Theoretical Spectra of Lanthanides for Kilonovae Events: Ho I-III, Er I-IV, Tm I-V, Yb I-VI, Lu I-VII
Abstract
:1. Introduction
2. Theory
3. Computation
4. Results and Discussion
4.1. General Information on the Atomic Data
4.2. Benchmarking of Energies
4.3. Benchmarking of Transitions in Lanthanide Ions
4.4. Spectral Features of Lanthanide Ions
5. Conclusions
- We present atomic data for the energy levels and radiative transitions of 25 ions of lanthanides, Ho I-II, Er I-IV, Tu I-V, Yb I-VI, and Lu I-VII. Compared to the available datasets, these are probably the largest sets of atomic data for these lanthanide ions and can be applied for broad features, such as those from kilonovae events.
- These data, as extensive sets, are expected to be much more accurate than those available and hence should enable higher-precision astrophysical applications in broad features and fill the gaps in data needed for modeling. It should also be noted that the improved accuracy varies according to how the ion has been represented in the present study.
- The calculated energies have been benchmarked with the measured values, largely from Martin et al. [12], available on the NIST webpage [13]. The comparison shows overall good agreement, within a few percent, to fair to poor agreement, where the difference can be a factor close to 2 for the energies. This difference increases with higher energies.
- The radiative transition probabilities have been compared with those available at NIST [13], compiled from a number of sources. The agreement is fair to good. One factor in the differences is the proper identification of the levels. Much greater improvements will be needed over the present work for line diagnostic applications, using programs such as GRASP, which can provide limited but more accurate energies and transition parameters.
- We present the spectral features of these 25 lanthanide ions that illustrate the dominance of lines in various regions from X-ray to infrared.
- Very good agreement with the observed features in Figure 1 is found when compared with the calculated spectral features of Ho II. The observed features were generated by the photoabsorption of Ho II as the Ho compound was fragmented. The agreement is very good given given the strong electron–electron correlation interaction of a large atomic system like Ho II.
- Lanthanides have highly mixed levels and are very sensitive to slight changes in the representation of the potential and wavefunctions. These characteristics can lead easily to different sets of levels. Hence, guidance through experimentally determined levels is of great need and importance.
- All atomic data will be available online at the NORAD-Atomic-Data database (https://norad.astronomy.osu.edu, accessed on 7 July 2007) [25].
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Pian, E.; D’Avanzo, P.; Benetti, S.; Branchesi, M.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D’Elia, V.; Fynbo, J.P.U.; et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 2017, 551, 67. [Google Scholar] [CrossRef]
- Kasen, D.; Badnell, N.R.; Barnes, J. Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 2013, 774, 25. [Google Scholar] [CrossRef]
- Tanaka, M.; Hotokezaka, K. Radiative transfer simulations of neutron star merger ejecta. Astrophys. J. 2013, 775, 113. [Google Scholar] [CrossRef]
- Tanaka, M.; Kato, D.; Gaigalas, G.; Kawaguchi, K. Systematic opacity calculations for kilonovae. Mon. Not. R. Astron. Soc. 2020, 496, 1369–1392. [Google Scholar] [CrossRef]
- Tanaka, M.; Kato, D.; Gaigalas, G.; Rynkun, P.; Radžiūtė, L.; Wanajo, S.; Sekiguchi, Y.; Nakamura, N.; Tanuma, H.; Murakami, I.; et al. Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers. Astrophys. J. 2018, 852, 109. [Google Scholar]
- Radžiūtė, L.; Gaigalas, G.; Kato, D.; Rynkun, P.; Tanaka, M. Extended Calculations of Energy Levels and Transition Rates for Singly Ionized Lanthanide Elements. I. Pr–Gd. Astrophys. J. Suppl. Ser. 2020, 248, 17. [Google Scholar] [CrossRef]
- Fontes, C.J.; Fryer, C.L.; Hungerford, A.L.; Wollaeger, R.T.; Korobkin, O. A line-binned treatment of opacities for the spectra and light curves from neutron star mergers. Mon. Not. R. Astron. Soc. 2020, 493, 4143. [Google Scholar] [CrossRef]
- Cowan, R. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
- Johnson, J.A. Populating the periodic table: Nucleosynthesis of the elements. Science 2019, 363, 474–478. [Google Scholar]
- Kobayashi, C.; Karakas, A.I.; Lugaro, M. The Origin of Elements from Carbon to Uranium. Astrophys. J. 2020, 900, 179. [Google Scholar] [CrossRef]
- Martin, W.C.; Zalubas, R.; Hagan, L. NSRDS-NBS 60; National Standard Reference Data Series; National Bureau of Standards: Washington, DC, USA, 1978; 422p. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST; ASD Team. NIST Atomic Spectra Database (Ver. 5.8). 2020. Available online: https://physics.nist.gov/PhysRefData/ASD/levels_form.htm (accessed on 1 January 1996).
- Carlson, T.A.; Nestor, C.W., Jr.; Wasserman, N.; McDowell, J.D. Calculated ionization potentials for multiply charged ions. At. Data Nucl. Data Tables 1970, 2, 63–99. [Google Scholar] [CrossRef]
- Meggers, W.F.; Corliss, C.H.; Scribner, B.F. National Bureau of Standards Monograph 145; National Bureau of Standards: Washington, DC, USA, 1975; 600p. [Google Scholar] [CrossRef]
- Morton, D.C. Atomic data for resonance absorption lines. II. wavelengths longward of the lyman limit for heavy elements. Astrophys. J. Suppl. Ser. 2000, 130, 403–436, Erratum in 2001, 132, 411. [Google Scholar] [CrossRef]
- Komarovskii, V.A. Oscillator strength for spectral lines and probabilities of electron transitions in atoms and single charged ions of lantanides. Opt. Spektrosk. 1991, 71, 559–592. [Google Scholar]
- Wickliffe, M.E.; Lawler, J.E. Atomic transition probabilities for Tm I and Tm II. J. Opt. Soc. Am. B 1997, 14, 737–753. [Google Scholar] [CrossRef]
- Sugar, J.; Meggers, W.F.; Camus, P. Spectrum and energy levels of neutral thulium. J. Res. Natl. Bur. Stand. Sect. A 1973, 77, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Penkin, N.P.; Komarovskii, V.A.J. Oscillator strengths of spectral lines and lifetimes of atoms of rare earth elements with unfilled 4f-shell. Quant. Spectrosc. Radiat. Transf. 1976, 16, 217–252. (In Russian) [Google Scholar]
- Fedchak, J.A.; Den Hartog, E.A.; Lawler, J.E.; Palmeri, P.; Quinet, P.; Biémont, E. Experimental and theoretical radiative lifetimes, branching fractions, and oscillator strengths for Lu I and experimental lifetimes for Lu II and Lu III. Astrophys. J. 2000, 542, 1109–1118. [Google Scholar]
- Irvine, S.; Andrews, H.; Myhre, K.; Coble, J. Radiative transition probabilities of neutral and singly ionized rare earth elements (La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) estimated by laser-induced breakdown spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2023, 297, 108486. [Google Scholar] [CrossRef]
- Obaid, R.; Xiong, H.; Ablikim, U.; Augustin, S.; Schnorr, K.; Battistoni, A.; Wolf, T.; Carroll, A.M.; Bilodeau, R.; Osipov, T.; et al. In Proceedings of the 47th Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics (DAMOP) Annual Meeting. Providence, RI, USA, 23–27 May 2016. Abstract: B9.00007. [Google Scholar]
- Pradhan, A.K.; Nahar, S.N. Atomic Astrophysics and Spectroscopy; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Nahar, S.N. Database NORAD-Atomic-Data for atomic processes in plasma. Atoms 2020, 8, 68. [Google Scholar] [CrossRef]
- Nahar, S.N.; Eissner, W.; Chen, G.X.; Pradhan, A.K. Atomic data from the Iron Project–LIII. Relativistic allowed and forbidden transition probabilities for Fe XVII. Astron. Astrophys. 2003, 408, 789–801. [Google Scholar] [CrossRef]
- Eissner, W.; Jones, M.; Nussbaumer, H. Techniques for the calculation of atomic structures and radiative data including relativistic corrections. Comput. Phys. Commun. 1974, 8, 270–306. [Google Scholar] [CrossRef]
- Eissner, W. Atomic structure calculations in Breit-Pauli approximation. In The Effects of Relativity on Atoms, Molecules, and the Solid State; Wilson, S., Grant, I.P., Gyorffy, B.L., Eds.; Plenum Press: New York, NY, USA, 1991; pp. 55–64. [Google Scholar]
- Nahar, S.N. Atomic data from the Iron Project. Astron. Astrophys. 2004, 413, 779. [Google Scholar]
- Nahar, S.N. Modern Trends in Physics Research. In Proceedings of the 4th International Conference on MTPR-10, Sharm El Sheikh, Egypt, 12–16 December 2010; El Nadi, L., Ed.; World Scientific: Singapore, 2013; pp. 275–285. [Google Scholar]
Ho I (11 orbitals filled), = 1,019,566 | |
---|---|
Configurations: | (1), (2), (3) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), | |
1.0 (5s), 1.60 (5p), 0.90 (4d), 0.99 (4f), 1.1 (6s), 1.1 (6p), 1.2 (5d) | |
Ho II (10 orbitals filled), = 408,070 | |
Configurations: | (1), (2), (3), (4) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.00 (3d), 1.0 (4s), 1.0 (4p), | |
1.0 (5s), 1.00 (5p), 1.0 (4d), 1.0 (4f), 1.0 (6s), 1.0 (6p), 1.0 (5d) | |
Ho III (11 orbitals filled), = 1,309,895 | |
Configurations: | (1), (2), (3), (4) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.00 (3d), 1.0 (4s), 1.0 (4p), | |
1.2 (5s), 0.925 (4d), 1.50 (5p), 1.00 (4f), 0.95 (6s), 1.20 (6p), 1.25 (5d) | |
Er I (11 orbitals filled), = 206,202 | |
Configurations: | (1), (2), (3), (4), (5) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.00 (3d), 1.0 (4s), 1.05 (4p), | |
1.0 (5s), 1.0 (5p), 1.0 (4d), 1.0 (4f), 1.05 (6s), 1.09 (6p), 1.0 (5d) | |
Configurations: | (1), (2), (3), (4), (5), (6) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.00 (3d), 1.0 (4s), 1.0 (4p), | |
1.2 (5s), 0.955 (5p), 1.02 (4d), 1.0 (4f), 1.0 (6s), 1.0 (6p), 1.0 (5d) | |
Er III (9 orbitals filled), = 409,161 | |
Configurations: | (1), (2), (3), (4), |
(5), (6), (7), (8) | |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.00 (3d), 1.0 (4s), 1.0 (4p), | |
1.8 (5s), 1.17 (4d), 1.01 (5p), 1.0 (4f), 1.2 (6s), 1.0 (6p), 1.0 (5d) | |
Er IV (11 orbitals filled), = 1,309,955 | |
Configurations: | (1), (2), (3), (4) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), 1.0 (5s), | |
1.07 (4d), 1.0 (5p), 1.0 (4f), 1.0 (5d), 1.0 (6s), 1.0 (6p) | |
Tm I (11 orbitals filled), = 118,759 | |
Configurations: | (1), (2), (3), (4), (5), (6), |
(7), (8), (9), (10), (11) | |
1.30 (1s), 1.25 (2s), 1.22 (2p), 1.1 (3s), 1.12 (3p), 1.1262 (3d), 1.002 (4s), 1.0606 (4p), | |
0.9 (5s), 1.05436 (5p), 0.97512 (4d), 1.0 (4f), 0.712 (6s), 1.16173 (6p), 1.096 (5d) | |
Tm II (11 orbitals filled), = 34,184 | |
Configurations: | (1), (2), (3), (4), (5), (6), |
(7), (8), (9) | |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.01 (3d), 0.92 (4s), 0.80 (4p), | |
1.53 (5s), 0.9 (5p), 1.004 (4d), 1.02 (4f), 1.014 (6s), 0.9 (6p), 0.95 (5d) | |
Tm III (11 orbitals filled), = 849,878 | |
Configurations: | (1), (2), (3), (4), (5), (6) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), 1.0 (5s), | |
1.12 (5p), 1.0 (4d), 0.97 (4f), 0.98 (6s),1.0 (6p), 0.98 (5d) | |
Tm IV (10 orbitals filled), = 1,096,164 | |
Configurations: | (1), (2), (3), (4), (5), (6), |
(7), (8) | |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), 1.0 (5s), | |
1.0 (4d), 1.03 (5p), 1.0 (4f), 1.0 (6s), 1.0 (6p), 1.0 (5d) | |
Tm V (11 orbitals filled), = 801,717 | |
Configurations: | (1), (2), (3), (4) |
1.3 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), 1.0 (5s), | |
1.0 (4d), 1.0 (5p), 1.0 (4f),1.0 (6s), 1.0 (6p), 1.0 (5d) | |
Yb I (11 orbitals filled), = 109,127 | |
Configurations: | (1), (2), (3), (4), (5), (6), |
(7), (8), (9), (10) | |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.03 (3d), 1.05 (4s), 1.02 (4p), | |
0.935 (5s), 0.937 (5p), 1.0 (4d), 1.0 (4f), 1.0 (6s), 1.0 (6p), 1.0 (5d) | |
Yb II (11 orbitals filled), =39,009 | |
Configurations: | (1), (2), (3), (4), (5), (6), (7), |
(8) | |
1.30 (1s), 1.45 (2s), 1.20 (2p), 1.10 (3s), 1.07 (3p), 1.0 (3d), 1.0 (4s), 1.05 (4p), | |
0.918 (5s), 0.90 (5p), 1.025 (4d), 1.0 (4f), 1.1007 (6s), 0.97 (6p), 0.97 (5d) | |
Yb III (11 orbitals filled), = 925,575 | |
Configurations: | (1), (2), (3), (4), (5), (6), (7), |
(8), (9) | |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.15 (3d), 1.05 (4s), 0.819 (4p), | |
1.24 (5s), 0.887 (5p), 0.98 (4d), 1.02 (4f), 1.05 (6s), 0.95 (6p), 1.0 (5d) | |
Yb IV (10 orbitals filled), = 400,325 | |
Configurations: | (1), (2), (3), (4), (5), (6) |
1.3 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), | |
1.0 (5s), 0.995 (5p), 1.0 (4d), 1.0 (4f), 1.0 (6s), 1.0 (6p), 1.0 (5d) | |
Configurations: | (1), (2), (3), (4), (5), (6) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), 1.0 (5s), | |
1.0 (4d), 1.03 (5p), 1.0 (4f), 1.0 (6s), 1.15 (6p), 1.2 (5d) | |
Yb VI (10 orbitals filled), = 486,262 | |
Configurations: | (1), (2), (3), (4) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), 1.1 (5s), | |
1.0 (4d), 1.0 (5p), 1.0 (4f), 1.0 (6s), 1.0 (6p), 1.0 5d | |
Lu-I (12 orbitals filled), = 13,936 | |
Configurations: | (1), (2), (3), (4), (5), (6), (7), (8), (9) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), | |
0.95 (5s), 1.135 (4d), 0.94 (5p), 1.0 (4f), 1.0 (6s), 0.98 (6p), 1.0 5d | |
Lu-II (11 orbitals filled), = 109,566 | |
Configurations: | (1), (2), (3), (4), (5), (6), (7), |
(8), (9), (10) | |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), 0.95 (5s), | |
0.937 (5p), 1.0 (4d), 1.0 (4f), 1.0 (6s), 1.0 (6p), 0.99 5d | |
Lu-III (11 orbitals filled), = 8564 | |
Configurations: | (1), (2), (3), (4), (5), (6), (7), |
(8) | |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.00 (3d), 1.0 (4s), 1.05 (4p), | |
1.0 (5s), 0.95 (5p), 0.98 (4d), 1.0 (4f), 1.03 (6s), 0.97 (6p), 0.98 5d | |
Lu-IV (11 orbitals filled), = 926,436 | |
Configurations: | (1), (2), (3), (4), (5), (6), (7), |
(8), (9) | |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.00 (3d), 1.0 (4s), 0.80 (4p), | |
1.40 (5s), 0.90 (5p), 0.98 (4d), 1.02 (4f), 1.05 (6s), 0.92 (6p), 0.97 5d | |
Lu-V (11 orbitals filled), = 850,668 | |
Configurations: | (1), (2), (3), (4), (5), (6) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), | |
1.0 (5s), 0.999 (5p), 0.993 (4d), 1.01 (4f), 0.98 (6s), 1.02 (6p), 1.0 5d | |
Lu-VI (10 orbitals filled), = 317,817 | |
Configurations: | (1), (2), (3), (4), (5), (6) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 0.80 (3d), 1.0 (4s), 1.0 (4p), | |
1.4 (5s), 0.98 (4d), 1.0 (5p), 1.0 (4f), 0.95 (6s), 1.3 (6p), 1.3 5d | |
Lu-VII (10 orbitals filled), = 304,178 | |
Configurations: | (1), (2), (3), (4), (5), (6) |
1.30 (1s), 1.25 (2s), 1.12 (2p), 1.07 (3s), 1.05 (3p), 1.0 (3d), 1.0 (4s), 1.0 (4p), | |
1.0 (5s), 0.98 (4d), 0.97 (5p), 1.0 (4f), 1.0 (6s), 1.0 (6p), 1.12 5d |
Number of Fine Structure Levels = 1629ie | SL(cf#) | J | E(Ry) |
---|---|---|---|
1 | 4Io(1) | 15/2 | 0.00000E+00 |
2 | 4Io(1) | 13/2 | 3.60033E-02 |
3 | 4Io(1) | 11/2 | 5.85101E-02 |
4 | 4Io(1) | 9/2 | 7.43454E-02 |
5 | 4Me(2) | 15/2 | 9.79376E-02 |
6 | 6Le(2) | 13/2 | 1.01223E-01 |
7 | 4Fo(1) | 9/2 | 1.09269E-01 |
8 | 6Le(2) | 11/2 | 1.22576E-01 |
9 | 2Ho(1) | 11/2 | 1.28064E-01 |
10 | 4So(1) | 3/2 | 1.35965E-01 |
Config | SL | J | E(SS, Ry) | E(NIST [12], Ry) | |
---|---|---|---|---|---|
Ho I, = 1629, = 210,522 | |||||
1 | 15/2 | 0.0 | 0.0 | ||
2 | 13/2 | 0.03603 | 0.0493879 | ||
3 | 11/2 | 0.05851 | 0.0784160 | ||
4 | 9/2 | 0.07434 | 0.0974668 | ||
5 | 17/2 | 0.13881 | 0.0763542 | ||
6 | 15/2 | 0.09794 | 0.0767935 | ||
7 | 13/2 | 0.10122 | 0.0833543 | ||
8 | 19/2 | 0.19610 | 0.0887711 | ||
9 | 9/2 | 0.10927 | 0.1193261 | ||
10 | 11/2 | 0.12257 | 0.1543452 | ||
Ho II, = 924, = 81,623 | |||||
1 | 8 | 0.0 | 0.0 | ||
2 | 7 | 0.00724 | 0.005808 | ||
3 | 7 | 0.05528 | 0.051186 | ||
4 | 6 | 0.05793 | 0.053306 | ||
5 | 5 | 0.08928 | 0.080652 | ||
6 | 6 | 0.09113 | 0.082029 | ||
7 | 6 | 0.11003 | 0.098771 | ||
8 | 4 | 0.11108 | 0.102111 | ||
9 | 9 | 0.11702 | 0.148388 | ||
10 | 7 | 0.11832 | 0.152628 | ||
Ho III, = 1837, = 258,124 | |||||
1 | 15/2 | 0.0 | 0.0 | ||
2 | 13/2 | 0.03114 | 0.04956 | ||
3 | 11/2 | 0.04969 | 0.07877 | ||
4 | 9/2 | 0.06203 | 0.09815 | ||
6 | 9/2 | 0.08576 | 0.12147 | ||
7 | 7/2 | 0.1149 | 0.16282 | ||
8 | 5/2 | 0.1245 | 0.17656 | ||
9 | 3/2 | 0.1261 | |||
10 | 11/2 | 0.10275 | 0.15392 | ||
Er I. = 993, = 88,827 | |||||
1 | 6 | 0.0 | 0.0 | ||
2 | 5 | 0.06787 | 0.063408 | ||
3 | 4 | 0.06158 | 0.097970 | ||
4 | 4 | 0.11386 | 0.045884 | ||
5 | 3 | 0.13971 | 0.112792 | ||
6 | 2 | 0.15311 | 0.119357 | ||
7 | 6 | 0.089544 | 0.065397 | ||
8 | 7 | 0.097936 | 0.070140 | ||
9 | 9 | 0.104784 | 0.078556 | ||
10 | 8 | 0.114163 | 0.085204 | ||
Er II, = 1476, = 189,738 | |||||
1 | 13/2 | 0.0 | 0.0 | ||
2 | 11/2 | 0.06837 | 0.0661522 | ||
3 | 9/2 | 0.06211 | 0.046772 | ||
4 | 7/2 | 0.06260 | 0.049242 | ||
5 | 15/2 | 0.18768 | 0.062192 | ||
6 | 13/2 | 0.24412 | 0.121552 | ||
7 | 11/2 | 0.28125 | 0.154443 | ||
8 | 11/2 | 0.36487 | 0.065153 | ||
9 | 9/2 | 0.11218 | 0.065567 | ||
10 | 13/2 | 0.09742 | 0.097206 | ||
Er III, = 1000, = 82,286 | |||||
1 | 6 | 0.0 | 0.0 | ||
2 | 5 | 0.045163 | 0.063513 | ||
3 | 4 | 0.035074 | 0.098284 | ||
4 | 2 | 0.09552 | |||
5 | 3 | 0.08826 | |||
6 | 4 | 0.07184 | 0.04631 | ||
7 | 6 | 0.10297 | 0.15469 | ||
8 | 7 | 0.10991 | 0.160818 | ||
9 | 9 | 0.14872 | 0.172929 | ||
10 | 8 | 0.13645 | 0.181508 | ||
Er IV, = 1837, = 257,713 | |||||
1 | 15/2 | 0.0 | 0.0 | ||
2 | 13/2 | 0.0598 | 0.0591 | ||
3 | 11/2 | 0.0970 | 0.0921 | ||
4 | 9/2 | 0.1230 | 0.1125 | ||
5 | 9/2 | 0.1770 | 0.1383 | ||
6 | 7/2 | 0.2333 | 0.1863 | ||
7 | 5/2 | 0.2525 | 0.2011 | ||
8 | 3/2 | 0.2555 | 0.2042 | ||
9 | 11/2 | 0.2103 | |||
10 | 3/2 | 0.2193 | 0.1667 | ||
Tm I, = 470, = 23,804 | |||||
1 | 7/2 | 0.0 | 0.0 | ||
2 | 5/2 | 0.0891 | 0.0799 | ||
3 | 9/2 | 0.1343 | 0.11956 | ||
4 | 15/2 | 0.2030 | 0.1716 | ||
5 | 11/2 | 0.21430 | 0.14205 | ||
6 | 13/2 | 0.25119 | 0.15906 | ||
7 | 17/2 | 0.31023 | 0.14997 | ||
8 | 7/2 | 0.20683 | 0.15452 | ||
9 | 15/2 | 0.38814 | 0.17034 | ||
10 | 9/2 | 0.28376 | 0.17165 | ||
Tm II, = 1129, = 2467 | |||||
1 | 4 | 0.0 | 0.0 | ||
2 | 3 | 0.000309 | 0.00216 | ||
3 | 2 | 0.1050 | 0.0799 | ||
4 | 3 | 0.1053 | 0.0816 | ||
5 | 6 | 0.1449 | 0.1135 | ||
6 | 5 | 0.2272 | 0.1879 | ||
7 | 4 | 0.1812 | 0.2272 | ||
8 | 5 | 0.1362 | 0.1510 | ||
9 | 7 | 0.14733 | 0.17878 | ||
10 | 6 | 0.15250 | 0.2032 | ||
Tm III, = 1437, = 181,768 | |||||
1 | 7/2 | 0.0 | 0.0 | ||
2 | 5/2 | 0.06669 | 0.07995 | ||
3 | 9/2 | 0.24034 | 0.20866 | ||
4 | 15/2 | 0.27574 | 0.235825 | ||
5 | 11/2 | 0.27975 | 0.239230 | ||
6 | 13/2 | 0.30738 | 0.261724 | ||
7 | 13/2 | 0.21097 | 0.230575 | ||
8 | 11/2 | 0.21716 | 0.236207 | ||
9 | 7/2 | 0.27029 | 0.251029 | ||
10 | 17/2 | 0.28719 | 0.251127 | ||
Tm IV, = 1606, = 160,013 | |||||
1 | 6 | 0.0 | 0.0 | ||
2 | 5 | 0.08038 | 0.0737 | ||
3 | 4 | 0.06591 | 0.114 | ||
4 | 4 | 0.12865 | 0.0514 | ||
5 | 3 | 0.15760 | 0.1308 | ||
6 | 2 | 0.17087 | 0.1353 | ||
7 | 4 | 0.21265 | 0.1943 | ||
8 | 2 | 0.33334 | |||
9 | 6 | 0.40132 | |||
10 | 0 | 0.43598 | |||
Tm V, = 1837, = 259,539 | |||||
1 | 15/2 | 0.0 | 0.0 | ||
2 | 13/2 | 0.04067 | |||
3 | 11/2 | 0.06393 | |||
4 | 9/2 | 0.07922 | |||
5 | 9/2 | 0.10784 | |||
6 | 11/2 | 0.12898 | |||
7 | 3/2 | 0.13396 | |||
8 | 7/2 | 0.14556 | |||
9 | 5/2 | 0.15756 | |||
10 | 3/2 | 0.15875 | |||
Yb I, = 455, = 22,002 | |||||
1 | 0 | 0.0 | 0.0 | ||
2 | 0 | 0.11722 | 0.157544 | ||
3 | 1 | 0.12353 | 0.163955 | ||
4 | 2 | 0.13864 | 0.179614 | ||
5 | 2 | 0.17604 | 0.211309 | ||
6 | 5 | 0.21229 | 0.235651 | ||
7 | 3 | 0.23746 | 0.250103 | ||
8 | 4 | 0.25282 | 0.256836 | ||
9 | 1 | 0.37221 | 0.223161 | ||
10 | 2 | 0.37380 | 0.225556 | ||
Yb II, = 264, = 8033 | |||||
1 | 1/2 | 0.0 | 0.0 | ||
2 | 7/2 | 0.12512 | 0.195182 | ||
3 | 5/2 | 0.22718 | 0.287669 | ||
4 | 3/2 | 0.13701 | 0.209234 | ||
5 | 5/2 | 0.15567 | 0.221736 | ||
6 | 5/2 | 0.20627 | 0.243846 | ||
7 | 3/2 | 0.23529 | 0.262062 | ||
8 | 1/2 | 0.28170 | 0.306676 | ||
9 | 1/2 | 0.25680 | 0.246605 | ||
10 | 3/2 | 0.27636 | 0.276954 | ||
Yb III, = 1485, = 203,904 | |||||
1 | 0 | 0.0 | 0.0 | ||
2 | 2 | 0.31312 | 0.304234 | ||
3 | 5 | 0.35368 | 0.337353 | ||
4 | 3 | 0.381433 | 0.356681 | ||
5 | 4 | 0.397868 | 0.365965 | ||
6 | 4 | 0.313955 | 0.315810 | ||
7 | 3 | 0.314706 | 0.318858 | ||
8 | 6 | 0.387298 | 0.365965 | ||
9 | 1 | 0.393126 | 0.361962 | ||
10 | 2 | 0.406379 | 0.367132 | ||
Yb IV, = 963, = 40,767 | |||||
1 | 7/2 | 0.0 | 0.0 | ||
2 | 5/2 | 0.10849 | 0.093077 | ||
3 | 9/2 | 0.68093 | 0.715611 | ||
4 | 15/2 | 0.71781 | 0.748930 | ||
5 | 11/2 | 0.72798 | 0.753373 | ||
6 | 13/2 | 0.75809 | 0.779549 | ||
7 | 7/2 | 0.74697 | 0.768627 | ||
8 | 17/2 | 0.75311 | 0.775715 | ||
9 | 9/2 | 0.78667 | 0.802991 | ||
10 | 11/2 | 0.79105 | 0.803512 | ||
Yb V, = 873, = 59,027 | |||||
1 | 6 | 0.0 | 0.0 | ||
2 | 4 | 0.031148 | |||
3 | 5 | 0.056967 | |||
4 | 4 | 0.085510 | |||
5 | 3 | 0.10029 | |||
6 | 2 | 0.10611 | |||
7 | 4 | 0.13819 | |||
8 | 2 | 0.21423 | |||
9 | 6 | 0.26570 | |||
10 | 0 | 0.28940 | |||
Yb VI, = 1407, = 13,807 | |||||
1 | 15/2 | 0.0 | 0.0 | ||
2 | 11/2 | 0.020645 | |||
3 | 13/2 | 0.021470 | |||
4 | 9/2 | 0.024775 | |||
5 | 11/2 | 0.036494 | |||
6 | 5/2 | 0.072901 | |||
7 | 11/2 | 0.074037 | |||
8 | 11/2 | 0.082992 | |||
9 | 7/2 | 0.093051 | |||
10 | 9/2 | 0.103729 | |||
Lu I, = 148, = 3220 | |||||
1 | 3/2 | 0.0 | 0.0 | ||
2 | 5/2 | 0.020658 | 0.018170 | ||
3 | 1/2 | 0.083090 | 0.037691 | ||
4 | 3/2 | 0.097783 | 0.068130 | ||
5 | 3/2 | 0.116829 | 0.158809 | ||
6 | 5/2 | 0.123975 | 0.168626 | ||
7 | 7/2 | 0.137319 | 0.186195 | ||
8 | 9/2 | 0.152215 | 0.206033 | ||
9 | 3/2 | 0.251670 | 0.171785 | ||
10 | 5/2 | 0.258495 | 0.176816 | ||
Lu II, = 455, = 22,154 | |||||
1 | 0 | 0.0 | 0.0 | ||
2 | 1 | 0.088774 | 0.107495 | ||
3 | 2 | 0.098492 | 0.113319 | ||
4 | 3 | 0.132393 | 0.129392 | ||
5 | 2 | 0.162822 | 0.157946 | ||
6 | 0 | 0.235055 | 0.248452 | ||
7 | 1 | 0.248583 | 0.259740 | ||
8 | 2 | 0.288652 | 0.295736 | ||
9 | 2 | 0.286572 | 0.267974 | ||
10 | 3 | 0.318543 | 0.281482 | ||
Lu III, = 145, = 159 | |||||
1 | 1/2 | 0.0 | 0.0 | ||
2 | 3/2 | 0.0510604 | 0.052011 | ||
3 | 5/2 | 0.0956229 | 0.078805 | ||
4 | 1/2 | 0.342017 | 0.349932 | ||
5 | 3/2 | 0.379465 | 0.407384 | ||
6 | 5/2 | 0.741428 | |||
7 | 7/2 | 0.743474 | |||
8 | 3/2 | 0.745181 | |||
9 | 11/2 | 0.758697 | |||
10 | 7/2 | 0.766942 | |||
Lu IV, = 1485, = 204,567 | |||||
1 | 0 | 0.0 | 0.0 | ||
2 | 2 | 0.860650 | 0.824085 | ||
3 | 5 | 0.894914 | 0.863590 | ||
4 | 3 | 0.919319 | 0.886969 | ||
5 | 4 | 0.934682 | 0.898131 | ||
6 | 6 | 0.927311 | 0.895222 | ||
7 | 1 | 0.939756 | 0.897644 | ||
8 | 2 | 0.943373 | 0.908169 | ||
9 | 4 | 0.971074 | 0.931466 | ||
10 | 3 | 0.971264 | 0.939247 | ||
Lu V, = 1437, = 182,086 | |||||
1 | 7/2 | 0.0 | 0.0 | ||
2 | 5/2 | 0.12751 | 0.107464 | ||
3 | 7/2 | 1.45797 | 1.373872 | ||
4 | 9/2 | 1.39228 | 1.412341 | ||
5 | 9/2 | 1.48568 | 1.429373 | ||
6 | 7/2 | 1.50702 | 1.448762 | ||
7 | 5/2 | 1.50048 | 1.449241 | ||
8 | 5/2 | 1.53991 | 1.476007 | ||
9 | 7/2 | 1.53119 | 1.481346 | ||
10 | 9/2 | 1.51306 | 1.483601 | ||
Lu VI, = 873, = 59,028 | |||||
1 | 6 | 0.0 | 0.0 | ||
2 | 4 | 0.030443 | |||
3 | 5 | 0.055132 | |||
4 | 4 | 0.083617 | |||
5 | 3 | 0.099283 | |||
6 | 2 | 0.106151 | |||
7 | 4 | 0.133692 | |||
8 | 2 | 0.219180 | |||
9 | 6 | 0.280176 | |||
10 | 0 | 0.305074 | |||
Lu VII, = 777, = 68,947 | |||||
1 | 11/2 | 0.0 | 0.0 | ||
2 | 9/2 | 0.0125831 | |||
3 | 3/2 | 0.0421028 | |||
4 | 7/2 | 0.0666561 | |||
5 | 5/2 | 0.104410 | |||
6 | 5/2 | 0.104410 | |||
7 | 3/2 | 0.123075 | |||
8 | 1/2 | 0.127465 | |||
9 | 9/2 | 0.147603 | |||
10 | 7/2 | 0.224123 |
i-j | SLp Ci-SLp Cj | gi-gj | wl(A) | fij | aji(s-1) |
---|---|---|---|---|---|
29-3 | 4Ie 2-4Io 1 | 12-10 | 6454.84 | 4.24E-06 | 8.15E+02 |
29-4 | 4Ie 2-4Io 1 | 10-10 | 7270.34 | 4.48E-06 | 5.65E+02 |
42-2 | 4Ke 2-4Io 1 | 14-12 | 4678.36 | 9.76E-06 | 3.47E+03 |
42-3 | 4Ke 2-4Io 1 | 12-12 | 5289.56 | 1.11E-05 | 2.65E+03 |
42-4 | 4Ke 2-4Io 1 | 10-12 | 5824.98 | 8.06E-07 | 1.32E+02 |
… | |||||
361-455 | 2Po 1-2Pe 2 | 4-2 | 946.19 | 7.21E-02 | 1.07E+09 |
Transition | ||
---|---|---|
NIST | SS | |
Ho I | ||
3.73 | 2.77 | − |
1.62 | 1.00 | − |
Ho II | ||
6.35 | 3.09 | |
4.87 | 4.64 | |
Ho III: No A-value is available | ||
Er I | ||
1.16 | 2.49 | |
7.28 | 7.26 | |
Er II | ||
2.0 | 4.67 | |
1.4 | 1.01 | |
NIST | SS | |
Er III, Er IV: No A-value is available | ||
Tm I | ||
5.3 | 3.33 | |
1.47 | 1.81 | |
Tm II | ||
1.06 | 7.29 | |
1.57 | 2.19 | |
Tm III, IV, V: No A-value is available | ||
Yb I | ||
1.00 | 1.66 | |
6.83 | 9.12 | |
Yb II | ||
6.83 | 9.21 | |
1.92 | 1.66 | |
Yb III, IV, V, VI: No A-value is available | ||
Lu I | ||
7.90 | 4.53 | |
1.85 | 3.10 | |
Lu II | ||
4.53 | 3.97 | |
7.14 | 5.43 | |
Lu III, IV, V, VI, VII: No A-value is available |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahar, S.N. Theoretical Spectra of Lanthanides for Kilonovae Events: Ho I-III, Er I-IV, Tm I-V, Yb I-VI, Lu I-VII. Atoms 2024, 12, 24. https://doi.org/10.3390/atoms12040024
Nahar SN. Theoretical Spectra of Lanthanides for Kilonovae Events: Ho I-III, Er I-IV, Tm I-V, Yb I-VI, Lu I-VII. Atoms. 2024; 12(4):24. https://doi.org/10.3390/atoms12040024
Chicago/Turabian StyleNahar, Sultana N. 2024. "Theoretical Spectra of Lanthanides for Kilonovae Events: Ho I-III, Er I-IV, Tm I-V, Yb I-VI, Lu I-VII" Atoms 12, no. 4: 24. https://doi.org/10.3390/atoms12040024
APA StyleNahar, S. N. (2024). Theoretical Spectra of Lanthanides for Kilonovae Events: Ho I-III, Er I-IV, Tm I-V, Yb I-VI, Lu I-VII. Atoms, 12(4), 24. https://doi.org/10.3390/atoms12040024