Plasmas Containing Quasimonochromatic Electric Fields (QEFs): Review of the General Principles of Their Spectroscopy and Selected Applications
Abstract
:1. Introduction
2. The General Principles
- The frequency ω of the QEF.
- The width (the homogeneous width)γ = 1/τF
- The instantaneous Stark shift δs(E0), calculated at the amplitude value E0 of the QEF, the shift being eitherδs(E0) = a1E0δs(E0) = a2E02
- The typical frequency of the variation of the electron microfieldΩe(Ne, Te) = vTe/min(ρNe, ρWe)
- 5.
- The typical frequency of the variation of the dynamic part of the ion microfield
- 6.
- The electron plasma frequency
- 7.
- The detuning Δω from the unperturbed position of the radiator spectral line under consideration. This physical quantity influences the typical value of the argument τ of the correlation function, the Fourier transform of which controls the lineshape.
- The typical time of the formation of quasienergy states:τQS(k, E0, ω) ~ min(1/(ω2 δs)1/3, 1/ω)
- 2.
- The typical time of the formation of the homogeneous Stark broadening by plasma electrons:τe(k, Ne, Te, Δω) ~ min(1/Ωe, 1/ωpe, 1/Δω)
- 3.
- The typical time of the formation of the homogeneous Stark broadening by plasma ions:τi(k, Ni, Ti, Ne, Δω) ~ min(1/Ωi, 1/ωpe, 1/Δω)
- 4.
- The lifetime of the exited state of the radiatorτlife(k, Ne, Te, Ni, Ti, γ, ω, E0, Δω) ~ 1/ΓΓ = γe(k, Ne, Te, Δω) + γi(k, Ni, Ti, Ne, Δω) + γF(k, γ, ω, E0)
3. Selected Applications
4. Conclusions and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sagdeev, R.Z.; Galeev, A.A. Nonlinear plasma theory. In Review of Plasma Physics; Leontovich, M.A., Ed.; New York Consultants Bureau: Bronx, NY, USA, 1979; Volume 7, p. l. [Google Scholar]
- Griem, H.-R. Spectral Line Broadening by Plasmas; Academic: New York, NY, USA, 1974. [Google Scholar]
- Oks, E. Diagnostics of Laboratory and Astrophysical Plasmas Using Spectral Lineshapes of One-, Two-, and Three-Electron Systems; World Scientific: Singapore, 2017. [Google Scholar]
- Boileau, A.; von Hellerman, M.; Mandl, W.; Summers, H.P.; Weisen, H.; Zinoviev, A. Observations of motional Stark features in the Balmer spectrum of deuterium in the JET plasma. J. Phys. B At. Mol. Opt. Phys. 1989, 22, L145–L152. [Google Scholar] [CrossRef]
- Levinton, F.M. The motional Stark effect: Overview and future development. Rev. Sci. Instr. 1999, 70, 810–814. [Google Scholar] [CrossRef]
- Oks, E. Plasma Spectroscopy: The Influence of Microwave and Laser Fields; Springer Series on Atoms and Plasmas; Springer: New York, NY, USA, 1995; Volume 9. [Google Scholar]
- Lisitsa, V.S.; Jakovlenko, S.I. Optical and radiative collisions. Sov. Phys. JETP 1974, 39, 759–763. [Google Scholar]
- Lisitsa, V.S.; Jakovlenko, S.I. A nonlinear theory of broadening and a generalization of the Karplus-Schwiner formula. Sov. Phys. JETP 1975, 41, 233–240. [Google Scholar]
- Finken, K.H.; Buchwald, R.; Bertschinger, G.; Kunze, H.-J. Investigation of the Hα line in dense plasmas. Phys. Rev. A 1980, 21, 200–206. [Google Scholar] [CrossRef]
- Oks, E.; Böddeker, S.; Kunze, H.-J. Spectroscopy of atomic hydrogen in dense plasmas in the presence of dynamic fields: Intra-Stark spectroscopy. Phys. Rev. A 1991, 44, 8338–8347. [Google Scholar] [CrossRef]
- Gavrilenko, V.P.; Oks, E.; Rantsev-Kartinov, V.A. Observation and analysis of oscillating electric fields in the peripheral plasma in a tokamak on the basis of a new spectroscopic effect. Sov. JETP Letters 1986, 44, 404–408. [Google Scholar]
- Gavrilenko, V.P.; Faenov, A.Y.; Magunov, A.I.; Pikuz, T.A.; Skobelev, I.Y.; Kim, K.Y.; Milchberg, H.M. Observation of modulations in Lyman-α line profiles of multicharged ions in clusters irradiated by femtosecond laser pulses: Effect of a dynamic electric field. Phys. Rev. A 2006, 73, 013203. [Google Scholar] [CrossRef]
- Renner, O.; Peyrusse, O.; Sondhauss, P.; Förster, E. Indication of single-frequency electric fields in hydrogenic aluminum emission from a laser-produced plasma. J. Phys. B At. Mol. Opt. Phys. 2000, 33, L151–L156. [Google Scholar] [CrossRef]
- Renner, O.; Dalimier, E.; Oks, E.; Krasniqi, F.; Dufour, E.; Schott, R.; Förster, E. Experimental evidence of Langmuir-wave-caused features in spectral lines of laser-produced plasmas. J. Quant. Spectrosc. Radiat. Transf. 2006, 99, 439–450. [Google Scholar] [CrossRef]
- Woolsey, N.C.; Howe, J.; Chambers, D.M.; Förster, E.; Gregory, C.D.; Hall, I.M.; Renner, O.; Uschmann, I. Electric field measurements in picosecond laser-produced plasma via X-ray spectroscopy. High Energy Density Phys. 2007, 3, 292–296. [Google Scholar] [CrossRef]
- Belyaev, V.S.; Matafonov, A.P.; Vinogradov, V.I.; Lisitsa, V.S.; Gavrilenko, V.P.; Faenov, A.Y.; Pikuz, T.A.; Skobelev, I.Y.; Magunov, A.I.; Pikuz, S.A., Jr. Detection and analysis of strong oscillating electric fields in a picosecond laser plasma with the help of plasma satellites of x-ray spectral lines. Contrib. Plasma Phys. 2005, 45, 168–175. [Google Scholar] [CrossRef]
- Renner, O.; Sauvan, P.; Dalimier, E.; Riconda, C.; Rosmej, F.B.; Weber, S.; Nicolai, P.; Peurusse, O.; Uschmann, I.; Höfer, S.; et al. X-ray spectroscopy of hot dense plasmas: Experimental limits, line shifts & field effects. In Spectral Line Shapes, Proceedings of the 19th International Conference on Spectral Line Shapes, Valladolid, Spain, 15-20 June 2008; American Institute of Physics: Melville, NY, USA, 2008; Volume 1058, pp. 341–348. [Google Scholar]
- Renner, O.; Sauvan, P.; Dalimier, E.; Riconda, C.; Rosmej, F.B.; Weber, S.; Nicolai, P.; Peurusse, O.; Uschmann, I.; Höfer, S.; et al. Signature of externally introduced laser fields in X-ray emission of multicharged ions. High Energy Density Phys. 2009, 5, 139–146. [Google Scholar] [CrossRef]
- Oks, E.; Dalimier, E.; Faenov, A.Y.; Angelo, P.; Pikuz, S.A.; Tubman, E.; Butler, N.M.H.; Dance, R.J.; Pikuz, T.A.; Skobelev, I.Y. Using X-ray spectroscopy of relativistic laser plasma interaction to reveal parametric decay instabilities: A modeling tool for astrophysics. Opt. Express 2017, 25, 1958–1972. [Google Scholar] [CrossRef]
- Oks, E.; Dalimier, E.; Faenov, A.Y.; Angelo, P.; Pikuz, S.A.; Pikuz, T.A.; Skobelev, I.Y.; Ryazanzev, S.N.; Durey, P.; Doehl, L.; et al. In-depth study of intra-Stark spectroscopy in the x-ray range in relativistic laser-plasma interactions. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 245006. [Google Scholar] [CrossRef]
- Blochinzew, D.I. Zur Theorie des Starkeffektes im Zeitveränderlichen Feld (On the theory of the Stark effect in the timevarying field). Phys. Z. Sov. Union 1933, 4, 501–515. [Google Scholar]
- Lifshitz, E.V. Stark effect in high frequency stochastic fields in a plasma. Sov. Phys. JETP 1968, 26, 570–574. [Google Scholar]
- Baranger, M.; Mozer, B. Light as a plasma probe. Phys. Rev. 1961, 123, 25–28. [Google Scholar] [CrossRef]
- Cooper, W.S.; Ringler, H. Spectroscopic Measurement of High-Frequency Electric Fields in a Plasma by Observation of Two-Quantum Transitions and Spectral Line Shifts. Phys. Rev. 1969, 179, 226–236. [Google Scholar] [CrossRef]
- Oks, E.; Gavrilenko, V.P. Quasilocal principle of measurements of electric fields in plasmas by satellites of helium spectral lines. Sov. Tech. Phys. Letters 1983, 9, 111–112. [Google Scholar]
- Brizhinev, M.P.; Gavrilenko, V.P.; Egorov, S.V.; Eremin, B.G.; Kostrov, A.V.; Oks, E.; Shagiev, Y.M. Procedure of quasilocal measurements of electric fields in a plasma by using satellites of helium forbidden lines. Sov. Phys. JETP 1983, 58, 517–526. [Google Scholar]
- Gavrilenko, V.P.; Oks, E. Feasibility of laser plasma diagnostics by the spectrum of a resonant doublet of hydrogen-like ions in the intense light field. Sov. J. Quantum Electron. 1983, 13, 1269–1271. [Google Scholar] [CrossRef]
- Cohn, A.; Bakschi, P.; Kalman, G. Linear Stark effect due to resonant interactions of static and dynamic fields. Phys. Rev. Letters 1972, 29, 324–327. [Google Scholar] [CrossRef]
- Zhuzhunashvili, A.I.; Oks, E. Technique of optical polarization measurements of the plasma Langmuir turbulence spectrum. Sov. Phys. JETP 1977, 46, 1122–1132. [Google Scholar]
- Gavrilenko, V.P.; Oks, E. A new effect in the Stark spectroscopy of atomic hydrogen: Dynamic resonance. Sov. Phys. JETP 1981, 53, 1122–1127. [Google Scholar]
- Gavrilenko, V.P.; Oks, E. Intra-Stark spectroscopy of Coulomb emitters in plasmas containing quasimonochromatic electric fields. Sov. J. Plasma Phys. 1987, 13, 22–28. [Google Scholar]
- Dalimier, E.; Oks, E.; Renner, O. Review of Langmuir-wave-caused dips and charge-exchange-caused dips in spectral lines from plasmas and their applications. Atoms 2014, 2, 178–194. [Google Scholar] [CrossRef]
- Dalimier, E.; Pikuz, T.A.; Angelo, P. Mini-review of intra-Stark x-ray spectroscopy of relativistic laser–plasma interactions. Atoms 2018, 6, 45. [Google Scholar] [CrossRef]
- Oks, E.; Gavrilenko, V.P. Drastic influence of plasma quasistatic electric fields on satellites of helium forbidden lines. Opt. Commun. 1986, 56, 415–417. [Google Scholar] [CrossRef]
- Oks, E. Spectroscopy of plasmas containing quasimonochromatic electric fields. Sov. Phys. Dokl. 1984, 29, 224–226. [Google Scholar]
- Oks, E. Principles of spectroscopic diagnostics of plasmas containing quasimonochromatic electric fields. Meas. Tech. 1986, 29, 805–811. [Google Scholar] [CrossRef]
- Sauvan, P.; Dalimier, E.; Oks, E.; Renner, O.; Weber, S.; Riconda, C. Spectroscopic diagnostics of plasma interaction with an external oscillatory field. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 195001. [Google Scholar] [CrossRef]
- Zeldovich, Y.B. The quasienergy of a quantum-mechanical system subjected to a periodic action. Sov. Phys. JETP 1967, 24, 1006–1008. [Google Scholar]
- Ritus, V.I. Shift and splitting of atomic energy levels by the field of an electromagnetic wave. Sov. Phys. JETP 1967, 24, 1041–1044. [Google Scholar]
- Oks, E.; Sholin, G.V. On Stark profiles of hydrogen spectral lines in a plasma with Langmuir turbulence. Sov. Phys. JETP 1975, 41, 482–490. [Google Scholar]
- Gaisinsky, I.M.; Oks, E. A new effect of spectral lines shift under interaction of laser radiation with a plasma. In Correlations and Relativistic Effects in Atoms and Ions; USSR Academy Science Research Council on Spectroscopy: Moscow, Russia, 1986; p. 106. [Google Scholar]
- Chichkov, B.N.; Shumsky, S.A.; Uryupin, S.A. Nonstationary electron distribution functions in a laser field. Phys. Rev. A 1992, 45, 7475–7479. [Google Scholar] [CrossRef] [PubMed]
- Bertschinger, G. Messungen von VUV Linien an Einem Dichten Z-Pinch-Plasma. (Measurements of VUV Lines in a Dense Z-Pinch Plasma.). Ph.D. Thesis, Ruhr-University, Bochum, Germany, 1980. [Google Scholar]
- Oks, E.; Rantsev-Kartinov, V.A. Spectroscopic observation and analysis of plasma turbulence in a Z-pinch. Sov. Phys. JETP 1980, 52, 50–58. [Google Scholar]
- Jian, L.; Shali, X.; Qingguo, Y.; Lifeng, L.; Yufen, W. Spatially-resolved spectra from a new uniform dispersion crystal spectrometer for characterization of Z-pinch plasmas. J. Quant. Spectrosc. Radiat. Transf. 2013, 116, 41–48. [Google Scholar] [CrossRef]
- Oks, E.; Dalimier, E.; Faenov, A.Y.; Pikuz, T.A.; Fukuda, Y.; Jinno, S.; Sakaki, H.; Kotaki, H.; Pirozhkov, A.; Hayashi, Y.; et al. Two-plasmon decay instability’s signature in spectral lines and Spectroscopic Measurements of Charge Exchange Rate in a Femtosecond Laser-driven Cluster-based Plasma. Fast Track Communications. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 221001. [Google Scholar] [CrossRef]
- Dalimier, E.; Faenov, A.Y.; Oks, E.; Angelo, P.; Pikuz, T.A.; Fukuda, Y.; Andreev, A.; Koga, J.; Sakaki, H.; Kotaki, H.; et al. X-ray spectroscopy of super intense laser-produced plasmas for the study of nonlinear processes. Comparison with PIC simulations. J. Phys. Conf. Ser. 2017, 810, 012004. [Google Scholar] [CrossRef]
- Dalimier, E.; Oks, E.; Renner, O. Dips in spectral line profiles and their applications in plasma physics and atomic physics. AIP Conf. Proc. 2017, 1811, 190003. [Google Scholar]
- Oks, E. On the method of investigation of the mechanism of solar flares by hydrogen spectral lines. Sov. Astron. Lett. 1978, 4, 223–227. [Google Scholar]
- Oks, E. Stark broadening and Stark narrowing in high-density plasmas: A review of new ideas. In Spectral Line Shapes; Nova Science Publishers: Commack, NY, USA, 1993; Volume 7, pp. 65–85. [Google Scholar]
- Oks, E. Enhancement of x-ray lasers by narrowing of the lasing spectral line due to a dressing by an optical laser radiation. J. Phys. B At. Mol. Opt. Phys. 2000, 33, L801–L805. [Google Scholar] [CrossRef]
- Alexiou, S. X-ray laser line narrowing: New developments. J. Quant. Spectroscv. Rad. Transfer 2001, 71, 139–146. [Google Scholar] [CrossRef]
- Gavrilenko, V.P.; Oks, E. Towards the design of tunable x-ray lasers by dressing the plasma with the elliptically polarized radiation of an optical laser. Eur. Phys. J. D 2004, 28, 253–257. [Google Scholar] [CrossRef]
- Volodko, D.A.; Gavrilenko, V.P. Spectrum of a hydrogenlike atom in static magnetic and oscillating electric fields. Opt. Spectrosc. 1988, 64, 155–158. [Google Scholar]
- Ispolatov, Y.; Oks, E. A convergent theory of Stark broadening of hydrogen lines in dense plasmas. J. Quant. Spectr. Rad. Transfer 1993, 50, 129–138. [Google Scholar] [CrossRef]
- Oks, E. Stark widths of hydrogen spectral lines in plasmas: A highly-advanced non-simulative semiclassical theory and tables. AIP Conf. Proc. 2006, 874, 19–34. [Google Scholar]
- Oks, E. Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas: The Physical Insight; Alpha Science International: Oxford, UK, 2006. [Google Scholar]
- Oks, E. Stark broadening of hydrogenic spectral lines by two-dimensional multimode quasimonochromatic electric fields. Europ. Phys. J. D 2021, 75, 185. [Google Scholar] [CrossRef]
- Lisitsa, V.S. Hydrogen atom in the rotating electric field. Opt. Spectrosc. 1971, 31, 468–470. [Google Scholar]
- Demkov, Y.N.; Monozon, B.S.; Ostrovsky, V.N. Energy levels of a hydrogen atom in crossed electric and magnetic fields. Sov. Phys. JETP 1970, 30, 775–776. [Google Scholar]
- Lisitsa, V.S.; Sholin, G.V. Exact solution of the problem of the broadening of the hydrogen spectral lines in the one-electron theory. Sov. Phys. JETP 1972, 34, 484–489. [Google Scholar]
- Derevianko, A.; Oks, E. Physics of Strongly Coupled Plasmas; Kraeft, W.D., Schlanges, M., Eds.; World Scientific: Singapore, 1996; Volume 286, p. 291. [Google Scholar]
- Greene, R.L.; Cooper, J.; Smith, E.W. A unified theory of Stark broadening for hydrogenic ions—I: A general theory (including time ordering). J. Quant. Spectrosc. Radiat. Transf. 1975, 15, 1025–1036. [Google Scholar] [CrossRef]
- Greene, R.L.; Cooper, J. A unified theory of Stark broadening for hydrogenic ions—II: Line wings. J. Quant. Spectr. Rad. Transfer 1975, 15, 1037–1044. [Google Scholar] [CrossRef]
- Greene, R.L.; Cooper, J. A unified theory of Stark broadening for hydrogenic ions—III: Results for He II Lyman-α. J. Quant. Spectrosc. Radiat. Transf. 1975, 15, 1045–1053. [Google Scholar] [CrossRef]
- Oks, E.; Gavrilenko, V.P. Hydrogenlike ion spectrum in a field of elliptically-polarized electromagnetic radiation: Diagnostic possibilities for tokamaks with UHF heating. Opt. Commun. 1983, 46, 205–208. [Google Scholar] [CrossRef]
- Gavrilenko, V.P. The spectrum of a hydrogen-like atom in high-frequency electromagnetic radiation: Analytic solution. Sov. Phys. JETP 1986, 63, 500–504. [Google Scholar]
- Oks, E. Method for measuring the laser field and the opacity of spectral lines in plasmas. Plasma 2021, 4, 65–74. [Google Scholar] [CrossRef]
- Kadomtsev, B.B. Collective Phenomena in Plasma; Pergamon: Oxford, UK, 1982. [Google Scholar]
- Oks, E. Latest advances in the semiclassical theory of the Stark broadening of spectral lines in plasmas. J. Phys. Conf. Ser. 2017, 810, 012006. [Google Scholar] [CrossRef]
- Oks, E. Diagnostic of Langmuir solitons in plasmas by using hydrogenic spectral lines. Atoms 2019, 7, 25. [Google Scholar] [CrossRef]
- Sauvan, P.; Dalimier, E. Floquet-Liouville approach for calculating Stark profiles in plasmas in the presence of a strong oscillating field. Phys. Rev. E 2009, 79, 036405. [Google Scholar] [CrossRef]
- Ho, T.S.; Wang, K.; Chu, S.-I. Floquet-Liouville supermatrix approach: Time development of density-matrix operator and multiphoton resonance fluorescence spectra in intense laser fields. Phys. Rev. A 1986, 33, 1798–1816. [Google Scholar] [CrossRef]
- Gavrilenko, V.P.; Oks, E. Multiphoton resonance transitions between "dressed" atom sublevels separated by Rabi frequency. Sov. Phys. Tech. Phys. 1987, 32, 11–14. [Google Scholar]
- Gavrilenko, V.P.; Oks, E. Novel principle for a tunable amplification of microwaves driven by a laser radiation. Phys. Rev. Letters 1995, 74, 3796–3799. [Google Scholar] [CrossRef] [PubMed]
- Gavrilenko, V.P.; Oks, E. Enhancement of the spectroscopic method for mapping microwave fields in tokamak plasmas. Rev. Sci. Instr. 1999, 70, 363–367. [Google Scholar] [CrossRef]
- Gavrilenko, V.P. Resonance effects in the spectroscopy of atomic hydrogen in a plasma with a quasi monochromatic electric field and located in a strong magnetic field. Sov. Phys. JETP 1988, 67, 915–919. [Google Scholar]
- Gavrilenko, V.P. Laser fluorescence spectroscopy of atomic hydrogen. Sov. J. Plasma Phys. 1989, 15, 53–56. [Google Scholar]
- Gavrilenko, V.P. Spectroscopic method for determining the polarization state of oscillating electric fields in plasmas. Sov. Phys. JETP 1993, 76, 236–240. [Google Scholar]
- Gavrilenko, V.P. Resonant modification of quasistatic profiles of spectral lines of hydrogen in a plasma under the influence of noncollinear harmonic electric fields. Sov. Phys. JETP 1991, 72, 624–630. [Google Scholar]
- Peyrusse, O. Stark-profile calculations for spectral lines of hydrogenic ions in plasmas submitted to a strong oscillating electric field. Phys. Scripta 1997, 56, 371–380. [Google Scholar] [CrossRef]
- Peyrusse, O. Spectral line-shape calculations for multielectron ions in hot plasmas submitted to a strong oscillating electric field. Phys. Rev. A 2009, 79, 013411. [Google Scholar] [CrossRef]
- Lisitsa, V.S. Atoms in Plasmas; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Griem, H.-R. Principles of Plasma Spectroscopy; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Salzman, D. Atomic Physics in Hot Plasmas; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Bureeva, L.A.; Lisitsa, V.S. Perturbed Atom; Harwood Academic Publishers: Reading, UK, 2000. [Google Scholar]
- Fujimoto, T. Plasma Spectroscopy; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Fujimoto, T. Plasma Polarization Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kunze, H.-J. Introduction to Plasma Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Griem, H.R. Plasma Spectroscopy; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Sahal-Brechot, S. Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma. Astron. Astrophys. 1969, 1, 91–123. [Google Scholar]
- Lisitsa, V.S. Stark broadening of hydrogen lines in plasmas. Sov. Phys. Uspekhi 1977, 122, 603–630. [Google Scholar] [CrossRef]
- Baranger, M. Simplified quantum-mechanical theory of pressure broadening. Phys. Rev. 1958, 111, 481–494. [Google Scholar] [CrossRef]
- Baranger, M. Problem of overlapping lines in the theory of pressure broadening. Phys. Rev. 1958, 111, 494–504. [Google Scholar] [CrossRef]
- Kolb, A.; Griem, H.R. Theory of line broadening in multiplet spectra. Phys. Rev. 1958, 111, 514–521. [Google Scholar] [CrossRef]
- Smith, E.; Cooper, J.; Vidal, C. Unified classical-path treatment of Stark broadening in plasmas. Phys. Rev. 1969, 185, 140–151. [Google Scholar] [CrossRef]
- Vidal, C.; Cooper, J.; Smith, E. Hydrogen Stark broadening calculations with the unified classical path theory. J. Quant. Spectrosc. Radiat. Transf. 1970, 10, 1011–1063. [Google Scholar] [CrossRef]
- Vidal, C.; Cooper, J.; Smith, E. Unified theory calculations of stark broadened hydrogen lines including lower state interactions. J. Quant. Spectrosc. Radiat. Transf. 1971, 11, 263–281. [Google Scholar] [CrossRef]
- Smith, E.; Hooper, C. Relaxation theory of spectral line broadening in plasmas. Phys. Rev. 1967, 157, 126–137. [Google Scholar] [CrossRef]
- Smith, E. Electron correlations in plasma line broadening. Phys. Rev. 1968, 166, 102–113. [Google Scholar] [CrossRef]
- Greene, R.L.; Cooper, J. On the effect of time-ordering for Lyman-α. J. Quant. Spectrosc. Radiat. Transf. 1975, 15, 991–993. [Google Scholar] [CrossRef]
- Griem, H.R.; Shen, K.Y. Stark broadening of hydrogenic ion lines in a plasma. Phys. Rev. 1961, 122, 1490–1496. [Google Scholar] [CrossRef]
- Sholin, G.V. Stark broadening of hydrogen spectral lines in turbulent plasma. Dokl. Akad. Nauk SSSR 1970, 195, 589–592. [Google Scholar]
- Sholin, G.V.; Lisitsa, V.S.; Kogan, V.I. Amplitude modulation and non-adiabaticity in the Stark broadening of hydrogen lines in a plasma. Sov. Phys. JETP 1971, 32, 758–765. [Google Scholar]
- Strekalov, M.L.; Burshtein, A.I. Collapse of shock-broadened multiplets. Sov. Phys. JETP 1972, 34, 53–58. [Google Scholar]
- Demura, A.V.; Lisitsa, V.S. Determination of magnetic fields in a plasma from the contour of hydrogen spectral lines. Sov. Phys. JETP 1972, 35, 1130–1134. [Google Scholar]
- Sholin, G.V.; Demura, A.V.; Lisitsa, V.S. Theory of Stark broadening of hydrogen lines in plasma. Sov. Phys. JETP 1973, 37, 1057–1065. [Google Scholar]
- Demura, A.V.; Lisitsa, V.S.; Sholin, G.V. Effect of reduced mass in Stark broadening of hydrogen lines. Sov. Phys. JETP 1977, 46, 209–215. [Google Scholar]
- Baryshnikov, F.F.; Lisitsa, V.S. Classical and quantum treatment of the Stark broadening of hydrogen lines. Sov. Phys. JETP 1977, 45, 943–949. [Google Scholar]
- Iglesias, C.A. Integral-equation method for electric microfield distributions. Phys. Rev. A 1983, 27, 2705–2709. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Lebowitz, J.; McGowan, D. Electric microfield distributions in strongly coupled plasmas. Phys. Rev. A 1983, 28, 1667–1672. [Google Scholar] [CrossRef]
- Anufrienko, A.V.; Bulyshev, A.E.; Godunov, A.L.; Demura, A.V.; Zemtsov, Y.K.; Lisitsa, V.S.; Starostin, A.N. Nonlinear interference effects and ion dynamics in the kinetic theory of Stark broadening of the spectral lines of multicharged ions in a dense plasma. Sov. Phys. JETP 1993, 76, 219–228. [Google Scholar]
- Kosarev, I.N.; Lisitsa, V.S. Mixing of atomic states and the shape of ionic spectral lines in a plasma. Sov. Phys. JETP 1994, 79, 64–71. [Google Scholar]
- Bulyshev, A.E.; Demura, A.V.; Lisitsa, V.S.; Starostin, A.N.; Suvorov, A.E.; Yakunin, I.I. Redistribution function for resonance radiation in a hot dense plasma. Sov. Phys. JETP 1995, 81, 113–121. [Google Scholar]
- Demura, A.V. Instantaneous joint distributions of ion microfield and its time derivatives and effects of dynamical friction in plasmas. Sov. Phys. JETP 1996, 83, 60–72. [Google Scholar]
- Stambulchik, E.; Demura, A.V. Dynamic Stark broadening of Lyman-α. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 035701. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oks, E. Plasmas Containing Quasimonochromatic Electric Fields (QEFs): Review of the General Principles of Their Spectroscopy and Selected Applications. Atoms 2024, 12, 49. https://doi.org/10.3390/atoms12100049
Oks E. Plasmas Containing Quasimonochromatic Electric Fields (QEFs): Review of the General Principles of Their Spectroscopy and Selected Applications. Atoms. 2024; 12(10):49. https://doi.org/10.3390/atoms12100049
Chicago/Turabian StyleOks, Eugene. 2024. "Plasmas Containing Quasimonochromatic Electric Fields (QEFs): Review of the General Principles of Their Spectroscopy and Selected Applications" Atoms 12, no. 10: 49. https://doi.org/10.3390/atoms12100049
APA StyleOks, E. (2024). Plasmas Containing Quasimonochromatic Electric Fields (QEFs): Review of the General Principles of Their Spectroscopy and Selected Applications. Atoms, 12(10), 49. https://doi.org/10.3390/atoms12100049