have the calculated reduced masses Ma and
Mb, different from those of 12CO2 (see (20)). Therefore, the frequencies of the normal
modes listed in Table 1 will undergo a change. Indeed, if we use the classical interpretation
(see [40], Section 24), then

Ω0a =

√
kCO(2mO + mC)

mOmC
, Ω0b =

√
2kOCO(2mO + mC)

mOmC
,

where kCO is the C–O bond force constant and kOCO is the molecule’s bending force constant.
After substituting mC with the m′C isotope’s mass, the “new” frequences, Ω′0a,b, will be
related to the “old” frequencies, Ω0a,b, as follows:

Ω′0a,b = Ω0a,b

√
1 + 2mO/m′C
1 + mO/mC

.

The corresponding changes should be made for the isotopologues in Table 1.

Table 1. Vibrational parameters of the CO2(X 1Σ+
g ) molecule and its cation, CO+

2 (X̃ 2Πg,3/2).

Molecule Re, Å Ω0, cm−1

Σg Σu Πu

CO2 [55] 1.1621 1333 2349 677
CO+

2 [56] 1.1781 1324.5 (a) 1421.7 462.6
(a) The frequency of the Σg vibrations is obtained by quantum chemistry methods.

Note the significant difference in frequencies in each of the Σu and Πu modes for
CO2 and CO+

2 . This peculiarity makes possible the anti-Stokes-enhanced tunnel ionization
of CO2. It is important to recall that, in a neutral CO molecule and a CO+ cation, the
corresponding vibrational parameters are almost identical [55]. The resulting orthogonality
between the corresponding vibrational states of CO and CO+ will suppress the anti-Stokes-
enhanced ionization of CO [27] via Franck–Condon factors.

The polarizability tensor of the deformed CO2 molecule and its cation, CO+
2 , was

calculated in the NWChem package [57] with CCSD(T)/6-311++G(3df,3pd) (we justified
the choice of the corresponding basis set in ref. [13]). The calculations were performed both
for the static case and for laser radiation with a 800 nm wavelength (Ti:Sapphire laser).
The derivatives of the polarizability tensor over the normal coordinates at the equilibrium
position were obtained by numerical differentiation over five points. The step of all normal
coordinates was taken as 0.005 Å. The results are shown in Table 2. Note again that in
the CO+

2 cation calculations, the D∞h-symmetry is violated due to the open shell, and we
had to perform averaging, α⊥ = (αxx + αyy)/2. For the same reason, it was impossible
to obtain the derivatives over the normal coordinates corresponding to Σu and Πu. The
corresponding cells in Table 2 are left empty. In further calculations, these values are set to
zero for certainty.

Because the ionization energy from the ground CO2 state is Eion = 13.78 eV, then,
according to Equations (4) and (5), we will calculated the tunnel ionization rate at the
radiation intensities from the following interval:

1.00× 1014 W/cm2 < I < 3.94× 1014 W/cm2. (35)
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The upper boundary is chosen here to equal a factor of 0.7 multiplied by the barrier-
suppression intensity value.

Table 2. Static and dynamic (frequency dependent) polarizabilities of the CO2(X 1Σ+
g ) molecule and

its cation, CO+
2 (X̃ 2Πg,3/2), with their derivatives with respect to normal coordinates calculated with

CCSD(T)/6-311++G(3df,3pd).

Quantity CO2 CO+
2

Static Dynamic Static Dynamic

(. . .)‖ (. . .)⊥ (. . .)‖ (. . .)⊥ (. . .)‖ (. . .)⊥ (. . .)‖ (. . .)⊥

α, Å3 4.088 1.790 4.135 1.801 3.802 1.412 3.947 1.426
α(1s), Å2 4.026 0.885 4.125 0.899 3.259 0.643 3.659 0.646
α(2ss), Å 3.483 −0.068 3.699 −0.053 1.229 −0.122 2.315 −0.109
α(2aa), Å −35.16 13.44 −35.24 14.46 – – – –
α(2xx), Å * 1.587 1.306 1.685 1.327 – – – –

0.562 0.573 – – – –
α(2yy), Å * 1.587 0.562 1.685 0.573 – – – –

1.306 1.327 – – – –
* The upper values of (. . .)⊥ correspond to (. . .)xx , and the lower values to (. . .)yy.

3.1. Franck–Condon Factors in CO2 Molecule

The Franck–Condon factor (FCF) for ionization is the squared overlap integral between
the vibrational states of the neutral molecule and its cation (26):

FCF(MΩ f ),v f ; (MΩi),vi
(Qe f , Qei) = I

(vib)2
(MΩ f ),v f ; (MΩi),vi

(Qe f , Qei).

Quantum-chemical calculations using various methods show that in the CO2 molecule
the IR transitions within the Σu mode (or “a” in our notations) have the highest intensity.
Therefore, we separately investigate the FCFs for transitions with vsi = vs f = vxi = vx f =
vy f = 0, i.e., only those in which the vibrational quantum number, va, changes. In this case,
in the absence of external fields, according to (A5) the FCF is independent of the mass of
the carbon atom and turns to zero if vai and va f have different parity (see also (A6)). The
results of the calculation in the harmonic approximation are given in Figure 2. It can be
seen that as va f increases, the FCFs decrease monotonically almost exponentially. Note that
taking into account the anharmonism can result in violation of this monotonicity.

0 2 4 6 8 10 12
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g
+

2
2
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~

Figure 2. Franck–Condon factors for tunnel ionization of the CO2 molecule. vsi = vs f = vxi = vx f =

vyi = vy f = 0. The numbers denote the vi values. If vai and va f have a different parity, then FCF = 0;
see the selection rule (A6).

Figure 2 shows that the calculated FCFs reach a maximum at vai = va f = va. We
therefore investigate the dependence of these FCFs alone on the laser intensity (2). As shown
in our recent paper [14], the variation of vibrational parameters in the tunneling regime of
ionization is typically . 5%. Therefore, according to (21) and (21), the FCF modification will
be proportional to the radiation intensity. Because (26) involves all vibrational modes, it is
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convenient to transform the angular dependence (24) and parameterize the laser-modified
FCF as

FCF(θ, I) = FCF0 + (K + L cos 2θ)(I/Ia), (36)

where FCF0 is field-free FCF for the |vai = va〉 → |va f = va〉, transition K and L are
dimensionless constants and Ia = 3.510× 1016 W/cm2 is the atomic unit for intensity (see
also [14]). In the interval (35), the approximation (36) has an error of less than 3%.

The parameters of the approximation (36) are given in Table 3. We have limited
ourselves here to using derivatives of only the static polarizabilities from the Table 2.
Replacing static polarizabilities with dynamic (frequency-dependent) polarizabilities does
not change the results appreciably. Taking into account the modification of the laser
parameters results in an additional field-dependent term in the FCF, which is anisotropic
and depends on the mass of the carbon isotope. The contribution of the anisotropic
component decreases, both with increasing va and with increasing the C isotope’s mass.

Table 3. The parameters of the approximation (36).

va FCF0
AC K L

0 0.797

12C 4.58 2.02
13C 4.58 2.00
14C 4.57 1.99

1 0.748

12C 4.22 1.72
13C 4.21 1.68
14C 4.19 1.65

2 0.656

12C 3.56 1.18
13C 3.53 1.12
14C 3.50 1.05

3 0.535

12C 2.71 0.535
13C 2.66 0.428
14C 2.61 0.320

3.2. Ionization Rate

In the present work, we calculated the tunnel ionization rate of the CO2 molecule from
the ground electronic state. The ionization energy Eion = 13.78 eV. The structural coeffi-
cients in the πg HOMO’s asymptotic form (1) were taken from [58]: C = 1.99, C2 = 0.980,
C4 = 0.199, C6 = 0.020 (we present them here in dimensionless form). For the calculations,
we used Formula (28), which takes into account the excitation of the internal degrees of free-
dom. The electron integral of the overlap between the ground states of the neutral molecule
and cation was calculated by the Hartree–Fock method with the 6-311++G(3df,3pd) basis
set (see also Appendix A.1): I (el)2

µ f µi = 0.963.
Generally, the ionization rate of CO2 (28) from an initial state with an excited Σu

vibration with vai = 0, 1, . . . , 10 was calculated. At higher vai, a noticeable influence of
anharmonicity is possible. It was assumed that the final vibrationally-excited states are
not fixed, and a summation was carried out over all vibrational modes of CO+

2 , which was
cut off at the terms giving the relative contribution .10−8. The number of terms involved
increases rapidly as vai increases. Thus, 76 terms in (28) are considered at vai = 0, 89 terms
at vai = 2, 125 terms at vai = 3, . . . , 288 terms at vai = 10. The decrease in the contribution
of each summand with increasing v f is due to two reasons: (i) the increasing value of κ f i
(see (29)) occurring in the numerator of the negative exponent (3), and (ii) the exponential
decrease of FCF (see Figure 2). The value of W in Equation (28) was calculated as a function
of the orientation angle, θ, of the molecule at monochromatic radiation intensities in the
range given by Equation (35). Note that W in Equation (28) should not be confused with
the angular distribution of photoelectrons. In the tunneling regime of ionization, the latter
are emitted predominantly in the direction of the polarization vector u with a deflection
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angle not exceeding
√

F/κ f i/p, where p is the photoelectron momentum [59]. The results

of the calculation of the tunnel ionization rate of the 13CO2 and 14CO2 isotopologues are
shown in Figure 3 for the boundary intensity values (35).

Let us note the most important features of the tunnel ionization rate of CO2. First,
the dependence on the orientation angle, θ, of the molecule has a noticeable maximum;
in the case of perpendicular orientation, ionization is strongly suppressed. The plots are
symmetric with respect to θ = 90◦. The above qualitative behavior is typical for the
πg orbital and was noticed for the case of O2 ionization in ref. [26]. The position of the
maximum is determined by the structural coefficients in Equation (1); and for the CO2
molecule the maximum occurs at θ ≈ 28◦30′ for almost all curves. Second, we can note
the increasing role of laser modification of the vibrational parameters. While at vai = 0 its
influence is small (.1%), at vai = 10 the role of laser modification of vibrational parameters
increases to ∼5%. The main contribution is due to the modification of κi f according to
Equation (22), but not to FCF modification. Using frequency-dependent polarizabilities
at frequencies from the NIR range in (22) instead of static ones changes the result by
.0.1% and is almost imperceptible in the plots. Third, similarly to other molecules, after
pre-selective pumping of the CO2 vibrational mode by weak laser radiation, anti-Stokes-
enhanced tunnel ionization under the influence of high-intensity laser radiation occurs.
While excitation to vai = 1 increases the tunneling rate by a factor of 1.1, excitation to
vai = 10 increases it by a factor of 2.5, which qualitatively corresponds to similar results for
O2 molecules [26]. However, the motion of the nuclei is more complex in CO2. The reason
why the results for 13CO2 and 14CO2 are given here will be explained in Section 3.3.

The applicability of the BOA to the problem of tunnel ionization of molecules was
studied in ref. [60] by the example of a hydrogen molecule. It has been shown that tunnel
ionization can be affected by non-BOA retardation effects in electron density. In particular,
if we assume the fact that the reduced mass of the nuclei in the H2 molecule exceeds the
mass of the electron by more than 500 times, the non-BOA electron density differs from
its BOA value by less than 10% at a distance of 15–20 Bohr. It is the order of distance the
asymptotic-form constants C, Cl in (1) are calculated for. If the reduced mass of the nuclei
exceeds the mass of the electron by more than 2000 times, then the retardation effects will
appear at a distance of more than 25 Bohr. For the CO2 molecule, these conditions are
reliably met (see Equation (20)). Therefore, non-adiabatic (in space) corrections cannot
appreciably affect the results obtained in this work. There is no need to go beyond the BOA.

We restricted ourselves here to taking into account the contribution of the HOMO
(1πg). However, as shown by experiments on luminescence [61] and high harmonic
generation [62] during tunnel ionization of CO2 by a strong laser pulse, for a correct
interpretation of the results it is necessary to take into account ionization from HOMO-1
(1πu) and HOMO-2 (1σu) as well. As quantum chemistry calculations show, the energies of
ionization from HOMO-1 and HOMO-2 exceed the corresponding value for HOMO by 31%
and 36%, respectively. As a consequence, at the laser intensity of 3.94× 1014 W/cm2, the
contribution of HOMO-1 and HOMO-2 to tunnel ionization does not exceed ∼10−13–10−11

due to the exponential factor in Equation (3). This difference increases dramatically with
decreasing intensity. We have also studied this problem earlier for the N2 orbitals, HOMO
(3σg) and HOMO-1 (1πu) [25], which are closer in energy. Although the difference in
ionization energies is 7%, the contribution of HOMO-1 to the tunnel ionization does not
exceed 0.1%.
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Figure 3. Tunnel ionization rate (28) of the 13CO2 and 14CO2 isotopologues by the laser radiation (2).
Solid (dashed) curves correspond to calculations with (without) account for laser-induced modifica-
tion of the vibrational parameters. The small italic numbers indicates the values of vai.

3.3. Ionization Signal

The ionization signal from the molecule oriented at an angle, θ, to the polarization vec-
tor, u, was calculated for a Gaussian pulse with the envelope given by Equation (31) (FWHM
τ = 40 fs) and the spatial intensity distribution (33) using the Formulas (32) and (34) by
numerical integration by the trapezoid rule. The step of integration ∆ log I = 0.002 (I is
assumed in atomic units). The results of the calculation are given in Figure 4.

One can note a qualitative agreement with Figure 3, both in the angular dependences
and in the anti-Stokes effect of tunnel ionization amplification. However, the effect of
modification of vibrational parameters here is much weaker (.1%) than in a spatially
homogeneous monochromatic beam. This is a kind of cumulative effect due to the influence
of all intensity values I < I0 in obtaining the values of (32) and (34).
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Figure 4. “Reduced” ionization signal, λS/(π2n0r4
0), for the 13CO+

2 and 14CO+
2 isotopologues.

Unlike Figure 3, the absolute intensity values, I0, are indicated here. The other notations are the same
as in Figure 3.

In ref. [11], it was shown that in high-intensity near-infrared pulses with FWHM
. 100 fs, the collision-free orientation of molecules [63] practically does not occur. Therefore,
in our condition, the CO2 molecules can be considered oriented randomly. The ionization
signal (34) must then be averaged over the orientation angle:

S̃(µivi)m(κ, I0) =
∫ π/2

0
S(µivi)m(θ, κ, I0) sin θ dθ. (37)

Formula (37) gives a close-to-real value of signal value if the created ions are extracted from
the whole focal volume. In the present work, we performed integration over the orientation
angle, θ, by the trapezoid rule with the step ∆θ = 1◦.

Let us calculate the ratio of the ionization signal (37) from the 13CO+
2 or 13CO+

2 ions
(resulted from vibrationally excited neutral molecules) to the signal from the 12CO+

2 ions
(resulted from the ground vibrational 12CO2 state). The result can be interpreted as the
“gain coefficient” for ionization via selectively excited Σu vibrations given as a function of
absolute intensity. The corresponding plots are given in Figure 5.
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Figure 5. The ratio of “reduced” ionization signals from the vibrationally excited 13CO+
2 and 14CO+

2
isotopologues (from Figure 4) to the signal from 12CO+

2 ions formed from the ground vibrational
state, 12CO2. Here, n0[

ACO2] is the concentration of the neutral ACO2 ions (A = 12, 13, 14). The other
notations are the same as in Figures 3 and 4. The data on the non-modified vibrational parameters
are given for vai = 9, 10 only.

Thus, according to the data given in Figure 5, it is possible to raise the concentration
of the desired carbon isotope in the ionic mixture by selective excitation of the 13CO2 or
13CO2 isotopologue molecules with a weak monochromatic radiation (whose frequency is
a multiple of 2282.14 cm−1 or 2223.46 cm−1, respectively) and exposing them to a strong
ionizing laser pulse of near-IR range. Note the increase in the “gain coefficient” as the
intensity decreases. However, the absolute value of the ionization signal will decrease
dramatically according to the tunnel ionization theory. Nevertheless, among carbon dioxide
isotopologues, we found a candidate for the role of a target in the laser-assited carbon
isotope separation. Recall again the impossibility of separating the carbon isotopes us-
ing CO molecules [27]; the anti-Stokes amplification effect is suppressed by the mutual
orthogonality of the vibrational states of CO and CO+.

Note that anti-Stokes enhancement of tunnel ionization of the CS2 molecule (which
has the same D∞h symmetry as CO2 and similar electronic structure) was observed in the
experiment in [1]. However, in this experiment, the Σu mode was not excited by laser
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pumping, but by preheating the gas target to a given temperature. Therefore, direct transfer
of our CO2 analysis to the experimental results for CS2 ionization is not yet possible, and
further investigation is required.

The model used here is valid for sufficiently cold targets when the thermal excitation
of molecular vibrations is suppressed. This is possible at target temperature T � T0, where
T0 = min Ω0k/kB and kB = 8.617× 10−5 eV/K is the Boltzmann constant. According to
Table 1, T0 ≈ 103 K. At higher temperatures, the quantum canonical distribution of the
original molecules in vibrational degrees of freedom must be used. Thermal excitation of
vibrations by the laser field must also be taken into account if the duration of the ionizing
pulse is greater than several picoseconds.

In the case of the much lighter molecules, H2 and HD, which have higher vibrational
frequencies, modification of the vibrational parameters by laser radiation can change the
signal from the ion detector by more than a factor of two, even at vi = 1. In the case of the
CO2 molecule, however, this effect may be noticeable only in the tunnel ionization rate,
and a special space-temporal deconvolution technique similar to that proposed in [51] may
be needed to observe it.

4. Conclusions

Due to modification of the vibrational parameters of the CO2 molecule in an intense
linearly polarized laser field, the Franck–Condon factors acquire a correction proportional
to the radiation intensity, ∼ I, (in the first non-vanishing order). The coefficient of propor-
tionality depends (i) on the angle, θ, between the polarization vector of radiation, u, and the
axis of the molecule, z, and (ii) on the mass of the carbon isotope. The parameters (36) are
calculated by quantum chemistry methods for the 12CO2, 13CO2 and 14CO2 isotopologues.

We revealed the possibility of performing anti-Stokes-enhanced tunnel ionization
of CO2 molecules by the pre-pumping of vibrational Σu mode by monochromatic laser
radiation of low intensity and subsequent exposure to an intense laser pulse with an FWHM
of 40 fs. The ionization signal from the focal volume can increase by a factor of up to 1.2 for
the mode with vai = 1, and by a factor of up to 7 for the mode with vai = 10. As a possible
application, we note that the CO2 gas target can be used as for laser isotope separation.

We show that the laser-field modification of the vibrational parameters on the tunnel
ionization in anti-Stokes channels is significant. Such a modification can result in an increase
in the ionization rate by 5% due to effective reduction of the ionization energy without
significant influence of the Franck–Condon factors. This effect is clearly manifested only
in the tunnel ionization of oriented molecules, but is smoothed after integration over the
intensity distribution in the focal volume and averaging over the directions of the molecule
orientation. In the near-IR range, the frequency dependence of the CO2 polarizability
practically does not affect the tunnel ionization.

The results obtained can also be useful for the interpretation of the experiment in [1],
as well as for laser chemistry applications [64]. The formulas used in this work can be
easily adapted to investigate electron photodetachment from a molecular anion [65,66] by
putting ν = 0 in the ionization rate (3).
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Abbreviations
The following abbreviations are used in this manuscript:

ADK Ammosov–Deloné–Krainov theory
BOA Born–Oppenheimer approximation
FCF Franck–Condon factor
FWHM full width at half maximum
HOMO highest occupied molecular orbital
ITE inelastic tunneling effect
MO-ADK ADK theory for molecular orbitals
NIR near infra-red
PES potential energy surface
PPT Perelomov–Popov–Terent’ev theory

Appendix A. Calculation of the Overlap Integrals

Appendix A.1. Electronic Integral (11)

To calculate the overlap integral between the one-electron states (11), it is convenient
to represent the electron orbital, φ, as a linear combination of primitive Gaussians,

φ({R}, r) = ∑
ij

cij gij(r− Ri).

Here, Ri is in the position of i-th nucleus in the center-of-mass reference frame, and
cij are some coefficients calculated by quantum chemistry methods.

gij(r) = xnxij ynyij znzij exp[−ξij(x2 + y2 + z2)] (A1)

is a primitive Gaussian in Cartesian coordinates. Its parameters, nxij, nyij, nzij and ξij, are
defined by the basis set. The neutral molecule orbitals, φ̃({R}, r), differ from its ion’s orbital,
φ({R}, r), by the coefficients cij only. Therefore, it is sufficient to obtain an expression for the
overlap integral between the two primitive Gaussians of a molecule and its ion, depending
on the coordinates of different nuclei.

The primitive Gaussian (A1) has an important property: the product of two given
primitive Gaussians is a finite linear combination of other primitive Gaussians. Their
exponents depend on the same multipliers, ξ, as the original Gaussians, as well as on the
common center coordinate R and the relative coordinate. However, this is not the case
for the pre-exponential powers of the coordinates. This follows from the properties of the
exponent and the binomial expansion. In particular,

exp[−ξ1(r− R1)
2] exp[−ξ2(r− R2)

2] = exp[−ξ(R1 − R2)
2] exp[−Ξ(r− R)2],

where
Ξ = ξ1 + ξ2, ξ = ξ1ξ2/Ξ, R = (ξ1R1 + ξ2R2)/Ξ.

Based on the above, we obtain an analytical expression for the integral of the overlap
between the two primitive Gaussians:

∫
gi′ j′(r− Ri′) gij(r− Ri) d3r =

(π

Ξ

)3/2
exp[−ξ(Ri′ − Ri)

2]×

× S(Ξ; X1, nxi′ j′ ; X2, nxij) S(Ξ; Y1, nyi′ j′ ; Y2, nyij) S(Ξ; Z1, nzi′ j′ ; Z2, nzij). (A2)

Here,
Ξ = ξi′ j′ + ξij, ξ = ξi′ j′ξij/Ξ, R = (ξi′ j′Ri′ + ξijRi)/Ξ,

{X1, Y1, Z1} = R ξij/Ξ, {X2, Y2, Z2} = −R ξi′ j′/Ξ,



Atoms 2023, 11, 92 21 of 24

S(Ξ; V1, l1; V2, l2) = ∑
n1, n2=0, 1, ...

(q− 1)!!
(

l1
n1

)(
l2
n2

)
Vn1

1 Vn2
2

(2Ξ)q/2 . (A3)

The sum in Equation (A3) contains only the non-negative values of

q = l1 + l2 − n1 − n2.

Equation (A3) uses standard notation for the binomial coefficients. Formula (A2) is
obtained using the Poisson integral:∫ +∞

−∞
x2ke−x2

dx = (2k− 1)!!
√

π/2k, k = 0, 1, . . .

The analytic form of the one-electron overlap integral (11) is a finite linear combination
of integrals (A2) with products of coefficients ci′ j′ and cij. The latter can be obtained
explicitly, e.g., with the Gaussian package [67].

Appendix A.2. Vibrational Integral (27)

In harmonic approximation, one has

χ
(vib)
MΩ,v(Qe, Q) =

1√
2vv!Q0

√
π

Hv

(
Q−Qe

Q0

)
exp

[
− (Q−Qe)2

2Q2
0

]
, (A4)

where Q0 = (MΩ)−1/2, and Hv is the Hermite polynomial of the degree v.
An analytic form of the integral (27) with functions (A4) is found in ref. [68]:

I (vib,1D)
MΩ f ,v f ; MΩi ,vi

(Qe f , Qei) = J
(√

Ω f /Ωi,
√

MΩ f (Qei −Qe f ); v f , vi

)
. (A5)

Here,

J (α, δ; v f , vi) =

√
α vi! v f !

2vi+v f−1∆
exp

(
− δ2

2∆

)

×
min(vi , v f )

∑
l=0

[(vi−1)/2]

∑
i=0

[(v f−1)/2]

∑
j=0

al

l!
bi

i!
(−b)j

j!
dv f−2j−1

(v f − 2j− 1)!
(−2αd)vi−2i−1

(vi − 2i− 1)!
,

∆ = 1 + α2, a = 4α/∆, b = (1− α2)/∆, d = 2δ/∆.

It is obvious from (A5) that the integral (A5) does not depend on the mass, M, when
the equilibrium positions coincide (Qei = Qe f ). If vi and v f are even-odd (or vice versa), the
integral (A5) turns to zero. This is obvious because the function (A4) has a certain parity.
The corresponding selection rule can be formulated as follows:

vi, v f > 0, v f = vi, vi ± 2, . . . (A6)

This situation is intrinsic to so-called odd vibrations of a linear symmetric triatomic
molecule (Σu, Πu etc.), even beyond the harmonic approximation.
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