Setup for the Ionic Lifetime Measurement of the 229mTh3+ Nuclear Clock Isomer
Abstract
:1. Introduction
2. Description of the Experimental Setup Dedicated to the Radiative Lifetime Measurement
2.1. A Cryogenic Paul Trap for the Storage of 229mTh3+ Ions
2.2. Preparations for Sympathetic Laser Cooling with 88Sr+ Ions
2.3. 229mTh3+ Hyperfine Structure Spectroscopy
2.4. Four-Wave Incoupling into the Ion Trap
2.5. Fluorescence Imaging Setup
2.6. Methodology for the Radiative Lifetime Measurement
3. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hahn, O. Über eine neue radioaktive Substanz im Uran. Berichte Der Dtsch. Chem. Ges. (A B Ser.) 1921, 54, 1131–1142. [Google Scholar] [CrossRef] [Green Version]
- Walker, P.; Podolyák, Z. 100 years of nuclear isomers—Then and now. Phys. Scr. 2020, 95, 044004. [Google Scholar] [CrossRef]
- Kondev, F.; Wang, M.; Huang, W.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear physics properties. Chin. Phys. C 2021, 45, 030001. [Google Scholar] [CrossRef]
- Kroger, L.; Reich, C. Features of the low-energy level scheme of Th as observed in the α-decay of 233U. Nucl. Phys. A 1976, 259, 29–60. [Google Scholar] [CrossRef]
- Seiferle, B.; von der Wense, L.; Bilous, P.V.; Amersdorffer, I.; Lemell, C.; Libisch, F.; Stellmer, S.; Schumm, T.; Düllmann, C.E.; Pálffy, A.; et al. Energy of the 229Th nuclear clock transition. Nature 2019, 573, 243–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikorsky, T.; Geist, J.; Hengstler, D.; Kempf, S.; Gastaldo, L.; Enss, C.; Mokry, C.; Runke, J.; Düllmann, C.E.; Wobrauschek, P.; et al. Measurement of the 229Th Isomer Energy with a Magnetic Microcalorimeter. Phys. Rev. Lett. 2020, 125, 142503. [Google Scholar] [CrossRef]
- Kraemer, S.; Moens, J.; Athanasakis-Kaklamanakis, M.; Bara, S.; Beeks, K.; Chhetri, P.; Chrysalidis, K.; Claessens, A.; Cocolios, T.E.; Correia, J.G.M.; et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 2023, 617, 706–710. [Google Scholar] [CrossRef] [PubMed]
- von der Wense, L.; Seiferle, B.; Laatiaoui, M.; Neumayr, J.B.; Maier, H.; Wirth, H.; Mokry, C.; Runke, J.; Eberhardt, K.; Düllmann, C.E.; et al. Direct detection of the 229Th nuclear clock transition. Nature 2016, 533, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Peik, E.; Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. (EPL) 2003, 61, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.J.; Radnaev, A.G.; Kuzmich, A.; Dzuba, V.A.; Flambaum, V.V.; Derevianko, A. Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place. Phys. Rev. Lett. 2012, 108, 120802. [Google Scholar] [CrossRef] [Green Version]
- Beloy, K. Trap-Induced ac Zeeman Shift of the Thorium-229 Nuclear Clock Frequency. Phys. Rev. Lett. 2023, 130, 103201. [Google Scholar] [CrossRef] [PubMed]
- Brewer, S.M.; Chen, J.S.; Hankin, A.M.; Clements, E.R.; Chou, C.W.; Wineland, D.J.; Hume, D.B.; Leibrandt, D.R. 27Al+ Quantum-Logic Clock with a Systematic Uncertainty below 10−18. Phys. Rev. Lett. 2019, 123, 033201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirolf, P.G.; Seiferle, B.; von der Wense, L. The 229-thorium isomer: Doorway to the road from the atomic clock to the nuclear clock. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 203001. [Google Scholar] [CrossRef]
- Thirolf, P.G.; Seiferle, B.; von der Wense, L. Improving Our Knowledge on the 229mThorium Isomer: Toward a Test Bench for Time Variations of Fundamental Constants. Ann. Phys. 2019, 531, 1800381. [Google Scholar] [CrossRef] [Green Version]
- Peik, E.; Schumm, T.; Safronova, M.S.; Pálffy, A.; Weitenberg, J.; Thirolf, P.G. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 2021, 6, 034002. [Google Scholar] [CrossRef]
- Beeks, K.; Sikorsky, T.; Schumm, T.; Thielking, J.; Okhapkin, M.V.; Peik, E. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 2021, 3, 238–248. [Google Scholar] [CrossRef]
- Seiferle, B.; von der Wense, L.; Thirolf, P.G. Lifetime Measurement of the 229Th Nuclear Isomer. Phys. Rev. Lett. 2017, 118, 042501. [Google Scholar] [CrossRef] [Green Version]
- Thielking, J.; Okhapkin, M.V.; Głowacki, P.; Meier, D.M.; von der Wense, L.; Seiferle, B.; Düllmann, C.E.; Thirolf, P.G.; Peik, E. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 2018, 556, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Dykhne, A.M.; Tkalya, E.V. Matrix element of the anomalously low-energy (3.5 ± 0.5 eV) transition in 229Th and the isomer lifetime. J. Exp. Theor. Phys. Lett. 1998, 67, 251–256. [Google Scholar] [CrossRef]
- Ruchowska, E.; Płóciennik, W.A.; Żylicz, J.; Mach, H.; Kvasil, J.; Algora, A.; Amzal, N.; Bäck, T.; Borge, M.G.; Boutami, R.; et al. Nuclear structure of 229Th. Phys. Rev. C 2006, 73, 044326. [Google Scholar] [CrossRef] [Green Version]
- Tkalya, E.V.; Schneider, C.; Jeet, J.; Hudson, E.R. Radiative lifetime and energy of the low-energy isomeric level in 229Th. Phys. Rev. C 2015, 92, 054324. [Google Scholar] [CrossRef] [Green Version]
- Shigekawa, Y.; Yamaguchi, A.; Suzuki, K.; Haba, H.; Hiraki, T.; Kikunaga, H.; Masuda, T.; Nishimura, S.; Sasao, N.; Yoshimi, A.; et al. Estimation of radiative half-life of 229mTh by half-life measurement of other nuclear excited states in 229Th. Phys. Rev. C 2021, 104, 024306. [Google Scholar] [CrossRef]
- Seiferle, B.; Moritz, D.; Scharl, K.; Ding, S.; Zacherl, F.; Löbell, L.; Thirolf, P.G. Extending Our Knowledge about the 229Th Nuclear Isomer. Atoms 2022, 10, 24. [Google Scholar] [CrossRef]
- Schwarz, M.; Versolato, O.O.; Windberger, A.; Brunner, F.R.; Ballance, T.; Eberle, S.N.; Ullrich, J.; Schmidt, P.O.; Hansen, A.K.; Gingell, A.D.; et al. Cryogenic linear Paul trap for cold highly charged ion experiments. Rev. Sci. Instrum. 2012, 83, 083115. [Google Scholar] [CrossRef]
- Schmöger, L.; Versolato, O.O.; Schwarz, M.; Kohnen, M.; Windberger, A.; Piest, B.; Feuchtenbeiner, S.; Pedregosa-Gutierrez, J.; Leopold, T.; Micke, P.; et al. Coulomb crystallization of highly charged ions. Science 2015, 347, 1233–1236. [Google Scholar] [CrossRef]
- Micke, P.; Stark, J.; King, S.A.; Leopold, T.; Pfeifer, T.; Schmöger, L.; Schwarz, M.; Spieß, L.J.; Schmidt, P.O.; Crespo López-Urrutia, J.R. Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications. Rev. Sci. Instrum. 2019, 90, 065104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, D.; Scharl, K.; Seiferle, B.; von der Wense, L.; Zacherl, F.; Löbell, L.; Ding, S.; Thirolf, P.G. A cryogenic Paul trap setup for the determination of the ionic radiative lifetime of the 229Th3+. 2023; in preparation. [Google Scholar]
- Campbell, C.J. Trapping, Laser Cooling, and Spectroscopy of Thorium IV. Ph.D. Thesis, Georgia Institute of Technology, Shenzhen, China, 2011. [Google Scholar]
- Leopold, T.; King, S.A.; Micke, P.; Bautista-Salvador, A.; Heip, J.C.; Ospelkaus, C.; Crespo López-Urrutia, J.R.; Schmidt, P.O. A cryogenic radio-frequency ion trap for quantum logic spectroscopy of highly charged ions. Rev. Sci. Instrum. 2019, 90, 073201. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.J.; Radnaev, A.G.; Kuzmich, A. Wigner Crystals of 229Th for Optical Excitation of the Nuclear Isomer. Phys. Rev. Lett. 2011, 106, 223001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groot-Berning, K.; Stopp, F.; Jacob, G.; Budker, D.; Haas, R.; Renisch, D.; Runke, J.; Thörle-Pospiech, P.; Düllmann, C.E.; Schmidt-Kaler, F. Trapping and sympathetic cooling of single thorium ions for spectroscopy. Phys. Rev. A 2019, 99, 023420. [Google Scholar] [CrossRef] [Green Version]
- Stopp, F.; Groot-Berning, K.; Jacob, G.; Budker, D.; Haas, R.; Renisch, D.; Runke, J.; Thörle-Pospiech, P.; Düllmann, C.E.; Schmidt-Kaler, F. Catching, trapping and in-situ-identification of thorium ions inside Coulomb crystals of 40Ca+ ions. Hyperfine Interact. 2019, 240, 073201. [Google Scholar] [CrossRef] [Green Version]
- Leibrandt, D.R.; Clark, R.J.; Labaziewicz, J.; Antohi, P.; Bakr, W.; Brown, K.R.; Chuang, I.L. Laser ablation loading of a surface-electrode ion trap. Phys. Rev. A 2007, 76, 055403. [Google Scholar] [CrossRef] [Green Version]
- Antohi, P.B.; Schuster, D.; Akselrod, G.M.; Labaziewicz, J.; Ge, Y.; Lin, Z.; Bakr, W.S.; Chuang, I.L. Cryogenic ion trapping systems with surface-electrode traps. Rev. Sci. Instrum. 2009, 80, 013103. [Google Scholar] [CrossRef] [Green Version]
- Lao, G.; Zhu, G.Z.; Dickerson, C.E.; Augenbraun, B.L.; Alexandrova, A.N.; Caram, J.R.; Hudson, E.R.; Campbell, W.C. Laser Spectroscopy of Aromatic Molecules with Optical Cycling Centers: Strontium(I) Phenoxides. J. Phys. Chem. Lett. 2022, 13, 11029–11035. [Google Scholar] [CrossRef] [PubMed]
- Dubielzig, T.; Halama, S.; Hahn, H.; Zarantonello, G.; Niemann, M.; Bautista-Salvador, A.; Ospelkaus, C. Ultra-low-vibration closed-cycle cryogenic surface-electrode ion trap apparatus. Rev. Sci. Instrum. 2021, 92, 043201. [Google Scholar] [CrossRef] [PubMed]
- Spivey, R.; Inlek, I.; Jia, Z.; Crain, S.; Sun, K.; Kim, J.; Vrijsen, G.; Fang, C.; Fitzgerald, C.; Kross, S.; et al. High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps. IEEE Trans. Quantum Eng. 2022, 3, 1–11. [Google Scholar] [CrossRef]
- Turchette, Q.A.; Kielpinski.; King, B.E.; Leibfried, D.; Meekhof, D.M.; Myatt, C.J.; Rowe, M.A.; Sackett, C.A.; Wood, C.S.; Itano, W.M.; et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 2000, 61, 063418. [Google Scholar] [CrossRef] [Green Version]
- DeVoe, R.G.; Kurtsiefer, C. Experimental study of anomalous heating and trap instabilities in a microscopic 137Ba ion trap. Phys. Rev. A 2002, 65, 063407. [Google Scholar] [CrossRef]
- Daniilidis, N.; Narayanan, S.; Möller, S.A.; Clark, R.; Lee, T.E.; Leek, P.J.; Wallraff, A.; Schulz, S.; Schmidt-Kaler, F.; Häffner, H. Fabrication and heating rate study of microscopic surface electrode ion traps. New J. Phys. 2011, 13, 013032. [Google Scholar] [CrossRef]
- Härter, A.; Krükow, A.; Brunner, A.; Hecker Denschlag, J. Long-term drifts of stray electric fields in a Paul trap. Appl. Phys. B 2014, 114, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, A. Oscillator Strengths of Ca II, Sr II, and Ba II. Phys. Rev. 1967, 157, 24–30. [Google Scholar] [CrossRef]
- Madej, A.A.; Marmet, L.; Bernard, J.E. Rb atomic absorption line reference for single Sr+ laser cooling systems. Appl. Phys. B 1998, 67, 229–234. [Google Scholar] [CrossRef]
- Sinclair, A.G.; Wilson, M.A.; Gill, P. Improved three-dimensional control of a single strontium ion in an endcap trap. Opt. Commun. 2001, 190, 193–203. [Google Scholar] [CrossRef]
- Berkeland, D.J. Linear Paul trap for strontium ions. Rev. Sci. Instrum. 2002, 73, 2856–2860. [Google Scholar] [CrossRef]
- Brownnutt, M. 88Sr+ ion trapping techniques and technologies for quantum information processing. Ph.D. Thesis, Imperial College London, London, UK, 2007. [Google Scholar]
- Removille, S.; Dubessy, R.; Dubost, B.; Glorieux, Q.; Coudreau, T.; Guibal, S.; Likforman, J.P.; Guidoni, L. Trapping and cooling of Sr+ions: Strings and large clouds. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 154014. [Google Scholar] [CrossRef] [Green Version]
- Dubost, B.; Dubessy, R.; Szymanski, B.; Guibal, S.; Likforman, J.P.; Guidoni, L. Isotope shifts of natural Sr+ measured by laser fluorescence in a sympathetically cooled Coulomb crystal. Phys. Rev. A 2014, 89, 032504. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Yamamoto, K.; Yamamoto, Y.; Miyabe, M.; Wakaida, I.; Hasegawa, S. All-diode-laser cooling of Sr+ isotope ions for analytical applications. Jpn. J. Appl. Phys. 2017, 56, 062401. [Google Scholar] [CrossRef]
- Shiner, A.D.; Madej, A.A.; Dubé, P.; Bernard, J.E. Absolute optical frequency measurement of saturated absorption lines in Rb near 422 nm. Appl. Phys. B 2007, 89, 595–601. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, J.; Zhang, L.; Liu, Y.; Wei, G. Rubidium Isotope Ratios of International Geological Reference Materials. Geostand. Geoanal. Res. 2023, 1–16. [Google Scholar] [CrossRef]
- Pyka, K.; Herschbach, N.; Keller, J.; Mehlstäubler, T.E. A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock. Appl. Phys. B 2014, 114, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Saleh, K.; Millo, J.; Didier, A.; Kersalé, Y.; Lacroûte, C. Frequency stability of a wavelength meter and applications to laser frequency stabilization. Appl. Opt. 2015, 54, 9446–9449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghadimi, M.; Bridge, E.M.; Scarabel, J.; Connell, S.; Shimizu, K.; Streed, E.; Lobino, M. Multichannel optomechanical switch and locking system for wavemeters. Appl. Opt. 2020, 59, 5136–5141. [Google Scholar] [CrossRef]
- Wieman, C.E.; Hollberg, L. Using diode lasers for atomic physics. Rev. Sci. Instrum. 1991, 62, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ricci, L.; Weidemüller, M.; Esslinger, T.; Hemmerich, A.; Zimmermann, C.; Vuletic, V.; König, W.; Hänsch, T. A compact grating-stabilized diode laser system for atomic physics. Opt. Commun. 1995, 117, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Deb, A.B.; Rakonjac, A.; Kjærgaard, N. Versatile laser system for experiments with cold atomic gases. J. Opt. Soc. Am. B 2012, 29, 3109–3113. [Google Scholar] [CrossRef] [Green Version]
- Bonnin, A.; Zahzam, N.; Bidel, Y.; Bresson, A. Simultaneous dual-species matter-wave accelerometer. Phys. Rev. A 2013, 88, 043615. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, V.M.; Hamzeloui, S.; Gutiérrez, M.; Gomez, E. Multiple isotope magneto-optical trap from a single diode laser. J. Opt. Soc. Am. B 2013, 30, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, A.; Harada, K.; Sakamoto, K.; Dammalapati, U.; Inoue, T.; Itoh, M.; Ito, S.; Kawamura, H.; Tanaka, K.S.; Yoshioka, R.; et al. Effective multiple sideband generation using an electro-optic modulator for a multiple isotope magneto-optical trap. Rev. Sci. Instrum. 2018, 89, 123111. [Google Scholar] [CrossRef] [Green Version]
fref | 434.5 THz (690 nm) | 304.4 THz (985 nm) | ||
---|---|---|---|---|
Adress... | 229Th3+ | 229mTh3+ | 229Th3+ | 229mTh3+ |
fcenter = | fref − MHz | fref + MHz | fref − MHz | fref + MHz |
Driven HFS transitions | F = 3 → F′ = 2 (0) | |||
fmod1 = | MHz | MHz | MHz | MHz |
Driven HFS transitions | F = 0 → F′ = 1 (1) | F = 2 → F′ = 2 (−1) | F = 3 → F′ = 3 (−2) | F = 5 → F′ = 4 (1) |
F = 1 → F′ = 1 (2) | F = 3 → F′ = 3 (1) | F = 4 → F′ = 4 (3) | ||
F = 5 → F′ = 5 (−1) | F = 5 → F′ = 4 (−2) | |||
F = 6 → F′ = 5 (−1) | ||||
fmod2 = | MHz | MHz | MHz | MHz |
Driven HFS transitions | F = 3 → F′ = 4 (−3) | F = 4 → F′ = 3 (−1) | F = 1 → F′ = 0 (2) | F = 2 → F′ = 1 (1) |
F = 4 → F′ = 3 (−2) | F = 2 → F′ = 1 (2) | F = 4 → F′ = 3 (−1) | ||
fmod3 = | MHz | MHz | ||
Driven HFS transitions | F = 2 → F′ = 3 (−1) | F = 1 → F′ = 1 (−1) |
Wavelength (nm) | Beam Diameter (µm) |
---|---|
422 | 484 |
1092 | 561 |
690 | 550 |
984 | 527 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scharl, K.; Ding, S.; Holthoff, G.; Hussain, M.I.; Kraemer, S.; Löbell, L.; Moritz, D.; Rozibakieva, T.; Seiferle, B.; Zacherl, F.; et al. Setup for the Ionic Lifetime Measurement of the 229mTh3+ Nuclear Clock Isomer. Atoms 2023, 11, 108. https://doi.org/10.3390/atoms11070108
Scharl K, Ding S, Holthoff G, Hussain MI, Kraemer S, Löbell L, Moritz D, Rozibakieva T, Seiferle B, Zacherl F, et al. Setup for the Ionic Lifetime Measurement of the 229mTh3+ Nuclear Clock Isomer. Atoms. 2023; 11(7):108. https://doi.org/10.3390/atoms11070108
Chicago/Turabian StyleScharl, Kevin, Shiqian Ding, Georg Holthoff, Mahmood Irtiza Hussain, Sandro Kraemer, Lilli Löbell, Daniel Moritz, Tamila Rozibakieva, Benedict Seiferle, Florian Zacherl, and et al. 2023. "Setup for the Ionic Lifetime Measurement of the 229mTh3+ Nuclear Clock Isomer" Atoms 11, no. 7: 108. https://doi.org/10.3390/atoms11070108
APA StyleScharl, K., Ding, S., Holthoff, G., Hussain, M. I., Kraemer, S., Löbell, L., Moritz, D., Rozibakieva, T., Seiferle, B., Zacherl, F., & Thirolf, P. G. (2023). Setup for the Ionic Lifetime Measurement of the 229mTh3+ Nuclear Clock Isomer. Atoms, 11(7), 108. https://doi.org/10.3390/atoms11070108