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Abstract: CO is one of the important molecules in dense molecular clouds, and its dissociation induced
by cosmic ray heavy ions is a fundamental process for molecular breaking up and rearrangement
in astronomical networks. Extensive laboratory simulations are required to understand molecular
evolution in astrophysical contexts. Here, we investigate the CO dissociation induced by 1 keV/u
Ar2+ using cold target recoil ion momentum spectroscopy. Kinetic energy release for double electron
capture Ar2+ + CO → Ar0 + C+ + O+ and transfer ionization Ar2+ + CO → Ar+ + C+ + O+ + e−

was obtained. The dissociation mechanisms are attributed to different KER distributions. The
autoionization process is identified below the CO2+ double ionization threshold.

Keywords: CO dissociation; electron capture; COLTRIMS; metastable states; autoionization; kinetic
energy release

1. Introduction

The structure of the excited states unveils the characteristics of ionization and radiation
processes, with applications extending from interstellar space to investigations of the
physical properties and evolution of giant molecular clouds [1]. Due to the large mass of
the nucleus, its motion is several orders of magnitude slower than the electron in the self-
consistent field. Therefore, according to the Born–Oppenheimer approximation, electron
removal in the molecule induces the vertical transition in the potential energy curves (PECs)
from the molecule to its multi-charged ion. Subsequently, the PECs determine the behavior
of the molecular ion such as dissociation.

In the molecular dissociative ionization, the dissociation of doubly charged molecule
ions, such as CO2+, N2+

2 , O2+
2 [2–5], attracts a lot of interest, since the competition [2]

between bonding and repulsive force results in a non-Coulombic potential curve [6]. In ad-
dition, PECs of diatomic molecules are relatively simple, only involving the internuclear
distance, which offers an approach to probe the population of the molecular energy levels
and the dissociation mechanism via measuring kinetic energy release (KER). Compared
with direct dissociation following one specific PEC, indirect dissociation takes place due to
the coupling of the electronic states through the avoided crossing (AC) [7]. The electronic
states are altered during the dissociation; therefore, the indirect dissociation draws more
attention because of the complexity of the dissociation mechanism.

Predissociation is a typical indirect dissociation observed in CO2+ photoionization and
electron impact ionization [8–11]. The low-lying vibrational states are energy-insufficient
to cross the potential barrier. However, they are close to or higher than the AC region with
repulsive states. The coupling between electronic states enables these levels to dissociate
via the resonance [5,7,12]. Lundqvist [11] measured the KER of CO2+ dissociation with
vibrational level discrimination. All discrete states dissociate into ground ionic states
C+(2P) + O+(4S), indicating strong coupling with a 3Σ− repulsive state. AC allows cross-
ing the potential barrier, and the tunneling mechanism of these states becomes significant
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in molecular dissociation. Several studies [13–19] have reported the tunneling lifetime of
metastable CO2+ for different vibrational states.

Below the double ionization threshold, autoionization (AI) [8,20–22] is another signifi-
cant indirect process in CO dissociation. High-lying Rydberg and inner-valence vacancy
states generate the highly excited CO+∗. The potential curves of the states lies below
the double ionization threshold, but above the dissociation asymptotic limit of C+(2P) +
O+(4S) [22]. They are unstable, and dissociate into C+(2P) + O+(4S) with the ejection of
AI electron. Experimental studies of CO AI have been enhanced by the development of
coincidence techniques, which have led to the advancement of photoelectron–photoion
coincidence spectroscopy [8] and (e,2e) experiments [23]. These techniques allow for the
simultaneous observation of AI electron energy and KER. Lablanquie [8] first investigated
CO photoionization in the range of 35 to 150 eV using the photoion–photoion coincidence
technique. They measured the KER distribution for different photon energy and the abso-
lute cross-section, observing highly excited CO+∗ autoionizing into C+ + O+. Osipov [22]
reported a kinematically complete experiment of CO+∗ AI states using cold target recoil
ion momentum spectroscopy (COLTRIMS) [24–26]. AI states originate from Rydberg or
inner valence electronic states, as confirmed by ab initio calculation. The measured angular
distribution of AI electrons shows excellent agreement with the theoretical predictions.

The CO AI states have scarcely been investigated through heavy ion collision [27,28].
Unlike photoionization and electron impact ionization, where the vertical excitation energy
can be determined or inferred from photo energy or electron energy loss, this informa-
tion cannot be directly inferred in ion collisions. However, the configuration interaction
plays an important role [29,30], especially in slow ion collisions. In this report, we present
the dissociation of CO by collision with 1 keV/u Ar2+ ion using the COLTRIMS setup.
The CO+∗ AI in KER distribution was identified by distinguishing the scattered ion charge
states. We report KER of CO AI by slow heavy ion collision, which contradicts the previ-
ous conclusions [28] that no AI occurs in the capture process. The KER distributions of
double electron capture (DEC) and transfer ionization (TI) are compared, and dissociation
mechanisms are discussed.

2. Experimental Setup

The experiment was conducted on the 320 kV highly charged ion multidisciplinary
research platform at the Institute of Modern Physics, Chinese Academy of Science (IMP-
CAS) in Lanzhou. An expanded beamline provided a 1 keV/u Ar2+ beam using a Dresden
electron-beam ion source [31]. The Ar2+ beam is selected and compressed by a Wien filter
and an einzel lens. Two sets of scanning electrodes guide the ion beam to collide with the
orthogonal CO gas target. After charge exchange with Ar2+, unstable CO2+ dissociates into
C+ and O+. The fragment ions were extracted by a time-of-flight (TOF) setup, as shown in
Figure 1. TOF and position of ions are registered by the position-sensitive detector (PSD)
at the end of the flight tube. The TOF setup comprises a 107.5 mm extraction region and
a 215 mm field-free drift region with the electric field set as 100 V/cm, meeting with the
Wiley–McLaren focusing condition [32].

Figure 1. Sketch of COLTRIMS setup. The extraction and drift regions are 107.5 mm and 215 mm in
length labeled by ‘a’ and ‘b’, respectively. The arrow labeled by ‘E’ points out the direction of the
extraction field.



Atoms 2024, 12, 53 3 of 8

Charge states changed Ar+ and Ar0 scattered ions, which were collected on the PSD
to provide the collision starting point, and unreacted Ar2+ ions were deflected into a
Faraday cup. A high-performance time-to-digital converter recorded the signals from
the multichannel plate (MCP) and delay line to deduce the TOF and position. Subse-
quently, three-dimensional momentum and KER were deduced from TOF and position by
the formulas:

Px = m
x − x0

t
, (1)

Py = m
y − y0

t
, (2)

Pz =
Uq
a
(t0 − t), (3)

where Px and Py are the momentum perpendicular to the extraction field, and Pz is the
momentum along the extraction field. U and a are extraction voltage and extraction field
length. t0 is TOF of zero momentum ion. The KER can be obtained by summing all
fragment ion i kinetic energy by the following formula:

KER = ∑
i

P2
x + P2

y + P2
z

2m
. (4)

3. Results and Discussion
3.1. One-Dimensional TOF Spectrum

Different ion species are separated in the one-dimensional TOF spectrum in Figure 2,
according to the charge-to-mass ratio (q/m). The distribution of C+ and O+ is broadened
due to the KER from the dissocaition of CO2+ into C+ + O+ + KER. The flat top of the
C+ and O+ peaks are caused by the incomplete collection of CO2+ dissociation events
that occur perpendicular to the extraction field for KER values exceeding 12 eV. The peak
intensity of O+ is lower than that of C+ due to the detection efficiency ε. The MCP open
area ratio is approximately 0.6, and ions fly across three grids from the collision point to the
MCP surface with a penetration rate of about 0.9 for each grid. This results in an estimated
detection efficiency of approximately 0.44. The detector efficiency can also be calculated
from the intensity of the first hit one-dimensional TOF spectrum [33]. Assuming that C+

and O+ are detected by the MCP with the same efficiency, the intensity of the C+ peak, IC+ ,
is proportional to N · ε (where N represent all dissociation events), while the intensity of
the O+ peak, IO+ , is proportional to the N · ε(1 − ε) (where (1 − ε) is the probability that
the C+ ion is not detected, hence the O+ ion is registered as first hit).

ε

ε(1 − ε)
=

IC+

IO+
. (5)

The calculated detection efficiency is 0.45, consistent with the setup configuration.

Figure 2. First hit registered one-dimensional TOF mass spectrum for 1 keV/u Ar2+ + CO.
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3.2. Two-Dimensional TOF Spectrum

In the two-dimensional TOF correlation spectrum shown in Figure 3, the C+ and O+

TOF are recorded as the Hit1 and Hit2 signal. Three TOF correlation bands with negative
slopes are observed. Two low-intensity bands correspond to the isotopes 13C+ and 18O+,
with relative ratios of about 1.03% and 0.20%, respectively, which are in agreement with
their natural abundance. In addition to the high-intensity band, two tails with different
slopes appear on the lower right side in 12C+ +16 O+ channel, labeled as ‘a’ and ‘b’. These
are the long-lived metastable CO2+ dissociating in the extraction and drift region.

Figure 3. Correlation spectrum for TOF of CO2+ → C+ + O+. TOF of ions, which firstly and
secondly hit the detector, are registered as Hit1 and Hit2, where a and b labeled the metastable
states dissociation.

3.3. Potential Curves

In Figure 4a, we present the potential curves of several low-lying states of CO2+,
as previously detailed by Pandey et al. [2]. Among these, certain electronic states, such as
11Σ+, 11Π, and 13Π, exhibit deep potential barriers. These states intersect with the repul-
sive state 11Σ−, facilitating dissociation through predissociation. Asymptotic limits A, B, C,
and D correspond to C+(2Pu) + O+(4Su), C+(2Pu) + O+(2Du), C+(2Pu) + O+(2Pu) and
C+(4Pg) + O+(4Su), respectively, with associated energies of 35.98, 39.3, 41, and 41.33 eV.
Figure 4b provides a schematic diagram of the autoionization states of CO+∗. These
states, which may be either inner-valence or Rydberg states, have been explored by
Osipov et al. [22]. At small internuclear distance, the potential of CO+∗ lies below that
of the CO2+ ground state. Due to the strong Coulomb repulsion between C+ and O+,
as compared to C+ and O∗, the potential curves of CO+ remain relatively flat, intersecting
the steep potential curve of CO2+ (X3Π) at internuclear distances greater than 25 Å [22].

Figure 4. (a) Some low-lying potential curves of CO2+ [2]. (b) Schematic diagram of autoionization
states of CO+∗ [22].
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3.4. KER

The KER distribution for Ar2+ + CO → Ar0 + C+ + O+ channel is presented in
Figure 5a. Three distinct peaks appear at 6.3, 8.2, and 9.7 eV. The first peak contains
contributions from the X1Π, 11Σ+, and 13Π electronic states. The FC factor [2] for X1Π
and 11Σ+ decreases with an increasing vibrational quantum number; therefore, low-lying
vibrational states mainly contribute to the KER. The deep potential well prevents dissoci-
ation for low-lying vibrational states of 11Σ+ and 11Π. However, the AC with repulsive
13Σ− enables these states to dissociate via predissociation mechanism to C+(2P) + O+(4S)
asymptotic limit. The vibrational energy discriminated KER [11] reports the contribu-
tion from X1Π(ν = 1 − 10) and 11Σ+(ν = 0, 1). For X3Π, predissociation and tunneling
mechanism contribute to the CO2+ dissociation. Since the high-lying vibrational states
of X3Π have large FC factor [2], they also contribute to the KER distribution through
tunneling. The second peak mainly arises from the high-lying vibrational states of 11Π,
11Σ+, and low-lying vibrational states of 13Σ+. These states can also predissociate through
AC with 13Σ−. The third peak contribute from 21Σ+ and repulsive 13Σ−. Only events with
KER below 12 eV are entirely collected. Events from repulsive states contribute to high
energy part of the distribution. The unscreening effect [28] of the electronic states leads to
higher KER values.

Figure 5. KER distribution for (a) Ar2+ + CO → Ar0 + C+ + O+ channel, and (b) Ar2+ + CO →
Ar+ + C+ + O+ + e− channel where red line comes from CO+∗ AI process.

The KER distribution of Ar2+ + CO → Ar+ + C+ + O+ + e− channel is presented in
Figure 5b, where the electron is not detected. The distribution exhibits less peak structure
except for the peak at 6.3 eV. Notably different from Figure 5a,b, it shows the presence of
contributions below 5 eV in KER. Taking into consideration the PECs, it reveals that the
X3Π (ν = 2) vertical excitation energy is 41.6 eV, and the ground asymptotic limit C+(2P) +
O+(4S) is 36.0 eV. This corresponds to a KER of 5.6 eV, indicating that no dissociation to
higher limits such as C+(2P) + O+(2D) (39.3 eV), which may contribute to smaller KERs in
Figure 5a, occurs.

Therefore, a KER below 5.5 eV originates from states below the double ionization
threshold but above the ground asymptotic limit. These states correspond to highly excited
CO+∗, which undergo dissociation via AI. AI states can manifest as Rydberg states or
involve inner-valence electron vacancies [22]. Given their potential energy lower than the
double ionization threshold, AI electron emission is energetically not allowed until the
internuclear distance reaches a sufficiently large distance [5,22]. At this stage, their potential
energy surpasses that of the ground states C+(2P) + O+(4S), enabling electron emission.

CO+∗ states can decay radiatively via photo radiation, while the autoionization
electron emission is only energetically allowed at internuclear distance reaching tens of
angstrom [5]. The intensity of AI distribution rises with KER, reflecting extended lifetimes
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of higher-level populated CO+∗ states. Our findings diverge from the results of early mea-
surements [28], where Tarisien investigated collisions of O7+ ions at energies of 4 keV/u
and 11.4 MeV/u with CO. Tarisien reported no observation of KER distributions below
5 eV in slow O7+ collisions, and concluded that the capture process does not induce such
excitations. In contrast, our measurement demonstrates that AI is a significant dissociation
process during slow ion charge exchange with CO.

The KER above 5.5 eV shown in Figure 5b originates from the TI process. The relative
cross-sections for the DEC, AI, and TI processes are 1, 0.046, and 0.37, respectively. This
indicates that DEC has a larger cross-section than TI. Compared to the KER distributions
of TI and DEC, we observed that the peak at 6.3 eV exhibits higher intensity in the TI
process, whereas the peak at 9.7 eV shows greater intensity in the DEC process. This
suggests that DEC transfers more excitation energy compared to TI, leading to a population
of higher electronic states during collisions. This result is divergent from the idea [28]
that electron capture can induce dissociation in a relatively gentle manner. In their report
of CO2+ dissociation, ionization of CO by O7+ contributes to the higher part of KER
distribution, and the first peak is dominant, whereas the third peak is dominant in our
measurement. Similar results can also be found in other experiments [29,30,34], where the
average KER increases with decreasing projectile velocity. Folker pointed out that electron
correlation effects [29,30] may contribute to the formation of CO configurations at lower
collision velocity. In conclusion, the present KER distribution of DEC and TI can not be
well explained. The complex nature of the electronic state population needs more advanced
quantum theories for comprehensive understanding.

4. Conclusions

We investigate the collision of 1 keV/u Ar2+ with CO using the COLTRIMS technique.
KER distributions are obtained for the DEC channel Ar2+ + CO → Ar0 + C+ + O+ and
TI channel Ar2+ + CO → Ar+ + C+ + O+ + e−. The contributions of different electronic
states to the KER are discussed for both the DEC and TI processes. AI of CO+∗, not
observed in previous publications, is identified in slow ion collisions, which is not observed
in previous publications [28]. It was found that DEC transfers more excitation energy to
CO than the TI process, leading to a higher contribution of repulsive state dissociation in
KER distribution. This highlights the significant role of configuration interactions in slow
ion collisions, as evidenced by the pronounced differences in KER distributions.
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