
Citation: Bevilacqua, G.; Biancalana,

V.; Dancheva, Y. Dynamic Response

of a Light-Modulated Magnetometer

to Time-Dependent Fields. Atoms

2023, 11, 111. https://doi.org/

10.3390/atoms11080111

Academic Editor: Igor

Mykhaylovych Savukov

Received: 5 June 2023

Revised: 2 August 2023

Accepted: 9 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atoms

Article

Dynamic Response of a Light-Modulated Magnetometer to
Time-Dependent Fields
Giuseppe Bevilacqua , Valerio Biancalana * and Yordanka Dancheva †

DSFTA, Department of Physical Sciences, Earth and Environment, Siena University, Via Roma 56,
53100 Siena, SI, Italy; giuseppe.bevilacqua@unisi.it (G.B.); yordanka.dancheva@aerospazio.com (Y.D.)
* Correspondence: valerio.biancalana@unisi.it
† Current address: Aerospazio Tecnologie S.r.l., Strada di Ficaiole, 53040 Rapolano Terme, SI, Italy.

Abstract: The dynamic response of a Bell-and-Bloom magnetometer to a parallel (to the bias field)
time-dependent field is studied by means of a model that goes beyond the commonly assumed
quasi-static regime. The findings unveil features that are related to the parametric nature of the
considered system. It is shown that for low-amplitude time-dependent fields, different operating
conditions are possible and that, besides the commonly reported low-pass filter behavior, a band-pass
response emerges. Moreover, we show that a larger amplitude of the time-dependent field makes the
parametric nature of the system appear more clearly in the output signal. A harmonic analysis of the
latter is numerically performed to highlight and characterize these emerging features.

Keywords: dynamic response; Bell-and-Bloom magnetometer; parametric systems; optical
magnetometry

1. Introduction

Resonant magneto-optics and the related field of atomic magnetometry have a history
that started in the late 1950s with the research of Dehmelt [1] and Bell and Bloom [2,3]
stretching to the 1960s, particularly with the work of Cohen-Tannoudji [4,5]. The following
decades brought important progress in the comprehension of optical pumping phenom-
ena [6,7] and prepared the conditions for an important revival at the beginning of the
current century [8], which was inspired by numerous attracting applications and facilitated
by technological progress.

Most of the application fields envisaged for atomic magnetometers were identified on
the basis of their excellent sensitivity, and, in the case of radio-frequency magnetometers,
on their response to high-frequency fields. In addition to their use as state-of-the-art detec-
tors in fundamental physics experiments [9], among these application fields emerges the
detection of bio-magnetism, e.g., in the construction of magneto-encephalographs [10,11],
magneto-cardiographs [12–14], and magneto-miographs [15]. Another promising area is
represented by nuclear magnetic resonance in ultra-low (e.g., at microtesla level) or even
vanishing fields, where atomic magnetometers find use as non-inductive detectors [16–20],
and also in imaging experiments [21–24]. Radio-frequency magnetometers find other inter-
esting applications in the detection and imaging of eddy currents [25,26], with implications
in non-destructive testing of materials [27], security [28], and bio-medicine [29]. Further
perspectives originate from the possibility of producing miniaturized sensors [30–33] and
arranging them in arrays [34].

There exists a variety of atomic magnetometers, which are nowadays also produced
as commercial devices. However, they all share several common features [35]. Generally,
the working principle consists of using (near) resonant light to orient atoms in a long-lived
state (or to induce alignment or higher order momenta); making atoms evolve in the
magnetic field under measurement, which thus imprints its features in the subsequent
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state; and eventually interrogating the atomic sample by means of probe radiation that
characterizes its optical (absorptive/dispersive) behavior.

The above mentioned three-step (pumping–evolution–interrogation) procedure [36]
can be performed in sequence or simultaneously. Numerous interaction geometries (e.g.,
the relative orientation of the field, pump beam, and probe beam) can be considered,
tailored time-dependent fields can be applied, various approaches (absorption, dispersion,
and polarimetry) can be used at the interrogation stage, etc. A plethora of configurations
can be proposed and this large variety comes with wide ranges of sensitivity, bandwidth,
dynamical range, time and space resolution, etc.

An interesting implementation consists of pumping atoms synchronously with their
precession around a (nearly) static field. In this case, the pumping radiation must be modu-
lated (in terms of amplitude, polarization, or wavelength) and the probe radiation detects a
time-dependent optical behavior. Such a light-modulated setup was firstly proposed by
Bell and Bloom [2], who used amplitude-modulated light from a caesium discharge lamp.

The ideal (optimal) configuration of a Bell-and-Bloom setup considers a static magnetic
field B oriented transversely with respect to the pump radiation wave vector. This causes
the resonantly induced macroscopic magnetization to precess in a plane perpendicular to B.
This precession can be analyzed by probe radiation propagating in that plane. The Faraday
rotation effect offers a favorable detection scheme based on polarimetric measurements;
the probe radiation is linearly polarized and the polarization plane is rotated by an angle
that oscillates at the precession frequency. The amplitude of this oscillation is maximized
when the pumping radiation is modulated at the Larmor frequency set by the static field,
i.e., at an atomic magnetic resonance.

If the pump modulation frequency is fixed, small and slow variations in the static field
bring the system to a near-resonant condition, with the typical effects of signal reduction
and dephasing, the latter being more effectively and easily detected, thanks to its (nearly)
linear dependence on the detuning, i.e., on the difference between the frequency at which
the pump radiation is modulated and the precession frequency set by the field under
measurement.

This classical picture of Bell-and-Bloom behavior applies when the field variation
is small compared with the magnetic resonance linewidth and slow with respect to the
relaxation time of the atomic orientation. Most of the literature reporting Bell-and-Bloom
magnetometers interprets the detected signals in terms of such quasi-static and near-
resonant conditions [37], furthermore considering the optimal field orientation. In other
terms, the field is usually assumed to be (nearly) perpendicular to the pump and probe
propagation, (nearly) time independent, and (nearly) matching the Larmor resonant con-
dition. This paper aims to provide a general analysis of the behavior of a Bell-and-Bloom
magnetometer when it operates in the presence of a generic time-dependent field that is
parallel to the static (bias) one.

The availability of a more accurate model is of relevance when the output of a mag-
netometer is used as an error signal to implement feedback-based field stabilization sys-
tems [38–42], as well as when designing feed-forward ones [43] or when evaluating the
effects of strong stray fields, which is of particular relevance for systems operating in
unshielded environments [11,44].

This paper is organized as follows. In Section 2, we describe the mathematical ap-
proaches used to solve the Larmor equation under the generic conditions mentioned above.
In Section 3, we report the numerical findings of the model, while the main outcomes are
discussed in Section 4 and some conclusions are drawn in Section 5.

2. Model

Our aim is to examine the dynamics of spins precessing in a time-dependent mag-
netic field considering the case of a Bell-and-Bloom magnetometer as sketched in Figure 1.
The figure represents a light-modulated magnetometer, in which two laser beams (pump
and probe) co-propagate in an atomic vapor in the presence of a time-dependent, trans-
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versely oriented magnetic field. The pump beam is modulated and constitutes a time-
dependent forcing term that produces a macroscopic magnetization in the medium. This
magnetization precesses around the magnetic field and its evolution is detected as a Fara-
day rotation of the probe beam polarization. A detailed model of the considered spin
dynamics enables a more accurate interpretation of the acquired signals. In particular, it
helps highlight features that emerge due to the parametric nature of the considered system
and that, as we will show, can play a crucial role, particularly in the presence of strong
and/or fast varying fields. The starting point in modeling of the spin response is the
equation of motion (Larmor equation) for the magnetization vector M:

Ṁ = −ΓM + γB(t)×M + f(t). (1)

Here, the constant rate Γ accounts for any relaxation mechanism (assumed isotropic
for simplicity), f(t) is the action of the forcing term obtained through optical pumping
(see [45] for details), γ is the gyromagnetic factor, and B(t) is the applied magnetic field.
Finally, γB(t)×M is the magnetic torque experienced by the magnetization vector.

Figure 1. Schematics of a Bell-and-Bloom setup. Two laser beams copropagate in an atomic medium
along the x direction in the presence of a transverse time-dependent field oriented along z. The pump
beam is modulated in (near) resonance with the spin precession and this causes a macroscopic
precessing magnetization. An interference filter (IF) blocks the pump radiation while the probe is
polarimetrically analyzed. The polarimeter—made of a polarizing beam splitter, two photo detectors,
and a transimpedence amplifier (TIA)—outputs a signal that reproduces the magnetization dynamics
and is acquired by an analog-to-digital converter (DAQ) for subsequent numerical elaboration.

In this paper, we are interested in a configuration where the pumping light and the
magnetic field are orthogonal. We chose the x axis along the pump (so f(t) = f (t)(1, 0, 0))
and the y axis along the magnetic field, which, in turn, is composed of a static B0 and a time-
dependent B‖(t) part. Introducing the frequencies ω0 = γB0 and ω‖ = γB‖, the relevant
Larmor equation becomes

Ẇ = −ΓW − i(ω0 + ω‖(t))W + f (t), (2)

where W = Mx + iMz, and we are interested in Mx = Re(W), which is the quantity related
to the Faraday rotation of the probe laser collinear with the pump as, for example, in [45,46].

The solution of (2), which is a first-order, linear, non-homogeneous, and parametric
differential equation, can be written as

W(t) = e−Γt−iω0t−iθ‖(t) W(0) + e−Γt−iω0t−iθ‖(t)
∫ t

0
d t′ eΓt′+iω0t′+iθ‖(t′) f (t′), (3)
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where we introduce the Larmor angle associated with the time-dependent field:

θ‖(t) =
∫ t

0
ω‖(s)d s. (4)

We assume that both the forcing and the time-dependent field are real-valued periodic
functions that can be expressed in terms of Fourier series. Namely, we assume that the
forcing term oscillates with period Tforcing = 2π/Ω and the time-dependent field oscillates
with period Tfield = 2π/ω:

f (t) =
+∞

∑
n=−∞

fn ei n Ωt f−n = f ∗n (5a)

ω‖(t) =
+∞

∑
n=−∞

xn ei n ωt x−n = x∗n (5b)

and we can set x0 = 0 (or otherwise redefine ω0), obtaining that θ‖ is also a periodic
function, which permits us to write

eiθ‖(t) =
+∞

∑
n=−∞

Gn ei n ωt e−iθ‖(t) =
+∞

∑
n=−∞

G∗−n ei n ωt, (6)

where the Gn coefficients are complicated functions of xn/nω. It is worth noting that the
Gn coefficients are related to the Bessel functions of the first kind in the case of a purely
sinusoidal time-dependent field.

Now, the steady-state (SS) solution, valid for t� 1/Γ, of (3) becomes

W(t) = e−iθ‖(t) ∑
n,m

Gn fm

Γ + i(ω0 + nω + mΩ)
ei(nω+mΩ)t, (7)

which can be simplified by taking into account that, under usual experimental conditions,
the pumping frequency is (nearly) resonant with the Larmor frequency set by the static
field, that is, Ω ≈ ω0, resulting in

W(t) ≈ e−iθ‖(t) ∑
n

f−1Gn einωt

Γ + i(ω0 −Ω + nω)
e−iΩt

= ∑
s

∑
n

f−1 GnG∗n−s eisωt

Γ + iδ + inω
e−iΩt

≡∑
s

Zs eisωt e−iΩt

≡ Z(t) e−iΩt,

(8)

where we introduced the detuning δ = ω0 −Ω and implicitly defined the Zs coefficients
and the Z(t) complex function.

We would like to point out that result (8) has a more general validity; indeed, it is valid
also when the experimental apparatus tracks the component at the fundamental frequency
of the pumping modulation. In fact, in this case, the approximation is valid just because
this is the term singled out by the measuring apparatus. The validity of the approximation
in the resonant case (Ω ≈ ω0) comes from the fact that the singled out term is the biggest
one in the sum over m.

After this demodulation, the quantity monitored is the phase of Z(t), which is still a
periodic function:

ϕ(t) ≡ arg(Z(t)) = Im(log(Z(t))) = ∑
n

ϕn einωt ϕ−n = ϕ∗n, (9)
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where, in general, the ϕn coefficients can be evaluated only numerically as

ϕn =
1

2π

∫ 2π

0
e−inθ arg

(
∑

s
Zs eisθ

)
d θ. (10)

A notable exception is the case of a low-intensity time-dependent field which is
discussed in the following.

Low-Intensity Limit

When the time-dependent field is small with respect to the static one, which in our
formalism means that the xn coefficients are small quantities, i.e., xn → εxn, where ε is a
small positive quantity, the Larmor angle becomes εθ‖, a small quantity too. It follows that

eiεθ‖ = 1 + iεθ‖ + O(ε2) and G0 = 1− ε ∑n(xn/nω) + O(ε2), Gn = εxn/nω + O(ε2) for
n 6= 0. Substituting this in the first line of (8), one obtains

Z(t) = e−iθ‖ f−1

[
G0

Γ + iδ
+ ∑

n 6=0

Gn

Γ + iδ + inω
einωt

]

= e−iεθ‖ f−1

Γ + iδ

[
1− ε ∑

n

xn

nω
+ ε ∑

n 6=0

xn

nω

(
1− inω

Γ + iδ + inω

)
einωt +O(ε2)

]

= e−iεθ‖ f−1

Γ + iδ

[
1 + ε ∑

n

xn

nω

(
einωt−1

)
− iε ∑

n

xn

Γ + iδ + inω
einωt +O(ε2)

]
.

Considering that the second term in parentheses is iεθ‖ and that log(1 + εX) =

εX + O(ε2) for small ε, one obtains for the phase ϕ(t):

ϕ(t) = arg
(

f−1

Γ + iδ

)
− ε Im

(
i ∑

n

xn

Γ + iδ + inω
einωt

)
+ O(ε2). (11)

Here, the first term is just a constant offset which depends also, through the coefficient
f−1, on the precise characteristics of the pump modulation signal. We disregard this
term because it does not contain information about the dynamical field encoded in the xn
coefficients. The next term, the first order in ε in this perturbation theory, contains relevant
information, and after some algebra, can be rewritten as

ϕpert(t) ≡ −1
2 ∑

n

(
1

Γ + iδ + inω
+

1
Γ− iδ + inω

)
xn einωt, (12)

which is identical to the expression reported in [47] and can be recast as the output of a
linear system

ϕpert(t) = −
∫ t

0
e−Γ(t−t′) cos(δ(t− t′))ω‖(t

′) d t′. (13)

3. Results

The result reported in (8) is quite general and applies to a complicated time dependence
of ω‖ which would require the consideration of many xn parameters, as well as of the case
of a simple sinusoidal oscillation.

It is worth to point out that in the phase time signal (Equation (9)), the coefficient f−1
gives only a constant contribution which amounts to an experimental offset and can be
safely neglected, resulting in an experimental advantage because one does not need to take
into account the precise form of the pumping signal. This is not the case if one chooses to
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monitor the modulus of Z(t), where the f−1 coefficient enters in a multiplicative way. This
can be seen by inspection, noting that Z(t) can be rewritten as Z(t) = f−1Z̄(t) and then

|Z(t)| = | f−1||Z̄(t)| (14a)

ϕ(t) = Im log( f−1) + Im log(Z̄(t)) (14b)

As a result of the complicated dependence of the Gn coefficients on xn, it is difficult to
draw valid conclusions for arbitrary values of the parameters. In such a sense, the analytical
low-intensity limit of Equation (12) is a nice result, which allows a discussion in terms
of linear time-invariant systems. However, in this paper, we explore the complementary
regime, presenting results obtained as explained in the previous section.

To be more concrete, we fix the time dependence as a simple cosine, namely, ω‖ = Ω‖ cos(ωt),
so that Gn ≡ Jn(Ω‖/ω) are the Bessel functions of first kind and the coefficients Zs can be
written as

Zs = f−1 ∑
n

Jn Jn−s

Γ + iδ + inω
(15)

and we expect that for not-so-small Ω‖, the higher-harmonic coefficients ϕn (n > 1) will
also become important. In fact, the system is a parametric one and it will show a kind of
“non-linear” behavior. In other terms, even for a simple sinusoidal time-dependent field as
“input”, higher order harmonics will appear in the monitored phase.

In the following pictures, we present numerical results for the first Fourier coefficients
of the phase for different values of the amplitude of the time-dependent field. The reported
simulations use only adimensional parameters to simplify as much as possible the physical
discussion and to make the plots applicable to systems characterized by diverse values of
Γ. We choose to use Γ as the relevant frequency scale.

In Figures 2–5, the modulus of ϕn n = 1, 2, 3 (from left to right) is reported as a
function of ω for fixed values of Ω‖/Γ = 0.1, 0.5, 1.0, 2.0, respectively. Each curve represents
a different value of the detuning δ in units of Γ.

As can be seen in Figure 2, where Ω‖ = 0.1 Γ, the perturbative limit of Equation (13)
applies. In fact, ϕ2 and ϕ3 are two and three orders of magnitude smaller than ϕ1, respec-
tively. However, as can be seen in Figures 3–5, ϕ2 and ϕ3 become increasingly comparable
in magnitude with ϕ1 when the amplitude Ω‖ of the time-dependent field is increased.
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Let us consider the behavior of ϕ1 for different values of δ/Γ. For small δ/Γ, the
curve can be interpreted as the response of a low-pass filter, while when increasing δ/Γ
it resembles a band-pass filter centered in ω ≈ δ. This point of view is reinforced in the
low Ω‖ regime by the result of Equation (13). However, as can be seen in the pictures, this
interpretation can be pushed also for higher values of Ω‖ even if some structure starts
appearing close to ω ≈ δ/2.

The behavior of ϕ2 is more structured. For δ/Γ = 0 (we observed this for all the
even coefficients ϕ2n), a “low-pass” profile evolves into a double peaked structure with the
highest peak centered around ω ≈ δ and the other around ω ≈ δ/2. Increasing Ω‖ gives
rise to a small structure close to ω ≈ δ/3.

Similar conclusions can be drawn for ϕ3; here, the number of visible peaks is three
even for small Ω‖. It seems reasonable to assume that this is the general behavior of the
coefficients ϕn, i.e., increasing Ω‖ increases both the number of “relevant” ϕn and for each
ϕn the number of visible peaks are centered at ω ≈ δ/k.

An alternative and complementary visualization of the described phenomenology is
reported in Figures 6 and 7. In these maps, the modulus of the signals at ω, 2ω, and 3ω
(from left to right) is mapped as a function of the frequency (horizontal axes) and amplitude
(vertical axes) of the time-dependent field. The two figures refer to cases of small detuning
(low pass behavior) and large detuning (band pass behavior), respectively.
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Figure 6. Maps of the modulus of the first Fourier coefficients of the phase for δ = 0.4Γ. From left to
right: |ϕ1|, |ϕ2|, and |ϕ3|.
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4. Discussion

The main scope of this paper is to investigate the dynamic response of a Bell-and-
Bloom system to a time-dependent field parallel to the bias one. This subject is often
presented in terms of an approximation, the validity of which requires that the time-
dependent field is small and varies slowly with respect to relaxation time and that the
pumping radiation is modulated in resonance with the precession frequency set by the
dominant static field. Under these stringent but frequently fulfilled conditions, the systems
permits a simplified treatment and behaves as a linear forced-damped oscillator with a
low-pass (Butterworth filter) response [10,48].

We have previously analyzed the behavior of such a system using a perturbative
approach in the amplitude of the time-dependent field [47] in a more general configuration,
as a generic orientation of the field was considered. Before discussing the results presented
in Section 3, it is worth recalling the main outcomes obtained with that approach.

Apart from the basic physical interest to characterize and model spin dynamics in a
time-dependent field, our study can help interpret the recorded magnetometric signals more
accurately. In particular, it provides a quantitative evaluation of the harmonic distortion
that occurs with increasing field variations and allows us to evaluate the distortions in the
time domain caused by a frequency-dependent signal phase shift. The latter is particularly
relevant when the magnetic signals contain broad spectrum characteristics, as in the case of
traces with sharp edges or spikes.

4.1. Perturbative Results

An interesting feature resulting from the first-order perturbative approximation
emerges when the pump radiation is modulated at a frequency detuned from the ex-
act resonance. Under this condition, the simplified low-pass response becomes inadequate
and a band-pass behavior is observed, with an enhanced response to AC components at
frequencies close to the pump frequency detuning δ, as also observed in ref. [42].

In application, this feature may help tailor the system response to the detection of
oscillating terms at frequencies around δ. For instance, a magnetometer with a resonance
as narrow as 20 Hz maybe used to detect an AC field oscillating at 200 Hz with a good effi-
ciency, provided that the pump light is modulated at a frequency 200 Hz away from γBDC.

An interesting behavior is obtained at an intermediate detuning, δ ≈ Γ/2. This
condition produces a nearly flat amplitude response up to a cut-off frequency set by Γ/2.
Such an extended flat bandwidth is obtained at the expense of a slight reduction in the
signal amplitude, if compared to the δ = 0 case. Concerning the phase of the magnetometric
signal, a maximally extended constant phase (non dispersive) response is instead achieved
under the condition δ = Γ.

In this first-order approximation, the precessing spins do not respond to field variations
along direction perpendicular to the static field; such a response appears in the next
order. Indeed, the perturbative treatment developed in [47] shows that the second-order
approximation predicts terms that double and mix the frequencies at which time-dependent
fields are applied. It is worth noting that frequency mixing among diverse components of
the time-dependent field comes with several peculiar features and it does not occur among
all the couples of components, as detailed in [47].
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A further increase in the time-dependent field also makes the second-order approxi-
mation inadequate and the numerical analysis developed in Section 2 becomes necessary.
For the sake of simplicity, in this work, the time-dependent field is considered at arbitrarily
high amplitudes, but only along the bias field direction. Moreover, the presented results
are obtained with a single-frequency term, so that no frequency mixing occurs and the
non-linearities are pointed out in terms of a harmonic analysis.

4.2. Non-Perturbative Results

The numerical analysis performed at a rather weak intensity is perfectly consistent
with the first-order perturbative analysis recalled in Section 4.1. In particular, the leftmost
plot in Figure 2 shows that at resonance (δ = 0), the system has a low-pass response, which
evolves into an extended flat response when δ ≈ Γ and becomes a band-pass one for δ > Γ.
At large detunings (band-pass regime), the peak response is half the maximum observed at
low frequency and vanishing detunings. A harmonic analysis shows that in the low-field
regime (Ω‖ � Γ), the anharmonicity of the response is negligible. A close inspection of
the vertical scales in Figure 2 highlights that the second and third harmonic terms (ϕ2, ϕ3)
are depressed by two and three order of magnitudes with respect to the fundamental one,
respectively.

Figures 3 and 4 show the effects of a moderate increase in the amplitude of the time-
dependent field. Under conditions in which Ω‖ ≈ Γ, the low-pass and band-pass behavior
does not change appreciably, while the anharmonicity becomes progressively more evident,
e.g., for Ω‖ = Γ, the third harmonic peaks observed at large detunings are only one order
of magnitude weaker than the fundamental one.

The results obtained at small and moderate amplitudes of the time-dependent field
(Figures 2–4) show pretty similar features in the spectral response, and the main difference
concerns only the anharmonicity level. The response observed for large δ/Γ is characterized
by a peak at ω ≈ δ for all harmonic terms. However, the second harmonic term (ϕ2) also
has a secondary peak at ω ≈ δ/2 and an additional peak at ω ≈ δ/3 emerges for the third
harmonic term, ϕ3.

Figure 5 shows new spectral features in the responses. Strong time-dependent fields
cause extra peaks to emerge in the plots. In particular, the leftmost plot (ϕ1) of Figure 5
shows the appearance of an extra peak at ω ≈ δ/2.

The maps shown in Figures 6 and 7 confirm the analysis reported above. In these
figures, it can be seen that the amplitudes of higher harmonics (ϕ2 and ϕ3) become com-
parable to that of the fundamental tone ϕ1 for large values of Ωx (Ωx ' Γ), and that they
have a more structured dependence on ω. In addition, it can be observed that both the
fundamental tone and the higher harmonics peak at ω ≈ δ and that secondary peaks
appear at sub-harmonics in the case of ϕ2 and ϕ3.

5. Conclusions

We studied the effect of a time-dependent magnetic field on the Bell-and-Bloom
magnetometer in the configuration in which the time-dependent magnetic field is parallel to
the bias static one. We generalized the analysis beyond the quasi-static and low-amplitude
regime usually found in the literature, unveiling interesting features such as confirming
the low-pass to band-pass transition for a large amplitude of the time-dependent field.
Moreover, for large amplitudes of the time-dependent field, the emergence of the “non-
linear” behavior of the system is demonstrated.

Our findings may be of interest to improve the accuracy of the interpretation of mag-
netometric measurements, in particular to evaluate their harmonic distortion, and to better
reconstruct magnetic signals characterized by relatively broad spectra. The analysis of the
response to large field variations covers a phenomenology that is normally overlooked
in applied research, as the latter is often focused on the detection of weak signals. Fur-
thermore, it highlights and characterizes the non-linear features that can contaminate the
measurement when strong stray field disturbances are superimposed on the weak signals
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under investigation. An interesting outcome consists of a feature that is observed when the
detuning is progressively increased; correspondingly, the response of the system evolves
from the well-known low-pass behavior to band-pass behavior. This latter can be of great
relevance, for instance, when noise spectra are experimentally recorded to evaluate system
performance and specifically sensitivity profiles.
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