Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section?
Abstract
:1. Introduction
2. Theory
2.1. CTMC Model
2.2. QCTMC Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.C.Y.; Watson, K.M. Electronic Transitions in Slow Collisions of Atoms and Molecules. II. Calculations of Wave Functions and Green’s Functions in the Eikonal Approximation. Phys. Rev. 1969, 188, 236–256. [Google Scholar] [CrossRef]
- Alt, E.O.; Kadyrov, A.S.; Mukhamedzhanov, A.M. Protons in collision with hydrogen atoms: Influence of unitarity and multiple scattering. Nucl. Phys. A 2001, 689, 525–528. [Google Scholar] [CrossRef]
- Nengming, W. The collision of proton with hydrogen atom. J. At. Mol. Phys. 1991, 1772–1781. [Google Scholar]
- Avazbaev, S.K.; Kadyrov, A.S.; Abdurakhmanov, I.B.; Fursa, D.V.; Bray, I. Polarization of Lyman-α emission in proton-hydrogen collisions studied using a semiclassical two-center convergent close-coupling approach. Phys. Rev. A 2016, 93, 022710. [Google Scholar] [CrossRef]
- Kadyrov, A.S.; Abdurakhmanov, I.B.; Alladustov, S.U.; Bailey, J.J.; Bray, I. Development of convergent close-coupling approach to hadron interactions with matter. J. Phys. Conf. Ser. 2019, 1154, 012013. [Google Scholar] [CrossRef]
- Abdurakhmanov, I.B.; Plowman, C.; Kadyrov, A.S.; Bray, I.; Mukhamedzhanov, A.M. One-center close-coupling approach to two-center rearrangement collisions. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 145201. [Google Scholar] [CrossRef]
- Leung, A.C.K.; Kirchner, T. Proton impact on ground and excited states of atomic hydrogen. Eur. Phys. J. D 2019, 73, 246. [Google Scholar] [CrossRef]
- Dalgarno, A.; Yadav, H.N. Eletcron Capture II: Resonance Capture from Hydrogen Atoms by Slow Protons. Proc. Phys. Soc. Sect. A 1953, 66, 173. [Google Scholar] [CrossRef]
- McDowell, M.R.C. Elastic Scattering of Slow Ions in their Parent Gases. Proc. Phys. Soc. 1958, 72, 1087. [Google Scholar] [CrossRef]
- Dalgarno, A. Low Energy Stopping Power of Atomic Hydrogen. Proc. Phys. Soc. 1960, 75, 374. [Google Scholar] [CrossRef]
- Bates, D.R.; Williams, D.A. Low energy collisions between hydrogen atoms and protons. Proc. Phys. Soc. 1964, 83, 425. [Google Scholar] [CrossRef]
- Parcell, L.A.; May, R.M. Resonance charge transfer between H(1s) and H+ calculated by a perturbed stationary-state approximation including identity exchange effects. Proc. Phys. Soc. 1967, 91, 54. [Google Scholar] [CrossRef]
- Francis, J.S. Nuclear symmetry in H+ + H (1s) elastic and resonant exchange collisions. Proc. Phys. Soc. 1967, 92, 866. [Google Scholar]
- Bates, D.R.; Tweed, R.J. Impact parameter treatment of H+-H collisions. J. Phys. B At. Mol. Phys. 1974, 7, 117. [Google Scholar] [CrossRef]
- Harel, C.; Jouin, H.; Pons, B. Cross sections for electron capture from atomic hydrogen by fully stripped ions in the 0.05–1.00 au impact velocity range. At. Data Nucl. Data Tables 1998, 68, 279. [Google Scholar] [CrossRef]
- Fritsch, W.; Lin, C.D. Atomic-orbital-expansion studies of electron transfer in bare-nucleus Z (Z= 2, 4− 8)—Hydrogen-atom collisions. Phys. Rev. A. 1984, 29, 3039. [Google Scholar] [CrossRef]
- Le, A.T.; Hesse, M.; Lin, C.D. Hyperspherical close-coupling calculations for charge transfer cross sections in Si4++ H (D) and Be4++ H collisions at low energies. J. Phys. B 2003, 36, 3281. [Google Scholar] [CrossRef]
- Ludde, H.J.; Dreizler, R.M. Electron capture with He2+, Li3+, Be4+ and B5+ projectiles from atomic hydrogen. J. Phys. B 1982, 15, 2713. [Google Scholar] [CrossRef]
- Minami, T.; Pindzola, M.S.; Lee, T.G.; Schultz, D.R. Lattice, time-dependent Schrödinger equation approach for charge transfer in collisions of Be4+ with atomic hydrogen. J. Phys. B At. Mol. Opt. Phys. 2006, 39, 2877. [Google Scholar] [CrossRef]
- Sattin, F. Classical overbarrier model to compute charge exchange and ionization between ions and one-optical-electron atoms. Phys. Rev. A 2000, 62, 042711. [Google Scholar] [CrossRef]
- Errea, L.F.; Harel, C.; Jouin, H.; Méndez, L.; Pons, B.; Riera, A. Quantal and semiclassical calculations of charge transfer cross sections in+ H collisions for impact energies of. J. Phys. B 1998, 31, 3527. [Google Scholar] [CrossRef]
- Das, M.; Purkait, M.; Mandal, C.R. Charge-transfer cross sections in collisions of Be q+(q = 1–4) and B q+(q = 1–5) with ground-state atomic hydrogen. Phys. Rev. A 1998, 57, 3573. [Google Scholar] [CrossRef]
- Abrines, R.; Percival, I.C. Classical theory of charge transfer and ionization of hydrogen atoms by protons. Proc. Phys. Soc. 1966, 88, 861. [Google Scholar] [CrossRef]
- Olson, R.E.; Salop, A. Charge-transfer and impact-ionization cross sections for fully and partially stripped positive ions colliding with atomic hydrogen. Phys. Rev. A 1977, 16, 531–541. [Google Scholar] [CrossRef]
- McKenzie, M.L.; Olson, R.E. Ionization and charge exchange in multiply-charged-ion--helium collisions at intermediate energies. Phys. Rev. A 1987, 35, 2863–2868. [Google Scholar] [CrossRef] [PubMed]
- Bachi, N.; Otranto, S. Evaluation of differential cross sections using classical two-active electron models for He. Eur. Phys. J. D 2019, 73, 4. [Google Scholar] [CrossRef]
- Ziaeian, I.; Tőkési, K. Interaction of Be4+ and Ground State Hydrogen Atom—Classical Treatment of the Collision. Atoms 2020, 8, 27. [Google Scholar] [CrossRef]
- Ziaeian, I.; Tőkési, K. State-selective charge exchange cross sections in Be+4—H(2lm) collision based on the classical trajectory Monte Carlo method. Eur. Phys. J. D 2021, 75, 138. [Google Scholar] [CrossRef]
- Ziaeian, I.; Tőkési, K. The effects of Heisenberg constraint on the classical cross sections in proton hydrogen collision. J. Phys. B At. Mol. Opt. Phys. 2022, 55, 245201. [Google Scholar] [CrossRef]
- Ziaeian, I.; Tőkési, K. nl-Selective Classical Charge-Exchange Cross Sections in Be4+ and Ground State Hydrogen Atom Collisions. Atoms 2022, 10, 90. [Google Scholar] [CrossRef]
- Kirschbaum, C.L.; Wilets, L. Classical many-body model for atomic collisions incorporating the Heisenberg and Pauli principles. Phys. Rev. A 1980, 21, 834–841. [Google Scholar] [CrossRef]
- Al Atawneh, S.J.; Tőkési, K. Target electron removal in C5+ + H collision. Nucl. Fusion 2022, 62, 026009. [Google Scholar] [CrossRef]
- Cohen, J.S. Quasiclassical effective Hamiltonian structure of atoms with Z=1 to 38. Phys. Rev. A 1995, 51, 266–277. [Google Scholar] [CrossRef]
- Cohen, J.S. Fermion Molecular Dynamics for Rearrangement Collisions with Simple Molecules; DP.21; American Physical Society: College Park, MD, USA, 1998. [Google Scholar]
- Al Atawneh, S.J.; Tőkési, K. Ionization cross sections in collisions between two hydrogen atoms by a quasi-classical trajectory Monte Carlo model. Phys. Chem. Chem. Phys. 2022, 24, 15280–15291. [Google Scholar] [CrossRef]
- Cohen, J.S. Extension of quasiclassical effective Hamiltonian structure of atoms through Z=94. Phys. Rev. A 1998, 57, 4964–4966. [Google Scholar] [CrossRef]
- Cohen, J.S. Quasiclassical-trajectory Monte Carlo methods for collisions with two-electron atoms. Phys. Rev. A 1996, 54, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Winter, T.G. Electron transfer, excitation, and ionization in $p\text{-H}(1s)$ collisions studied with Sturmian bases. Phys. Rev. A 2009, 80, 032701. [Google Scholar] [CrossRef]
- Kołakowska, A.; Pindzola, M.S.; Schultz, D.R. Total electron loss, charge transfer, and ionization in proton-hydrogen collisions at 10–100 keV. Phys. Rev. A 1999, 59, 3588–3591. [Google Scholar] [CrossRef]
- Abdurakhmanov, I.B.; Massen-Hane, K.; Alladustov, S.U.; Bailey, J.J.; Kadyrov, A.S.; Bray, I. Ionization and electron capture in collisions of bare carbon ions with hydrogen. Phys. Rev. A 2018, 98, 062710. [Google Scholar] [CrossRef]
- Abdurakhmanov, I.B.; Kadyrov, A.S.; Avazbaev, S.K.; Bray, I. Solution of the proton-hydrogen scattering problem using a quantum-mechanical two-center convergent close-coupling method. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 115203. [Google Scholar] [CrossRef]
- Toshima, N. Convergence and completeness of the pseudostate expansion for proton-hydrogen collisions in two-center close-coupling calculations. Phys. Rev. A 1999, 59, 1981–1987. [Google Scholar] [CrossRef]
- Shah, M.B.; Gilbody, H.B. Experimental study of the ionisation of atomic hydrogen by fast H+ and He2+ ions. J. Phys. B 1981, 14, 2361–2377. [Google Scholar] [CrossRef]
- Shah, M.B.; Elliott, D.S.; Gilbody, H.B. Ionisation of atomic hydrogen by 9-75 keV protons. J. Phys. B 1987, 20, 2481–2485. [Google Scholar] [CrossRef]
- Kerby, G.W., III.; Gealy, M.W.; Hsu, Y.Y.; Rudd, M.E.; Schultz, D.R.; Reinhold, C.O. Energy and angular distributions of electrons from ion impact on atomic and molecular hydrogen. II. 20-114-keV H++H. Phys. Rev. A 1995, 51, 2256–2264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tőkési, K.; Alassaf, S. Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section? Atoms 2023, 11, 122. https://doi.org/10.3390/atoms11090122
Tőkési K, Alassaf S. Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section? Atoms. 2023; 11(9):122. https://doi.org/10.3390/atoms11090122
Chicago/Turabian StyleTőkési, Károly, and Saleh Alassaf. 2023. "Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section?" Atoms 11, no. 9: 122. https://doi.org/10.3390/atoms11090122
APA StyleTőkési, K., & Alassaf, S. (2023). Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section? Atoms, 11(9), 122. https://doi.org/10.3390/atoms11090122