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Abstract: The mapped Fourier grid method (mapped-FGM) is a simple and efficient discrete vari-
able representation (DVR) numerical technique for solving atomic radial Schrödinger differential
equations. It is set up on equidistant grid points, and the mapping, a suitable coordinate transfor-
mation to the radial variable, deals with the potential energy peculiarities that are incompatible
with constant step grids. For a given constrained number of grid points, classical phase space and
semiclassical arguments help in selecting the mapping function and the maximum radial extension,
while the energy does not generally exhibit a variational extremization trend. In this work, optimal
computational parameters and mapping quality are alternatively assessed using the extremization of
(coordinate and momentum) Fisher information. A benchmark system (hydrogen atom) is employed,
where energy eigenvalues and Fisher information are traced in a standard convergence procedure.
High-precision energy eigenvalues exhibit a correlation with the extrema of Fisher information
measures. Highly efficient mapping schemes (sometimes classically counterintuitive) also stand out
with these measures. Same trends are evidenced in the solution of Dalgarno–Lewis equations, i.e.,
inhomogeneous counterparts of the radial Schrödinger equation occurring in perturbation theory. A
detailed analysis of the results, implications on more complex single valence electron Hamiltonians,
and future extensions are also included.

Keywords: DVR; mapped Fourier grid method; Schrödinger equation solution; Fisher information
measure; convergence evaluation

1. Introduction

The quantum mechanical treatment of practically any problem in atomic and molecu-
lar physics requires the solution of the time-independent Schrödinger differential equation
to obtain energy eigenvalues and eigenfunctions. Furthermore, there are numerous situ-
ations where applying the Rayleigh–Schrödinger perturbation theory involves solutions
for the inhomogeneous counterparts of the Schrödinger equation, with these counterparts
characterized by the presence of an appropriate source term. These differential equations
have analytical solutions only for a few specific simple cases; their majority, however, must
be solved numerically. Evidently, the implicated numerical methods need to be validated
for their efficiency and accuracy, and this is typically achieved by comparing numerical
results to analytical solutions of benchmark problems. Still, a successful comparison does
not automatically guarantee an equally efficient performance when exact solutions are not
available. Hence, appropriate and robust convergence criteria are required that probe the ef-
ficiency and accuracy of a given numerical approach under any circumstances, particularly
when variational methods are difficult to apply or not applicable at all.

Motivated by the above arguments, the purpose of the present article is to identify such
convergence criteria. Specifically, our case study concerns atomic Hamiltonians, referring
to a single valence electron subjected to a model local radial potential energy that exhibits
a long-range Coulomb tail. The hydrogenic potential energy is naturally our benchmark
system, but the approach can also be extended to more complicated cases as well.
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There is a vast amount of earlier work involving the numerical solution of the
Schrödinger equation in problems dealing with central potentials [1,2] or being part of com-
putational methods like the convergent close-coupling [3] and the wave-packet convergent
close-coupling [4] ones, the time-dependent close-coupling method [5], or the solution of
the time-dependent Schrödinger equation with constant/variable-step spatial grids [6]. In
the present work, for the direct numerical integration of the Schrödinger equation (with or
without a source term), our method of choice is the grid-based discrete variable representa-
tion (DVR) where the basis functions are eigenfunctions of the coordinate operators [7–10].
Nowadays, this method and its variants are continuously refined and have proven to be
quite efficient, either as stand-alone versions or in conjunction with finite element meth-
ods [11–13]. In any DVR, local operators depending on a given coordinate (such as the
radial potentials) are diagonal in the coordinate basis. This property, however, emerges
from the approximate treatment of the integrals defining the relevant matrix elements, and
this simplification leads to the loss of the variational character of the calculated eigenvalues
and eigenvectors [7]. It is only in the limit of an infinite dimension basis that convergence
to the exact energy levels is expected. In fact, this lack of variational character when a
finite dimension basis is employed accentuates the need to devise efficient convergence
criteria, thus motivating us to use DVR as a Schrödinger equation solver. Along the same
spirit, in the present work, we use a particular DVR variance, namely, the Fourier grid
method (FGM), characterized by its exceptional simplicity. FGM’s discretization constraint
(constant step size) is the only limiting factor in employing the method in the accurate
solution of the Schrödinger equation for the Coulomb radial potential (hydrogen atom),
as well as for more complicated ones exhibiting Coulomb tails at large distances. As duly
noted by several authors, this deficiency can be successfully tackled by an appropriate co-
ordinate transformation (mapping scheme) [12–24], leading to the so-called mapped-FGM.
The choice of the most suitable mapping function is most frequently based on semiclassical
and (classical) phase-space arguments [14]. These predictions, however, are occasionally
unsuccessful [12,17], and this will also be demonstrated in the present work.

The preceding discussion suggests that the development of new methodologies ca-
pable of evaluating the relative convergence offered by different mapping functions is in
order. Clearly, it is important for the convergence to be attested without any prior reference
to phase-space arguments but based solely on the estimation of the relative computational
error. Within this framework, the ever-evolving information theory of quantum mechanical
systems appears as one of the most suitable methodological tools. A central point within
information theory is the definition of appropriate entropic quantities that measure the
information theoretic content of atomic and molecular charge densities. Among these
quantities, most frequently discussed are Shannon entropy and Fisher information mea-
sures that were used for the description of several physical phenomena [25–27] and for
constructing a number of important quantum uncertainty relations [28–31]. In particular,
Fisher information is the central variable of the principle of extreme physical information
and leads to the derivation of the Schrödinger wave equation itself [25,32]. Among the
other works, the behavior of both Shannon entropy and Fisher information was examined
with respect to the atomic number [33] and the degree of confinement (see, for exam-
ple, [34–39]). More important in the present work is the fact that the entropic character
of these quantities, and mainly their extremization, may allow them to act as variational
evaluation parameters. Shannon entropy is a global measure of particle density spreading,
while Fisher information is sensitive to the density’s local rearrangements [40]. Shannon
and related entropies have been used in the past as a consistent measure of the quality
of approximate wavefunctions [41–44], but it is the local character of Fisher information
that renders it a more useful tool in assessing the precision offered by a given mapping
scheme. In fact, this was demonstrated in related earlier studies, where its rate of change as
a function of perturbative order was found to perform well as a convergence indicator in
semiclassical perturbative quantum defect expansions [45]. Here, we extend these notions
and explore their applicability to the variational optimization of diagonalization proce-
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dures, particularly the mapped-FGM-based ones. The success of this endeavor will allow
for complementing existing error evaluation methodologies with new tools having their
origin in information theory.

The rest of the paper is organized as follows: In the Section 2, we describe the main
methodological aspects of FGM, along with the semiclassical and phase-space arguments
that usually serve as selection criteria for the mapping function in mapped-FGM. In the
Section 3, we present the expressions employed in this work for the coordinate and mo-
mentum Fisher information measure of free single-valence-electron atoms. Additionally,
for the coordinate Fisher information, we derive the expression appropriate for s-state
atoms embedded in a static electric field. In the Section 4, we present a series of Fisher
information measure-based convergence tests for atomic energy levels and static dipole
polarizabilities computed by the mapped-FGM. These tests demonstrate the variational
character of the Fisher information measure and its ability to quantify the performance of a
given mapping function with respect to the number of grid points and the radial extension
of the calculation. Finally, in the Section 5, we conclude and discuss possible continuations
of the present work. Atomic units (a.u.) are used throughout the paper.

2. Mapped Fourier Grid Method

In the present work, we are interested in the solution of radial equations of the form,[
−1

2
d2

dr2 + Ue f f (r)− E
]

P(r) = w(r). (1)

In Equation (1), the effective potential energy is given by

Ue f f (r) = U(r) +
ℓ(ℓ+ 1)

2r2 , (2)

where ℓ is the orbital angular momentum quantum number. This study investigates atomic
potentials with a long-range Coulomb tail and focuses on the free (unconfined) hydrogen
atom, where U(r) = −Z/r and the nuclear charge is Z = 1.

The homogeneous form of Equation (1) (w(r) = 0) classifies as the Schrödinger equation
(SE), while the inhomogeneous form of Dalgarno–Lewis (DL) equations is encountered
in various forms in perturbation theory applications [21,46]. In the latter case, w(r) is an
appropriate driving source term.

2.1. Basic Elements of a DVR and the Fourier Grid Method

Details on DVR may be found in numerous publications (see, for example, Refs. [7–10]),
so we provide only a brief exposition of the key concepts here. Any DVR is a discretized co-
ordinate representation. For the radial coordinate basis, |ri> initially adopted in this work,
scalar potential operators U are approximated by diagonal matrices <ri|U|rj> ≈ U(ri)δij,
while the kinetic energy operator, T̂ = − 1

2
(
d2/dr2), is approximated by a truncated N × N

discrete matrix,

Tij = ⟨ri|
⌢
T |rj⟩ i, j = 1, 2, 3, . . . , N. (3)

By expanding over an arbitrary complete basis set, Equation (3) writes,

Tij = ∑
m,n

⟨ri|m ⟩
〈
m
∣∣T̂∣∣n〉〈n∣∣rj

〉
(4)

where |m> and |n> are state vectors of the chosen set, the latter dictating the nature of
the radial grid (linear or nonlinear). In FGM, a Fourier basis is selected that is associated
with an even number N of plane waves in momentum space, hence corresponding with N
discrete values of momentum. Then, Tij writes as [7]:

Tii =
π2

∆r2
N2 + 2

6N2 (5a)
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Tij = (−1)i−j π2

∆r2
1

N2 sin2[(i − j)π/N]
, i ̸= j (5b)

where ∆r is the radial step size between the equally spaced discrete data points (linear,
radial grid). Equations (5a) and (5b) can be further simplified in the limit of an infinite
number of grid points N→∞, yielding,

Tii =
π2

6∆r2 (6a)

Tij = (−1)i−j 1
∆r2

1

(i − j)2 , i ̸= j (6b)

It was shown [10] that the above representations correspond to a particle-in-a-box coordi-
nate basis with “box” size R = N·∆r. It was also pointed out [10] that Equations (6a) and
(6b) are strictly valid only in the (−∞,+∞) interval, while the representation derived for the
radial interval, [0,+∞) in the N→∞ limit writes,

Tii =
π2

6∆r2

[
1 − 3

2π2i2

]
(7a)

Tij =
1

∆r2

[
(−1)i−j

(i − j)2 − (−1)i+j

(i + j)2

]
, i ̸= j. (7b)

Equation sets (6a), (6b), (7a) and (7b) can be thought of as “universal”, as they are inde-
pendent of the basis used in their derivation [10]. Therefore, they may be used as a “black
box”. It is worth mentioning that in the present work, Equations (6a) and (6b) performed
slightly better than Equations (7a) and (7b) in computing bound state energy levels, dipole
polarizabilities and Fisher information measures and were thus selected as the form of
choice for the rest of this work. Irrespective of the version, however, one should keep
in mind that the number of grid points, N, is associated with a momentum cut-off, pmax,
while box size, R, is associated with an energy cut-off, Emax. When solving the SE, these
two cut-offs force an upper limit to the number of energy eigenvalues that can be computed
with the desired precision [12,14,16,17,47].

2.2. Mapping Considerations and Procedure

Although the Fisher information-based optimization proposed in the present work
is expected to be operational for any DVR variant, the particular present choice of FGM
over other variants (see, for example, [48]) is guided by the simplicity implied by the
constant step size grid. However, equally spaced grids are adequate solely for short-range
potentials; long-range ones would require a computationally expensive high value of N.
Fattal et al. [14] thoroughly discussed the inefficiency of a constant step-size FGM even
for the simple hydrogenic potential. The origin of the inefficiency is twofold: First, the
Coulomb potential singularity for r→0 and, second, its long-range nature (momentum
space singularity). The difficulties are more important for s-states (ℓ = 0) that require a
dense grid near the origin, while a sparse grid is adequate at large r. Clearly, the constant
radial step size ∆r must be abandoned in favor of a variable one. Variability can be enforced
either by a suitable non-FGM basis set in Equation (4) or by an appropriate change of
variable (mapping). The latter option is advantageous because it preserves the pros of FGM
as the equidistant grid locations are reserved for the new variable.

The above considerations led Fattal et al. [14] and Kokoouline et al. [16,19] to propose
a WKB-based, optimal, potential-specific transformation following the variation of the de
Broglie wavelength of a particle subjected to an effective potential Ueff(r). Specifically, they
proposed a transformation of the form,
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s(r) =
1
π

r∫
ro

[
2
(

Ue f f ,max − Ue f f
(
r′
))]1/2

dr′ (8)

where Ueff,max controls the value of the inner radius ro that should be slightly smaller than
the inner turning point corresponding to the maximum energy of interest. Equation (8)
leads to analytic s(r) functions for either the non-relativistic [14] or the relativistic [15]
Coulomb problem. For more complicated atomic single-particle potentials, the calculation
of Equation (8) should, in principle, be carried out numerically. This complication, however,
may be avoided by following the proposal of Kokoouline et al. [16,19], where a simple
analytic reference potential Ueff,env is chosen that is similar in shape and envelopes Ueff
(i.e., it always holds Ueff,env ≤ Ueff and the two curves do not cross each other). This leads
to an analytically known function s(r) and a grid that is denser everywhere than the true
optimal one. In an earlier work [21] dealing with long-range coulombic potentials, the ℓ = 0
hydrogenic potential was employed as the reference one. Then, ro = 0 and s(r) = br1/2, where
the constant b depends on the nuclear charge Z. Since in atoms heavier than hydrogen, the
nuclear charge becomes a function of r, a new dimensionless variable was subsequently
introduced that minimizes this r-dependence, namely,

x ≡ s(r)
smax

(9)

with smax = s(rmax) and rmax is the maximum radius employed in the calculation (of the
order of 101–103 atomic length units for atomic scale calculations). The transformation of
Equation (9) implies a mapping scheme of the form,

r(x) = rmaxh(x) (10)

with the mapping function
h(x) = x2 (11)

and the variable x restricted to the interval [0,1]. In practice, to avoid the singularities of
Ueff(r), Equation (10) is reformulated with a spatial shift to r(x) = (rmax − rinit)h(x) + rinit,
with rinit = 10−7 a.u. Hence, the radial “box” size is R = rmax − rinit ≈ rmax, which corre-
sponds to a cut-off energy Emax = −Z/rmax. Instead, the mapped-FGM box size is now
always Rx = 1, and the constant step-size is given by,

∆x =
1

N − 1
(12a)

that is, the x-grid is written as,

xi = (i − 1)∆x, i = 1, 2, 3, . . . , N. (12b)

It has been shown [21,49] that the scheme of Equations (10) and (11) deals quite efficiently
with all ℓ ≥ 0, whether for pure Coulomb potentials or more complicated ones with a long-
range Coulomb tail. To understand its efficiency, let us follow the classical phase-space
reasoning of Fattal et al. [14]. Then, for ℓ = 0 and Z = 1, we have,

1
2

p2
r −

1
r
= Emax (13)

and, therefore,

pr = ±
[

2
(
− 1

rmax
+

1
r

)]1/2
(14)
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from which it follows that pr,max→∞ as r→0. Consequently, there is no reasonable rect-
angular FGM area, Abox = 2rmaxpr,max, able to enclose the full phase-space area A of
Equation (14),

A = 2
rmax∫
0

prdr = π[2rmax]
1/2, (15)

even though A itself is finite. In other words, since the value of pr,max involved in a
calculation is controlled by N, the full enclosure of A within Abox is ensured only in the
impractical limit N→∞. Assuming now a general mapping scheme h(x), it can be easily
shown that the transformed momentum is written as,

px = ±[2rmax]
1/2
∣∣∣∣dh(x)

dx

∣∣∣∣ · [1 − h(x)
h(x)

]1/2
. (16)

A meaningful transformation h(x) should reshape the phase space in order to avoid singular-
ities and minimize the wasted phase space of the original radial coordinate representation.
Therefore, the maximum value px,max of px should be finite and, according to the same
classical phase-space arguments, as small as possible. The rectangular mapped-FGM area
is now Abox = 2Rxpx,max = 2px,max, and the mapping quality may be estimated by inspec-
tion of the ratio Λ≡A/Abox, which should ideally approach unity. The transformation of
Equation (11) offers px,max = px(x = 0) = 2[rmax]1/2 and a quite large ratio Λ = π/4 (≈78.5%
phase-space coverage).

The above semiclassical and classical considerations provide a recipe for the selection
of h(x) through Equations (8) and (16). Their efficiency criterion is the maximization of
Λ. Transformations that can, in practice, be proven more efficient than the one defined by
Equation (11) but that do not comply with Equation (8) and/or lead to lower values of Λ,
need to be (and have been) selected through either other non-WKB methodologies [18,23,24]
or by making an educated guess [12,17]. Furthermore, the above arguments provide no
practical hint on the optimal (N,rmax) sets. It is simply expected that, for a given N,
large rmax values would result in quite sparse grids and loss of accuracy, while values
that are too small may lead to the system’s confinement. As for N itself, it is, of course,
anticipated that more accurate results are to be expected as the N→∞ limit is approached
and the variational character of the method is restored. Since very large N values are
impractical and time consuming, optimal sets of N, rmax, as well as of other parameters
that could be incorporated in h(x), are most frequently found by examining the mapped-
FGM performance to a known system and for a given targeted quantity (energy level,
polarizability, etc.). Here, the Fisher information measure is supplementarily investigated
for its potential as a convergence criterion.

2.3. Transformation of the Differential Equations

The mapping function of Equation (11) will be our main working transformation. To
preserve the generality of the transformation in the subsequent calculations, h(x) is left
unspecified in this sub-section. Furthermore, although other intervals have appeared in the
literature [14,23,24], we shall continue to restrict variable x within the [0,1] interval and the
step-size to be given by Equation (12a). Hence, the only restriction imposed on h(x) is that
h(0) = 0 and h(1) = 1.

Using Equation (10), the Jacobian of the transformation from r to x is,

J ≡ dr
dx

= rmax
dh(x)

dx
= rmax j(x) (17)

where we have defined the function j(x) > 0, which dictates the variation of the radial step
∆r(x). It turns out [16,17,19,20,23,24] that by writing the radial wavefunction as,

P(r(x)) = c · j1/2(x) · y(x) (18)
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(with c a constant) one can eliminate the first derivative (d/dx) from the transformed
differential equation for the auxiliary function y(x), which acquires the form

r−2
max

[
−1

2
d2

dx2 +
3
8

(
j′

j

)2

− j′′

4j
+ r2

max j2
(

Ue f f (r(x))− E
)]

y = j3/2w(r(x)) (19)

The primes in Equation (19) denote differentiation with respect to x. Elimination of the
first derivative is desirable to keep the transformed kinetic energy operator symmetric.
Indeed, exploiting the aforementioned universality of FGM kinetic energy matrices, the
matrix of the new “kinetic energy” operator T̂x = − 1

2
(
d2/dx2) is simply given by any set

of Equations (5)–(7) with the substitution ∆r→∆x. Then, the solution of SE (w = 0) reduces
to the generalized eigenvalue problem,

r−2
maxAy = EBy (20a)

where the elements of the symmetric matrix A and the diagonal matrix B are given by

Aij = Tx,ij +

(
3
8

(
j′(xi)

j(xi)

)2

− j′′(xi)

4j(xi)
+ r2

max j2(xi)Ue f f (xi)

)
δij (20b)

and
Bij = j2(xi)δij (20c)

By defining another auxiliary function φ(x), such that y(x) = j−1/2 φ(x), Equation (20a) is
transformed back to an ordinary eigenvalue problem [23,24],

r−2
maxB−1/2AB−1/2φ = Eφ (20d)

where B−1/2
ij = δij/j(xi), and the matrix B−1/2AB−1/2 remains symmetric.

On the other hand, when dealing with DL equations (w ̸= 0), there is no need for such
a y→φ transformation. Nevertheless, we adopt it here to unify our treatment. The DL
equation reduces to the linear system

r−2
maxB−1/2CB−1/2φ = W (21a)

where the elements of matrix C and vector W are given by

Cij = Tx,ij +

(
3
8

(
j′(xi)

j(xi)

)2

− j′′(xi)

4j(xi)
+ r2

max j2(xi)
(

Ue f f (xi)− E
))

δij (21b)

(here, E is considered known) and

Wi = j1/2(xi)w(xi). (21c)

Furthermore, when solving DL equations, we have c = 1. For SE, this constant is
determined by the wavefunction normalization condition

rmax∫
0

P2dr = 1 → c2rmax

1∫
0

j2y2dx = c2rmax

1∫
0

ϕ2dx = 1 . (22)

Finally, radial matrix elements involving a given function f (r) are evaluated as

rmax∫
0

Pk f (r)Pldr =ckclrmax

1∫
0

ϕk f (x)ϕldx ≈ckclrmax∆x
N

∑
i=1

ϕk(xi) f (xi)ϕl(xi). (23)
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that is, they reduce to a simple summation over the N grid points.

3. Fisher Information Measure

The coordinate Fisher information measure is defined as [25–27,30]

Ir = 4
∫

ρ(r)
∣∣∣∣→∇ ln ρ(r)

∣∣∣∣2dV = 4
∫ ∣∣∣∣→∇Ψ(r)

∣∣∣∣2dV (24)

where ρ(r) = |Ψ(r)|2 stands for the spatial density distribution. Accordingly, the momen-
tum space Fisher information is defined as,

Ip = 4
∫

γ(p)
∣∣∣∣→∇ ln γ(p)

∣∣∣∣2d3 p (25)

and γ is the corresponding momentum density distribution. Most of the present work
deals with free Hydrogen atoms. Then, for a single particle system and a central potential,
Equations (24) and (25) reduce to [40],

Ir = 4
〈

p2
〉
− 2(2ℓ+ 1)|m|

〈
r−2
〉

(26)

Ip = 4
〈

r2
〉
− 2(2ℓ+ 1)|m|

〈
p−2

〉
(27)

with m, the magnetic quantum number. For a unified treatment of all ℓ ≥ 0 levels, m is
hereafter set equal to zero. Furthermore, <p2> is evaluated via the expression,〈

p2
〉

nℓ
= 2[Enℓ − ⟨U⟩nℓ]. (28)

Due to the absence of any confining potential in Equation (1), it is assumed that
Equations (26)–(28) probe unconfined atoms. Of course, the imposition of a maximum
radius (rmax) in the numerical solution of SE or DL is effectively, in its own right,
equivalent to the system’s confinement within a box of this length. This has been a
known issue for a long time in the community, and when the unconfined system is
of interest, the choice of a sufficiently large value of rmax (to be practically unconfined)
was always a matter of great concern and experimentation [1,2,21]. Computational
limitations, on the other hand, dictate that rmax should not be unnecessarily large either.
This is a central point of the present study.

Let us now consider the presence of a static electric field, where Equations (26) and (27)
cannot be used because spherical symmetry no longer holds. In this case, our analysis
shall be restricted to hydrogen’s 1s state (more generally, to non-degenerate s-states) and the
coordinate Fisher information measure. We start from the system’s wavefunction, which,
up to the first order correction, is written as,

Ψ(r) = r−1
{

P(0)
0 Y0

0 + F · P(1)
1 Y0

1

}
(29)

where Ym
ℓ denote spherical harmonics, Pℓ are radial wavefunctions, and F is the static

electric field strength. For convenience, we set F = 1 throughout this work. The p-wave
radial wavefunction P(1)

1 , obeys the following DL equation [21],[
−1

2
d2

dr2 + U(r) +
1
r2 − E(0)

]
P(1)

1 = −3−1/2rP(0)
0 (30)
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with E(0), the unperturbed zeroth-order energy of the considered s-state. The static dipole
polarizability ad of that state is then related to its second-order energy correction [21],

ad = −2E(2) = −2 · 3−1/2
∫

P(1)
1 rP(0)

0 dr. (31)

Inserting Equation (29) into the definition (24) and taking into account (i) the DL Equation
(30), (ii) the field-free SE obeyed by P(0)

0 and (iii) the normalization of the latter, the space
coordinate Fisher information measure is finally written as,

Ir = I(0)r + 8
{∫ (

P(1)
1

)2[
E(0) − U(r)

]
dr +

ad
2

}
(32)

where I(0)r corresponds to the field-free s-state given by Equation (26). This is an interesting
result, implying that the coordinate Fisher information measure and the static dipole
polarizability are closely related.

In the following, our purpose is to examine the behavior of Equations (26) and (27)
for static-field-free hydrogen atoms and Equation (32) under the static-field presence as a
function of a number of computational parameters.

4. Results and Discussion
4.1. Schrödinger Equation: Fisher Information and Level Energy Systematics on rmax and N

We begin our analysis with a typical convergence procedure where energy eigenvalues
are computed as a function of rmax, each time for fixed N. We concentrate on the more de-
manding ℓ = 0 states of the hydrogen atom and employ the transformation of Equation (11)
in conjunction with the version of T̂x given by Equation (6). The exact hydrogenic bound
state (negative) energy eigenvalues are given by En = −1/(2n2) a.u., where n is the principal
quantum number. Over the total number of N eigenvalues and eigenvectors delivered
by the solution of the eigenvalue equation, Equation (20d), the number of bound levels
depends primarily on rmax and, to a lesser extent, on N (other eigenvalues correspond
to continuum hydrogenic states and particle-in-a-box ones). Therefore, at present, we
restrict ourselves to a state-by-state study. Figure 1 shows the typical evolution of the
1s ground state energy E1s, coordinate, Ir, and momentum space, Ip, Fisher information
measure as a function of rmax for the fixed value of N = 100. The exact values for these
quantities are Eexact

1s = −0.5 a.u., Iexact
r = 4 a.u. and Iexact

p = 12 a.u. Note first that E1s is
higher than the exact value for small rmax (Figure 1a). As the latter increases, E1s decreases
continuously; it passes through the exact value and continues to decrease at a smaller rate.
Consequently, the optimum rmax value for a given N cannot be determined variationally
through the minimization (extremization in general) of the level energy itself. Variational
minimization of the energy is evidenced if FGM is employed without any mapping (or,
more precisely, with the linear mapping r(x) = rmaxx, 0 ≤ x ≤ 1). However, as expected
from the preceding analysis, the emerging energy eigenvalues are quite inaccurate, and
it is not worth discussing this case any further. Returning to the quadratic mapping of
Equation (11), we observe that, contrary to the behavior of the energy as a function of
rmax, there are optimal maximum radii, ropt

max, for both Ir and Ip. The former quantity is
minimized, its minimum value approaching its exact one (Figure 1b), while the latter is
maximized, its maximum value approaching again its exact one (Figure 1c). The two
extrema occur at slightly different ropt

max locations, and the minimum of Ir corresponds to
a slightly more accurate energy eigenvalue. This observation persists for all ℓ ≥ 0 and
n ≥ 1 levels. Although this point requires further investigation, a qualitative explanation
can be based on the coordinate space probed by Ir and Ip, respectively. As is evident from
Equation (28), Ir depends on <U> ∝ <r−1>; that is, it is sensitive to the small-r quality of
the radial wave function. On the other hand, Ip is proportional to <r2>, i.e., it is sensitive to
the wavefunction’s large-r quality. The latter is obviously much more severely degraded
for finite and small values of rmax.
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Figure 1. Variation of computed (a) energy E1s, (b) coordinate (Ir) and (c) momentum (Ip) Fisher
information for the ground 1s state of hydrogen atoms, as a function of the employed maximum
radius rmax and for a fixed number of grid points N = 100. All quantities are expressed in atomic
units. The calculation is performed using the transformation of Equation (11) in conjunction with
Equation (6) for T̂x. The vertical dashed lines show the extrema of Ir and Ip, and the horizontal
dashed-dotted one shows the exact energy eigenvalue.

By repeating the same type of calculation of Figure 1 for different numbers of grid
points, we now associate in Figure 2 the computed Fisher information measure with the
error in energy. It may be noted that the values of E1s corresponding to the extrema of Ir

and Ip (say, Eopt
1s ) approach more and more Eexact

1s as N increases. More importantly, the
higher precision achieved is faithfully probed by these extrema; that is, smaller errors
are associated with lower minima of Ir and higher maxima of Ip. Moreover, the inset of
Figure 2 shows that the obtained ropt

max values increase (sub-linearly) with N and, therefore,
optimum precision is obtained for specific (ropt

max,N) pairs. In fact, it turns out that for a
given precision on Ir, Ip and Enℓ obtained for a chosen (ropt

max,N) pair can be recovered by
another (r′max,N′) pair, such that N′ > N and ropt

max = r′maxx2
N , where xN = (N − 1)/(N′ − 1).

Furthermore, plots (a) and (b) of Figure 2 suggest error will be eliminated in the N→∞ limit
and that the level’s optimal energy and maximum radius (the latter expected to be “infinite”
or at least very large) may be found by an appropriate extrapolation to this limit (or the
1/N→0 one) [22,50]. Additionally, the fact that, for finite N, neither Ir nor Ip can probe a
maximum radius, completely eliminating the absolute energy error, is to be attributed to
the loss of mapped-FGM’s variational character. Nevertheless, the observed behavior of the
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Fisher information measure for the nonlinear mapping of Equation (11) seems to somehow
restore this character, as long as the extremized quantity is not the level energy but, instead,
the Fisher information measure itself.
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Figure 2. Variation of computed (a) coordinate (Ir) and (b) momentum (Ip) Fisher information measure
for the ground 1s state of hydrogen atoms, as a function of the energy error, obtained by varying the
maximum radius rmax. All quantities are expressed in atomic units. Each curve corresponds to a fixed
number of grid points N shown in (a). The symbols differentiating between curves computed with
different N apply to both graphs (a,b). The zero-energy error is marked by the vertical dashed-dotted
line. The inset shows the evolution of ropt

max values where the extrema of Ir (black circles) and Ip (open
circles) occur. The calculation is performed using the transformation of Equation (11) in conjunction
with Equation (6) for T̂x.

Calculations show that when rmax < ropt
max, and for either Ir or Ip, the computed energy

eigenvalue sometimes fails to converge to the exact values in the N→∞ limit. More
generally, as Figure 1 demonstrates, the relative error is higher when rmax < ropt

max with
respect to the rmax > ropt

max case. Some of the causes of such a behavior may be elucidated
through an inspection of Figure 3a, where E1s is computed as a function of N for a fixed
maximum radius rmax = 8 a.u. The latter value is sufficiently small for the hydrogen atom
in this particular state to be considered loosely confined. Indeed, in this case, E1s passes
through the free atom’s Eexact

1s value for N ≈ 150 and subsequently converges towards the
exact energy eigenvalue of the confined atom [51] as N increases further. We may additionally
note in Figure 3b,c that Ir and Ip exhibit extrema lying in the neighborhood of the free
atom’s Eexact

1s . The conclusions that can be drawn from these observations are: (i) mapped-
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FGM always delivers the exact energy eigenvalues in the N→∞ limit and (ii) the extrema
of Ir and Ip, as computed by Equations (26) and (27) and in conjunction with Equation
(28), probe the energy eigenvalues of the unconfined system. These conclusions, after
appropriate adaptations, might be useful in calculations of photoionization dynamics
performed through the solution of the time-dependent Schrödinger equation (TDSE),
where the spatial extension of a wave-packet varies with time and needs to be modified
accordingly [52].
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Figure 3. Variation of computed (a) energy E1s, (b) coordinate (Ir) and (c) momentum (Ip) Fisher
information measure for the ground 1s state of hydrogen atoms, as a function of the number of grid
points N for the fixed value of rmax given in (a). All quantities are expressed in atomic units. In (a), the
horizontal solid line shows the exact energy eigenvalue of the unconfined system, and the horizontal
dashed-dotted line shows the exact energy of the confined system for the chosen maximum radius
of the calculation [51]. The vertical dashed lines mark the locations of the extrema of Ir and Ip. The
calculation is performed using the transformation of Equation (11) in conjunction with Equation (6)
for T̂x.

Let us now comment on the collective computation of several energy eigenvalues.
We first note that the preceding state-by-state analysis verifies the expected increase in
the corresponding ropt

max(n) values with increasing n. Moreover, as mentioned above, the
number of bound levels emerging from such a calculation increases with rmax. Hence, one
needs sufficiently large rmax values for computing many energy levels with acceptable
precision, but, as Figure 1 suggests, these large rmax values will generally lead to a loss
of accuracy for the ground and lower-lying levels. This behavior has long ago been
predicted and observed [17,47]. On the other hand, conventional wisdom implies that, in
any diagonalization procedure, the highest energy levels will exhibit the largest divergences
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from their exact values [41]. In fact, a cut-off (non-integer) effective principal quantum
number vc may be estimated based on the arguments presented earlier, i.e., by setting,

Emax = − 1
rmax

= − 1
2v2

c
→ vc = [rmax/2]1/2. (33)

The relative error of several members of the ℓ = 0 series is plotted in Figure 4a as a function
of n, for fixed rmax = 136 a.u. and N = 100. Evidently, all our expectations are verified since
the relative error monotonically decreases within the interval 1 ≤ n ≤ 6 and then gradually
grows for n ≥ 7. The cut-off effective principle quantum number vc ≈ 8.25 is also marked
in Figure 4a and reasonably predicts the point of unacceptable loss of accuracy (i.e., n = 8, 9
and beyond, where the relative error deteriorates dramatically). It just misses the somewhat
growing relative error of the n = 7 level.
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Figure 4. (a) Absolute relative error of energy eigenvalues for the s(ℓ = 0)-states of hydrogen atoms
as a function of the principal quantum number n, and with fixed rmax = 136 a.u. and N = 100. The
cut-off effective principal quantum number vc (Equation (33)) is indicated by the vertical dashed line.
(b) The coordinate Fisher information measure differences between computed and exact values for
the first eight levels of the hydrogen atom as a function of rmax. All quantities are expressed in atomic
units. The vertical dot-dashed line marks the position of the rmax value used in (a). All calculations
are performed using the transformation of Equation (11) in conjunction with Equation (6) for T̂x.
Note the logarithmic scales of the vertical y-axes in both (a,b).

Figure 4b shows the coordinate Fisher information difference Ir − Iexact
r corresponding

to each n = 1–8 level as a function of rmax. For the rmax‘ range shown, which includes the
selected value of 136 a.u. for the computation of Figure 4a, minima exhibit the curves with
n ≤ 6. In fact, this selected value corresponds to the optimum maximum radius for n = 6
and N = 100, where the Ir − Iexact

r curve has its minimum. Thus, by inspection of Ir − Iexact
r

(or simply Ir(rmax)), one could predict the growing relative errors even for n = 7, and this
criterion appears to perform somewhat better than that of Equation (33). An analogous
behavior is observed for the maxima of Ip. As for the ℓ > 0 case, the same trend holds,
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although it appears that vc does not depend solely on rmax (as Equation (33) implies), but it
shows a small dependence on ℓ as well.

4.2. Dalgarno Lewis Equation: Fisher Information and Dipole Polarizability Systematics
on rmax and N

The difference between the computed and the exact static dipole polarizability ad of the
ground state of hydrogen, as obtained by the mapped-FGM solution of Equation (30) and
the integral of Equation (31), is plotted in Figure 5 as a function of rmax and for two values
of N. Again, the mapping functions of Equation (11) and Equation (6) for T̂x are employed.
The results show a behavior that is identical to what has emerged from the analysis of
energy levels. Namely, ad(rmax) does not show any extrema but rather simply different
slopes before and after the exact value crossing. The coordinate Fisher information measure
Ir, on the other hand, does show clear minima near the exact value.
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Figure 5. Differences between computed and exact values of (a) the static dipole polarizability,
ad (Equation (31)) and (b) the coordinate Fisher information measure, Ir, (Equation (32)) for the
hydrogenic ground state (1s) as a function of rmax. All quantities are expressed in atomic units.
In both graphs, the solid line with filled circles depicts the N = 100 grid, and the dot-dashed line
with open circles shows the N = 200 one. In graph (b), the vertical axis is in logarithmic scale.
Computational results use the transformation of Equation (11) in conjunction with Equation (6)
for T̂x.

As the number of grid points increases from N = 100 to N = 200, the minimum is
deeper, and Ir converges towards the exact value (much like ad). For N = 200 and at the
minimum of Ir (i.e., for rmax = ropt

max), the difference from the exact values for both Ir and
ad are of the order of 10−12 a.u. This is comparable to the result given in [21], with the
same mapping but for N = 500. The difference lies in the employed value of rmax that
was selected via different arguments and not the extremization of the Fisher information
measure. In fact, for N = 500 and a different radius with respect to the one chosen in [21]
produces even more accurate results, the difference from the exact values being of the order
of machine precision. Due precisely to this high accuracy obtained for both Ir and ad, for a
given specific s-state and sufficiently high N, the minimum of Ir becomes so shallow that it
is occasionally difficult to locate, and then one simply searches for its stabilization within a
pre-specified tolerance.
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4.3. Schrödinger Equation: Fisher Information Systematics on Transformations h(x) = xk, k ≥ 2

The preceding results demonstrated the ability of the Fisher information measure
to point towards optimal (ropt

max,N) pairs for the accurate calculation of energy levels and
dipole polarizabilities. All calculations were performed with a single mapping function,
h(x), as given by Equation (11). This mapping is clearly superior to the linear one, h(x) = x,
as predicted by both the Fisher information measure and phase-space arguments [14] that
were presented earlier. As a next step, let us now explore the possibility of the Fisher
information measure to probe the relative computational efficiency offered by various
mapping functions, possibly depending on one or several parameters. While both Ir and Ip
may probe the optimum parameter values, our earlier results show that Ir performs slightly
better. Therefore, for economy reasons, we focus our attention solely on Ir in this section.
Furthermore, for properly confronting the Fisher information measure against phase-space
notions, we choose to discuss the mapping function [12,17],

h(x) = xk, k ≥ 2, (34)

for which, as it can be easily proved and the inset of Figure 6 shows, the ratio Λ ≡ A/Abox
= π[2 rmax]1/2/(2px,max) for the hydrogen atom continuously decreases as the integer k
increases. Therefore, according to phase-space arguments, the efficiency of the mapping
of Equation (34) is expected to degrade with increasing k. Earlier calculations, however,
show the opposite trend, justifying the term “educated guess” that has been used in the
description of this mapping [12,17].
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Figure 6. Differences between computed and exact values of the coordinate Fisher information mea-
sure, Ir, as a function of the energy difference Eexact

2s − E2s for the 2s excited state of hydrogen atoms
for the values k = 2–7 of the exponent in the mapping function h(x) given in the plot (Equation (34)).
Solely for k = 5, the data correspond to the absolute values of the differences (e.g.,

∣∣Eexact
2s − E2s

∣∣
and

∣∣Ir − Iexact
r

∣∣); see text for details. All quantities are expressed in atomic units. The calculation
is performed using Equation (6) for T̂x and for a fixed number of grid points, N = 64. Note the
logarithmic scale in both axes. In the inset, the phase-space coverage ratio, Λ for the same mapping
function, h(x), is depicted as a function of k.

For the 2s excited hydrogenic state, Figure 6 shows the coordinate Fisher information
measure difference ∆Ir ≡ Ir − Iexact

r as a function of the energy difference Eexact
2s − E2s for
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k = 2, 3, 4, 6 and 7. As in Figure 2, these differences are obtained by varying rmax. In fact, the
same information can be obtained if ∆Ir is computed after replacing Iexact

r by Ir(rmax→∞)
(in practice a sufficiently large radius rmax) and traced as a function of E2s. For the shown k
values, ∆Ir exhibits ever deeper minima with increasing k, thus reflecting the more accurate
evaluation of E2s. The important point made here is that Ir provides direct evidence of the
performance enhancement afforded by the increase in k. More importantly, it allows for the
demonstration that Ir is indeed able to probe this higher performance via its minimization,
in stark contrast to parameter Λ. Similarly, Ip is also able to probe the superiority of
k > 2 cases via its maximization. For s-states and all tested integer k values within the
2 ≤ k ≤ 7 interval, the only exception to the above behavior concerns the k = 5 case, where
the role of Ir (and Ip) and E as a function of rmax is interchanged (i.e., E exhibits a minimum,
but Ir does not). As mentioned earlier, this also holds for the linear k = 1 mapping. The
reason for the discrepancy is not clear yet. It is, nevertheless, certain that the extremization
of Ir and Ip is ensured for all even k values. Furthermore, even for k = 5, computational
precision follows the trend and lies between k = 4 and k = 6. Some experimentation
shows that for sufficiently large values of rmax, the absolute error |∆X| = |X − Xexact|
(X = E, Ir, Ip) is proportional to N−k. Last but not least, as either N or k increases, the
extrema of Ir and Ip are quite difficult to locate (with Ir − Iexact

r calculations reaching
machine precision limit). In Figure 6, the formation of clear Ir minima is assisted by the
very low (for an excited state) number of grid points N = 64. The above observations are
particularly true for ℓ > 0 states, even for k = 2 and moderate N. Then, as mentioned earlier,
one may search for the stabilization of Ir and Ip as a function of rmax within a pre-specified
tolerance. On the other hand, this stabilization appears to be quite beneficial; since then,
contrary to the situation depicted in Figure 4, the precision achieved for a large set of energy
eigenvalues would be practically uniform for all levels until the energy cut-off, even for a
necessarily large value of rmax.

Other mapping functions were also tested, with emphasis on those that assume the
functional form xk as x→0, while they are converted to xk ′ , k′ < k for x > xo, where k, k′ and
the location xo are treated as parameters to be optimized for given N. As an example among
the tested mappings, we mention the function h(x) = xk−1·tan−1(x/xo)/tan−1(1/xo) (where
k′ = k − 1). As it turned out and faithfully probed by the extrema exhibited by Ir and Ip in all
cases, optimum results are achieved for xo >> 1, where the mapping function tends towards
the single k value mapping of Equation (34). As a last remark, a little experimentation
shows that the mapping proposed by [14] and also adopted by [15], and which, in our
case, writes h(x) = (x − atan−1[bx])/(1 − atan−1[b]), corresponds to Equation (34) with k = 3
when b = 1/a. With other combinations of parameters a and b, the mapping turns out to be
either linear or difficult to use.

5. Conclusions and Outlook

We have presented a detailed investigation of the connections between the optimal
mapped-FGM numerical solutions of hydrogenic Schrödinger and Dalgarno–Lewis equa-
tions and the extremization of coordinate and the momentum Fisher information measure.
It has been demonstrated that, for a fixed number of grid points, the coordinate, Ir (momen-
tum, Ip), Fisher information measure exhibits a minimum (maximum) as a function of the
radial extension rmax of the mapped-FGM numerical solution. Ir probes the small-r quality
of the radial wavefunction while Ip, the large-r one, while these two complementary quanti-
ties have been found to approach their exact values when higher precision is attested on the
computed energy levels (or static dipole polarizabilities). The small investment of compu-
tational resources in this extremization procedure is amply “rewarded”, as Figure 1 proves,
even in the simplest of problems, the hydrogen atom. Matrix diagonalization techniques for
energy eigenvalues can benefit from the extra information and detect optimum parameters
with more confidence. Additionally, relative error calculations in both Fisher measures
succeeded in classifying mapped-FGM schemes (coordinate transformations) according
to their efficiency and accuracy with a fixed number of grid points. The above arguments
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hold even when occasionally the extrema are hard to locate, as the Fisher information
measure curves become practically flat at large rmax. Typical cases include sufficiently high
numbers of grid points and ℓ > 0 states. Then, optimization can be simply and reliably
based on the stabilization of the Fisher information measure, while this behavior can also
be beneficial when many computed energy eigenvalues and, consequently, large radial
extensions are required.

The framework laid out in the present work is, in principle, also applicable to Alkali
metals or any other atoms with a single valence electron when excitation of only this valence
electron is of concern. Then, the many-body problem is reduced to a single-active-electron
one by describing the ionic core system by a local radial model potential. The valence
electron is subjected to this potential, which exhibits a Coulomb tale at large distances,
while it is modified at short distances to simulate the core’s inner electrons. Promising
preliminary results in analytic, parametric, generally ℓ-dependent, radial model potentials
(such as the one provided in [53] for the Li atom), as well as the Hulthén potential (for
ℓ = 0 [54]), suggest that the present methodology (validated here in the hydrogen atom)
can, indeed, be successfully applied to these more complicated atomic systems, whose
systematic investigation will be the subject of future work.

When free (unconfined) atoms are of interest, the maximum radius of the mapped-
FGM calculation is a rather restrictive parameter since there is always the possibility of
affecting numerical results through confinement. The behavior of both Fisher information
measures provides a very effective way to circumvent the problem. Yet, it would be quite
beneficial for the evolution of FGM to follow earlier suggestions where the semi-infinite
radial interval is mapped into a finite one [23,24]. Then, parametrization as a function of
the radial extension would be eliminated, and the Fisher information measure could be
used to optimize the values of a number of other parameters included in the mapping
function. Going one step beyond, one could set as the “ultimate goal” for a future extension
of the present work the development of a more general extremization procedure based
on the extreme physical information principle (see, for example, [32,55–57]) in which the
potential energy curve and any related information would be the only required input and a
potential-specific mapping function would be the output. We are currently working toward
this goal.
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