
Citation: Li, J.; Kovachy, T.; Bonacum,

J.; Shahriar, S.M. Sensitivity of a

Point-Source-Interferometry-Based

Inertial Measurement Unit Employing

Large Momentum Transfer and

Launched Atoms. Atoms 2024, 12, 32.

https://doi.org/10.3390/

atoms12060032

Academic Editor: Mark Edwards

Received: 25 April 2024

Revised: 31 May 2024

Accepted: 5 June 2024

Published: 11 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atoms

Article

Sensitivity of a Point-Source-Interferometry-Based Inertial
Measurement Unit Employing Large Momentum Transfer
and Launched Atoms
Jinyang Li 1,* , Timothy Kovachy 1, Jason Bonacum 2 and Selim M. Shahriar 1,2,3

1 Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA;
timothy.kovachy@northwestern.edu (T.K.); shahriar@northwestern.edu (S.M.S.)

2 Digital Optics Technologies, Rolling Meadows, IL 60008, USA; jason@digital-optics-inc.com
3 Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
* Correspondence: li27j@u.northwestern.edu

Abstract: We analyze theoretically the sensitivity of accelerometry and rotation sensing with a
point source interferometer employing large momentum transfer (LMT) and present a design of an
inertial measurement unit (IMU) that can measure rotation around and acceleration along each of
the three axes. In this design, the launching technique is used to realize the LMT process without
the need to physically change directions of the Raman pulses, thus significantly simplifying the
apparatus. We also describe an explicit scheme for such an IMU.

Keywords: atom interferometry; atomic inertial measurement unit; point source interferometer; large
momentum transfer; quantum sensing

1. Introduction

For inertial navigation, it is necessary to measure both acceleration and rotation. Multi-
axis atom interferometers with such capabilities are being actively investigated [1–6]. One
challenge for a conventional atom interferometer is distinguishing between phase shifts
produced by acceleration and rotation. The techniques used for this purpose include op-
erating two or more interferometers where atoms move in opposite directions [1,2] and
using a four-pulse interferometer protocol [1,3]. The counter-propagating technique [1,2]
involves arguably an increased level of complexity, which may pose challenges for applica-
tions requiring portability. In the case of the four-pulse technique [1,3], the phase shift is
proportional to the cross product of acceleration and angular velocity. Thus, in order to
determine one of these measurands, the other must be accurately known. For measuring
rotation on an Earth-bound platform, the acceleration due to gravity can be used as such a
known parameter. However, for a space-borne platform, there does not exist such a known
parameter. Although an offset acceleration or rotation could be applied to work as such a
parameter, uncertainties in the applied offsets would limit the accuracy of such a device
significantly.

Arguably, a more suitable method for distinguishing acceleration- and rotation-
induced phase shifts is the point source interferometer (PSI) [7–11]. A one-axis PSI can be
used for measuring acceleration along the primary axis and two components of rotation
along the axes orthogonal to the primary axis. In a conventional atomic interferometer,
the signal is determined by measuring the total population of the atoms in a particular
internal quantum state, and there exists a well-developed method for the sensitivity limit
analysis for such a detection scheme [12,13]. However, for a PSI, the information about the
acceleration and the rate of rotation is distributed spatially over the whole atomic cloud.
Specifically, the magnitude of rotation is inferred from the spacing of the spatial fringes
formed by the atoms in one of two internal quantum states, and the direction of rotation
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can be gleaned from the orientations thereof. The acceleration, on the other hand, shifts
the phase of the fringes. As such, an analysis of the sensitivity of rotation sensing and
accelerometry for a PSI is very different from that of a conventional atomic interferometer.
To the best of our knowledge, there are only sensitivity analyses for rotation sensing, and
they are heuristic [14,15]. In this paper, we present a systematic and rigorous analysis of
both acceleration and rotation sensitivity of a PSI. We present a generalized expression
for these sensitivities in terms of the signals measured by each pixel of a camera used for
monitoring the distributed signal. We find that when the acceleration or rotation exceeds
certain levels, it is possible to express the sensitivity in a closed form. Otherwise, the
sensitivity can only be determined via a numerical evaluation of the general expression.

In order to determine the ultimate capability of a PSI, we also consider the case when
Raman-transition-based large momentum transfer (LMT) [14,16–18] is incorporated in
order to enhance the sensitivity for both rotation sensing and accelerometry. The way to
implement LMT is to apply additional Raman π pulses in opposite effective directions. The
effective propagating direction of a pair of counter-propagating Raman beams is defined as
the propagating direction of the higher-frequency Raman beam. Some of the additional π
pulses are effectively parallel to the original three Raman pulses and the rest are effectively
antiparallel. One method for flipping the directions of the two Raman beams is to swap the
polarizations of the two beams before a polarizing beam splitter (PBS) [17,18]. To change
the polarizations of the two beams rapidly without wasting optical power, a Pockels cell
can be used [17]. A Pockels cell with a high extinction ratio needs to be driven by a voltage
as high as several kilovolts. Furthermore, in this scheme, the two Raman beams must
have orthogonal polarizations and thus cannot be two components in the output from an
electro-optic modulator (EOM). This method for swapping the polarizations can increase
the complexity of the system considerably. Another way to flip the directions of the Raman
beams is to make use of the opposite Doppler shifts for Raman beam pairs with opposite
effective directions [19]. The advantage of this method is that no external device is needed
to swap the directions of the Raman beams. To induce a large Doppler shift for the Raman
beam, a high offset velocity of the atoms is required. Usually, this offset velocity is induced
by gravity. However, the free-fall approach has three drawbacks. First, this approach
can only impart an offset velocity in the vertical direction. Second, it takes a long time to
accumulate a high offset velocity. Third, the atoms thermally expand during the free-fall
process. In this paper, we propose to use moving-molasses-induced launching of atoms to
impart such an offset velocity for LMT.

The use of the launching technique for breaking the degeneracy between the transi-
tions driven by the two pairs of Raman beams has been demonstrated previously [11]. What
would be important is to show that this approach can be generalized in three dimensions
with a single apparatus, in the context of implementing high-order LMT, since the ability to
reverse the effective direction of the Raman beams via changing the modulation frequency
would simplify the operation of the system. The advantage resulting from this simplifica-
tion of the LMT process would become more important for an inertial measurement unit
(IMU) for measuring rotation around and acceleration along each of the three axes, since it
would require the operation of three PSIs, either in parallel or serially. However, it is not a
priori obvious how such a scheme can be generalized for three-axis operation in a manner
that would not introduce other potential complications. As such, we present an explicit
scheme, based on the use of 87Rb atoms, for implementing an IMU based on such a PSI,
incorporating the LMT process as well as launching of atoms.

The rest of the paper is organized as follows. In Section 2, we present an analysis
of the sensitivity of rotation sensing and accelerometry based on a signal image of a
PSI. In Section 3, we analyze the effects of various experimental imperfections for the
IMU. In Section 4, we present the general modality for an IMU employing point source
interferometry. In Section 5, we describe how the process of LMT is incorporated into
the IMU. In Section 6, we present an explicit description for such an IMU, employing
87Rb atoms. Concluding discussions are presented in Section 7. The appendix shows the
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expression for phase shifts due to acceleration and rotation as functions of the order of
LMT used.

2. Analysis of Acceleration and Rotation Sensitivity Based on a Signal Image of a PSI

To start with, we recall briefly how a conventional PSI operates on a terrestrial platform
works. First, atoms are captured in a magneto-optic trap (MOT) and then undergo optical
molasses cooling. Then, optical pumping and state selection is applied to place the atoms in
the mF = 0 Zeeman substate. Next, an offset magnetic field is turned on, and the atoms are
allowed to fall freely for some time to gain a mean offset velocity so that different Raman
resonant peaks resulting from a retroreflecting configuration can be separated. This step
is followed by the application of Raman pulses in the vertical direction to induce atomic
interference. Finally, an imaging beam is used to map the spatial distribution of atoms in
one internal quantum state. This signal is then analyzed to infer the rates of rotation around
the axes orthogonal to the vertical direction. It is also possible to infer the acceleration
experienced along the vertical direction by analyzing the shift in the fringe pattern.

We next consider a PSI augmented with LMT. In Figure 1, we describe schematically
the basic approach for LMT for a PSI [14,16–18]. Recalling briefly, the LMT scheme works as
follows. The conventional sequence of three counter-propagating Raman pulses (denoted
as A0, B0, and C0) are augmented by additional counter-propagating π pulses. For an
LMT of order n, the process requires the application of 4n additional π pulses. In Figure 1,
we have illustrated the case for n = 2. In this case, the first additional π pulse (A1)
propagates in an effective direction opposite to that of the initial π/2 pulse (A0). For the
next π pulse (A2), the effective direction is opposite to the previous π pulse (A1). The
effective directions of the rest of the additional π pulses are also shown in Figure 1. It
can also be seen that the pulse sequence is symmetric about pulse B0. The pulse sequence
for an arbitrary order of LMT can be obtained by generalizing this pattern. As shown in
Appendix A, the acceleration-induced phase shift of an atom interferometer with LMT
can be expressed as ϕ = keff · aT

(
T + 2∑n

j=1 Tj

)
and the rotation-induced phase shift as

ϕ = (keff × Ω) · r
(

T + 2∑n
j=1 Tj

)
, where keff is the effective wavenumber of the counter-

propagating Raman beams, whose absolute value is approximately 2k; a is the linear
acceleration; Ω is the angular velocity; and r is the displacement of the atoms from pulse
A0 to C0. The values of the time intervals T and Tj are defined in Figure 1.
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pulses are added. A pulse with an odd (even) subsript has an effective propagation direction opposite
(identical) to that of the three original pulses.

Using the results shown above, we see that for a system employing n-th order LMT,
the ideal population distribution shown in the image should be

P(r) =
1
2
[1 + cos(kΩ · r + ϕa)] f (r) (1)
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where kΩ = keff × ΩT
(

T + 2∑n
j=1 Tj

)
, ϕa = keff · aT

(
T + 2∑n

j=1 Tj

)
, and f (r) is the profile

of the final atomic cloud. It is easier to extract the angular velocity Ω and the acceleration a
in the Fourier domain. The Fourier transform of this image is

P̃(k) =
1
2

f̃ (k) +
1
4

eiϕa f̃ (k − kΩ) +
1
4

e−iϕa f̃ (k + kΩ) (2)

where k is the conjugate variable of r, and f̃ (k) is the two-dimensional Fourier transform
of f (r). There are three peaks in the Fourier domain. The two side peaks are located at
±kΩ, and the phases of the two side peaks are ±ϕa. Accordingly, the positions of the side
peaks can be used to infer Ω, and the phases of the side peaks can be used to infer a. From
the expression of kΩ and ϕa, it can be seen that only the component of Ω perpendicular to
keff and the component of a parallel to keff can be measured.

Physically, Equation (2) can be understood as the convolution between the Fourier
transform of f (r), which is f̃ (k), and the Fourier transform of a uniformly spaced fringe
pattern of infinite spatial extent. This pattern can be decomposed into a DC part, whose
FT is a delta function centered at k = 0, and an AC part, whose Fourier transform is two
delta functions at k = ±kΩ, multiplied by the phase factors. As such, the condition for the
two peaks in Equation (2) to be clearly separable is that the extent of f̃ (k) must be smaller
than kΩ. This condition would be satisfied if the shape of the atomic cloud, f (r), is smooth
enough not to have variations on a scale smaller than the fringe spacings.

In a typical atomic sensor, such as an atomic clock, an atomic magnetometer, or a
conventional atomic interferometer, the signal corresponds to the total number of atoms
in a certain state (referred to as the detected state in what follows). In contrast, the signal
of a PSI consists of the spatial distribution of the detected-state counts. Therefore, the
well-established sensitivity analysis technique for the devices that only measure the total
number of detected-state atoms cannot be applied to a PSI. As such, to the best of our
knowledge, a systematic analysis of the rotation and acceleration sensitivity of a PSI does
not exist in the literature. Refs. [14,15] developed heuristic expressions for the rotation
sensitivity of a PSI without any analysis of the acceleration sensitivity.

Here, we derive rigorously the expressions for the uncertainties in the measurement
of acceleration and rotation using a PSI for a generic situation that may or may not include
augmentation via the LMT process. For specificity, we assume the situation where a camera
with an array of pixels with identical sensitivities is used to capture a two-dimensional
image of the atoms in the detected state. Without loss of generality, we consider the case
where kΩ is in the x direction, and the image is taken in the x-y plane. In this case, it
is not necessary to consider the 2D distribution of the signal. Instead, we first integrate
the 2D image along the y direction, thus producing an effective 1D signal along the x
direction. We note first that each atom can be either in or out of the detected state, so that
the detection process is binary. As such, in a pixel labeled as l in this 1D image, the number
of detected-state atoms, pl , follows a binomial distribution:

pl ∼ B
[

f (xl),
1
2
(1 + c cos ϕ)

]
(3)

where f (xl) is the atom count in pixel l, xl is the x coordinate of pixel l, c is the contrast of
the interference fringes, ϕ = kΩxl + ϕa, and B(n, p) denotes the binomial distribution, with
n being the number of trials and p being the probability of yielding a successful result in
each trial. Therefore, it is easy to show that [20]

⟨pl⟩ =
1+c cos ϕ

2 f (xl)

∆p2
l = 1−c2 cos2 ϕ

4 f (xl)
(4)

where ⟨pi⟩ is the expectation value of pi and ∆pi is the standard deviation.
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Although it is practically more convenient to analyze the signal in the Fourier domain,
as illustrated earlier, a direct derivation of the measurement uncertainties in this domain
involves a complicated propagation of uncertainty. Therefore, we consider the uncertainty
derivation in the spatial domain directly. Considering that no information is lost in a Fourier
transform, the theoretical limit of the uncertainty does not depend on which domain the
derivation is implemented in. In this domain, one possible way to extract the values of kΩ
and ϕa is to fit the 1D image with the expected profile of pl via the process of least weighted
squares regression. Explicitly, this corresponds to minimizing the value of the expression
∑L

l=1 (pl − ⟨pl⟩)2/ f (xl), where L is the number of pixels, by adjusting the parameters
kΩ and ϕa. Therefore, the derivatives of this expression with respect to kΩ and ϕa have
null value:

L
∑

l=1

pl − ⟨pl⟩
f (xl)

∂⟨pl⟩
∂kΩ

= 0

L
∑

l=1

pl − ⟨pl⟩
f (xl)

∂⟨pl⟩
∂ϕa

= 0
(5)

Equation (5) defines kΩ and ϕa as implicit functions of {p1, p2, · · · , pL}. According to
the rule for uncertainty propagation, the variances of kΩ and ϕa can be expressed as

∆k2
Ω =

(
∂kΩ
∂p1

)2

A
∆p2

1 +
(

∂kΩ
∂p2

)2

A
∆p2

2 + · · ·+
(

∂kΩ
∂pL

)2

A
∆p2

L

∆ϕ2
a =

(
∂ϕa
∂p1

)2

A
∆p2

1 +
(

∂ϕa
∂p2

)2

A
∆p2

2 + · · ·+
(

∂ϕa
∂pL

)2

A
∆p2

L

(6)

where the subscript A indicates that the derivative is evaluated at point A, and A stands for
the point p1 = ⟨p1⟩, p2 = ⟨p2⟩, · · · , pL = ⟨pL⟩. Therefore, to calculate the variances of kΩ
and ϕa, it is necessary to calculate their derivatives with respect to p1, p2, · · · , pL. Taking
the derivative of Equation (5) with respect to, for example, p1, at point A, it is obtained that

L
∑

l=1

(
∂

∂p1

pl − ⟨pl⟩
f (xl)

)
A

∂⟨pl⟩
∂kΩ

+
L
∑

l=1

(
pl − ⟨pl⟩

f (xl)

)
pl=⟨pl⟩

(
∂

∂p1

∂⟨pl⟩
∂kΩ

)
A

=
L
∑

l=1

(
∂

∂p1

pl − ⟨pl⟩
f (xl)

)
A

∂⟨pl⟩
∂kΩ

= 0

L
∑

l=1

(
∂

∂p1

pl − ⟨pl⟩
f (xl)

)
A

∂⟨pl⟩
∂ϕa

+
L
∑

l=1

(
pl − ⟨pl⟩

f (xl)

)
pl=⟨pl⟩

(
∂

∂p1

∂⟨pl⟩
∂ϕa

)
A

=
L
∑

l=1

(
∂

∂p1

pl − ⟨pl⟩
f (xl)

)
A

∂⟨pl⟩
∂ϕa

= 0

(7)

which follows that
α
(

∂kΩ
∂p1

)
A
+ β

(
∂ϕa
∂p1

)
A
= 1

f (x1)
∂⟨p1⟩
∂kΩ

β
(

∂kΩ
∂p1

)
A
+ γ

(
∂ϕa
∂p1

)
A
= 1

f (x1)
∂⟨p1⟩
∂ϕa

(8)

where

α ≡
L
∑

l=1

1
f (xl)

(
∂⟨pl⟩
∂kΩ

)2
=

c2

4

L
∑

l=1
f (xl)x2

l sin2 ϕ

β ≡
L
∑

l=1

1
f (xl)

∂⟨pl⟩
∂kΩ

∂⟨pl⟩
∂ϕa

=
c2

4

L
∑

l=1
f (xl)xl sin2 ϕ

γ ≡
L
∑

l=1

1
f (xl)

(
∂⟨pl⟩
∂ϕa

)2
=

c2

4

L
∑

l=1
f (xl) sin2 ϕ

(9)

We now consider first the limit where the number of visible fringes is large enough so
that the peaks shown in Equation (2) are separated to the extent that the overlaps between
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the spectral (spatial–frequency) distributions of the neighboring peaks are negligible. In
this case, the coefficients in Equation (9) can be approximated as

α ≈ c2

4
〈
sin2 ϕ

〉 L
∑

l=1
f (xl)x2

l =
c2Nσ2

f
8

β ≈ c2

4
〈
sin2 ϕ

〉 L
∑

l=1
f (xl)xl = 0

γ ≈ c2

4
〈
sin2 ϕ

〉 L
∑

l=1
f (xl) =

c2N
8

(10)

where N is the number of interrogated atoms in one shot and σf is the standard deviation
of the distribution f (x). Then, Equation (8) can be simplified as(

∂kΩ
∂p1

)
A
= 8∂⟨p1⟩/∂kΩ

Ncσ2
f f (x1)

= − 4x1 sin ϕ

Ncσ2
f(

∂ϕa
∂p1

)
A
= 8∂⟨p1⟩/∂ϕa

Nc f (x1)
= − 4 sin ϕ

Nc

(11)

Substituting Equation (11) into Equation (6), it can be obtained that

∆k2
Ω ≈

4∑L
l=1 f (xl)x2

l
N2c2σ4

f

〈
sin2 ϕ

(
1 − c2 cos2 ϕ

)〉
=

4 − c2

2Nc2σ2
f

∆ϕ2
a ≈ 4∑L

l=1 f (xl)

N2c2

〈
sin2 ϕ

(
1 − c2 cos ϕ

)〉
=

4 − c2

2Nc2

(12)

Therefore, the sensitivity limits can be expressed as:

∆ϕ−1
a = c

√
2N

4−c2 ≈ c
√

N
2

∆k−1
Ω = cσf

√
2N

4−c2 ≈ cσf

√
N
2

(13)

Substituting the expressions for kΩ and ϕa, the precision of the acceleration and the
angular velocity can be expressed as:

∆a−1 = ktT2c

√
N
2

; ∆Ω−1 = ktTcσf

√
N
2

(14)

where kt is the momentum transfer divided by ℏ.
When we take into account the number of measurement cycles that are repeated within

a certain period of time τ, given by τ/τ0, the measurement-time-dependent sensitivities
can be expressed as:

∆a−1 = ktT2c

√
Nτ

2τ0
; ∆Ω−1 = ktTcσf

√
Nτ

2τ0
(15)

where τ0 is the single-shot duration, including any dead-time between each cycle. For a
specific set of parameters, namely kt = 10keff, T = 20 ms, c = 0.5, N = 106, τ0 = 1 s, and
σf = 1 mm, measurement uncertainties corresponding to these sensitivities are calculated
to be ∆Ω

√
τ = 0.88 µrad · s−1 · Hz−1/2 and ∆a

√
τ = 4.5 nano−g · Hz−1/2.

In cases where the spectral (spatial–frequency) distributions of the neighboring peaks
shown in Equation (2) still overlap significantly, numerical simulations based on Equa-
tions (6), (8), and (9) are needed to find the exact sensitivities because there are no simple
analytical expressions for them, keeping in mind that the sensitivities are also proportional
to the square root of the repetition number of the measurement cycles. Nevertheless, the
analytical results shown here serve as important indicators for estimating the achievable
sensitivities. The sensitivity analysis presented above applies to each axis of the three-
axis IMU, since it operates in a sequential mode. It should be noted that the expression
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of rotation sensitivity shown in the right part of Equation (14) agrees with the heuristic
expression for the same given in Ref. [14]. However, the analysis presented above applies
more broadly to situations where the constraint used in deriving Equation (14) is not valid.
Furthermore, it should be noted again that no analysis of acceleration sensitivity, even a
heuristic one, was given in Ref. [14].

To show how the sensitivity converges to the expressions shown in Equation (13) as kΩ
increases, the accelerometry sensitivity versus kΩσf for Gaussian f (x) is plotted in Figure 2
for ϕa = 0 and ϕa = π/2, using numerical simulations based on Equations (6), (8), and
(9). It can be seen that when kΩσf is close to zero, the sensitivity depends on ϕa, and that
as kΩσf increases to π, the sensitivity converges to the expressions shown in Equation (13)
regardless of the value of ϕa.

Atoms 2024, 12, x FOR PEER REVIEW 8 of 21 
 

 
Figure 2. Accelerometry sensitivity of a PSI as a function of fk σΩ  for Gaussian ( )f x  when (a) 

0aφ =  and (b) 2aφ π= . When fk σΩ  is close to zero, the sensitivity depends on aφ . As fk σΩ  in-
creases to about π , the sensitivity converges to the analytical expressions. 

It should also be noted that measurement of acceleration with any atomic interfer-
ometer, including the PSI, becomes ambiguous when the phase shift due to acceleration 
exceeds the value of 2π . This is not a problem for a platform for which the acceleration 
is expected to be small enough so that the phase shift would be much less than 2π . For 
platforms that may undergo much larger acceleration, it would be necessary to make use 
of a coarse-grained auxiliary accelerometer for disambiguation of the signal [21]. In the 
case of the IMU, three such auxiliary accelerometers would be required. 

3. Experimental Imperfections Affecting the PSI Sensitivity 
From the analytical results presented above, we see that the parameters that affect 

the sensitivities are as follows: the fringe contrast ( c ), the order of LMT ( tk ), the dura-
tion of the Raman pulse sequence ( 2T ), the number of atoms interrogated in one shot (
N ), the single-shot duration ( 0τ ), and the final size of the atomic cloud ( fσ ), which on-
ly affects the rotation measurement sensitivity. In practice, the fringe contrast c  depends 
on some other parameters due to various imperfections, which can be divided into two 
categories. The first category pertains to effects that prevent the transition efficiency of 
the Raman pulses from reaching unity. These include Doppler-shift-induced detuning, 
spatial inhomogeneity and temporal fluctuation of the Raman beam intensity, and spon-
taneous emission. The second category pertains to other imperfections that are unrelated 
to the Raman pulse transition efficiency. These include a finite initial size of the atomic 
cloud and the imaging noise. We next consider these two categories in sequence. 

An important property of the imperfections in the first category is that they result in 
a reduction in c  as the order of LMT increases. Therefore, generally, there exists an op-
timal order of LMT that maximizes the sensitivity for a given set of operating parame-
ters. In Ref. [14], we studied optimization of the LMT order when Doppler-shift-induced 
detuning and spontaneous emission are taken into account. In Figure 12 of Ref. [14], the 
sensitivity enhancement as a function of the order of LMT is plotted for a set of discrete 
Raman beam intensities. However, it is also instructive to study how the maximum sen-
sitivity enhancement varies as a function of the Raman beam intensity. We have carried 
out such a study, based on the analytical result presented in Ref. [14]. Some results in 
Ref. [14] are summarized as follows. The two-photon Rabi frequency can be expressed as 

2 2Ω Δ , where Ω  is the single-photon Rabi frequency and Δ  is the single-photon de-

tuning, and the effective spontaneous decay rate can be expressed 2 24ΓΩ Δ . Therefore, 
for a fixed Ω , a larger Δ  decreases both the two-photon Rabi frequency and the spon-
taneous decay rate. As such, there exists an optimal Δ  that maximizes the signal con-
trast, and this optimal Δ  depends on Ω . If the optimal detuning is adopted, the optimal 
order of LMT and the corresponding maximum LMT-induced sensitivity enhancement 

Figure 2. Accelerometry sensitivity of a PSI as a function of kΩσf for Gaussian f (x) when (a) ϕa = 0
and (b) ϕa = π/2. When kΩσf is close to zero, the sensitivity depends on ϕa. As kΩσf increases to
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It should also be noted that measurement of acceleration with any atomic interfer-
ometer, including the PSI, becomes ambiguous when the phase shift due to acceleration
exceeds the value of 2π. This is not a problem for a platform for which the acceleration
is expected to be small enough so that the phase shift would be much less than 2π. For
platforms that may undergo much larger acceleration, it would be necessary to make use
of a coarse-grained auxiliary accelerometer for disambiguation of the signal [21]. In the
case of the IMU, three such auxiliary accelerometers would be required.

3. Experimental Imperfections Affecting the PSI Sensitivity

From the analytical results presented above, we see that the parameters that affect
the sensitivities are as follows: the fringe contrast (c), the order of LMT (kt), the duration
of the Raman pulse sequence (2T), the number of atoms interrogated in one shot (N), the
single-shot duration (τ0), and the final size of the atomic cloud (σf), which only affects the
rotation measurement sensitivity. In practice, the fringe contrast c depends on some other
parameters due to various imperfections, which can be divided into two categories. The
first category pertains to effects that prevent the transition efficiency of the Raman pulses
from reaching unity. These include Doppler-shift-induced detuning, spatial inhomogeneity
and temporal fluctuation of the Raman beam intensity, and spontaneous emission. The
second category pertains to other imperfections that are unrelated to the Raman pulse
transition efficiency. These include a finite initial size of the atomic cloud and the imaging
noise. We next consider these two categories in sequence.

An important property of the imperfections in the first category is that they result in a
reduction in c as the order of LMT increases. Therefore, generally, there exists an optimal
order of LMT that maximizes the sensitivity for a given set of operating parameters. In
Ref. [14], we studied optimization of the LMT order when Doppler-shift-induced detuning
and spontaneous emission are taken into account. In Figure 12 of Ref. [14], the sensitivity
enhancement as a function of the order of LMT is plotted for a set of discrete Raman
beam intensities. However, it is also instructive to study how the maximum sensitivity
enhancement varies as a function of the Raman beam intensity. We have carried out such
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a study, based on the analytical result presented in Ref. [14]. Some results in Ref. [14]
are summarized as follows. The two-photon Rabi frequency can be expressed as Ω2/2∆,
where Ω is the single-photon Rabi frequency and ∆ is the single-photon detuning, and the
effective spontaneous decay rate can be expressed ΓΩ2/4∆2. Therefore, for a fixed Ω, a
larger ∆ decreases both the two-photon Rabi frequency and the spontaneous decay rate.
As such, there exists an optimal ∆ that maximizes the signal contrast, and this optimal
∆ depends on Ω. If the optimal detuning is adopted, the optimal order of LMT and the
corresponding maximum LMT-induced sensitivity enhancement as a function of the Raman
beam intensity are shown in Figure 3. Here, the LMT-induced sensitivity enhancement
factor is the ratio of the sensitivity with LMT applied to that without LMT. It should be kept
in mind that for each Raman beam intensity, the maximum enhancement factor requires a
different number of LMT pulses. These considerations have to be taken into account in the
operation of the IMU.
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There are some methods to suppress the effect of the large relative Doppler shift
between the two interferometer arms when the order of LMT is high. These methods
include addressing each arm individually [22], which has been applied to Bragg transitions,
and using Floquet pulses [23], which has been applied to single-photon transitions. In
principle, these methods can also be applied to Raman transitions. However, detailed
theoretical modeling is needed to see how well these techniques would work in this case of
Raman transitions and will be carried out by us in the near future.

For the second category, we note first that the effect of the imperfections related to
imaging would depend on the experimental details of any particular implementation of the
PSI. In contrast, the effect of the finite initial size of the atomic cloud is more fundamental.
As such, we consider here the effect of this imperfection in some details. For a PSI where
the initial radius of the atomic cloud σ0 ̸= 0, a larger T not only increases the phase shift
but also makes the actual sensitivity closer to the ideal one by increasing the ratio σf/σ0,
where σf is the final radius of the atomic cloud. However, a larger T increases the drifting
and falling distances of the atoms. There is a trade-off between the effect of σf/σ0 and
the apparatus size. For convenience, we define the parameter b ≡ 1 − σ2

0 /σ2
f , which is

called the fringe broadening factor since the actual wavenumber of the fringes when σ0 ̸= 0
is given by k′Ω = bkΩ. This factor also reduces the contrast according to the following
relation: c′ = c exp

[
−k2

Ωb(1 − b)
]

[7,8,14]. Therefore, the ratio of the actual sensitivity to
the ideal one can be expressed as b exp

[
−k2

Ωb(1 − b)
]
. This ratio is plotted in Figure 4 for

σ0 = 0.2 mm and kΩ = π/2 cm−1, when the temperature of the atoms is 6 µK. It can be
seen that this ratio can exceed 80% when T = 20 ms. With T = 20 ms (corresponding to an
expansion time of 40 ms), and assuming an offset velocity of, for example, 1 m · s−1, the
distance traveled by the atoms during this process would be about 4 cm. The offset velocity
must induce a relative Doppler shift much higher than the width of the Doppler and power
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broadening, as well as the Doppler shift corresponding to the momentum transfer. For nth
order of LMT, the Doppler shift resulting from the momentum transfer can be estimated as
n × 30 kHz.
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We finally consider systematic errors, which are characterized by the property that they
cannot be corrected by more repetitions of the measurement. Therefore, careful analysis
and calibration are needed to alleviate the effect of such errors. Sources of systematic
errors encompass a wide range and strongly depend on the specific experimental system,
like residual light shift, residual Zeeman shift, and wavefront distortion of the Raman
beams. These sources of error are relevant to all light pulse atom interferometers. As such,
addressing such sources of error is beyond the scope of this paper. Instead, we address
one particular source of error that is particularly relevant to the scheme proposed here.
Specifically, we consider the effect of residual Zeeman shift resulting from magnetic field
gradient. In most atomic sensors, the effect of magnetic fields and gradients thereof can
be suppressed to an arbitrary degree by employing magnetic shielding and avoiding the
presence of any strong magnetic field nearby. However, for the particular design of the PSI
we have proposed here, the unavoidable use of a Faraday rotator not too far from the atoms
implies that the effect of the magnetic field gradient may be more substantial than it is for
other atomic sensors. This would be true even if a magnetic shield is employed around the
atoms, since one must allow openings in the shield for the optical beams to pass through.

Although only the mF = 0 Zeeman substates are involved in the interference process,
they are not completely resistant to external magnetic fields due to higher-order Zeeman
shifts. If the atoms move through a spatially varying magnetic field, the energy gap
between the two mF = 0 Zeeman substates also vary, which can potentially induce a phase
shift. According to the Breit–Rabi formula [24,25], the F = 1(2), mF = 0 Zeeman substate
is subject to a second-order Zeeman shift of ±∆Z = ±(gSµBB)2/4∆HFS. Therefore, the
relative second-order Zeeman shift between the two mF = 0 Zeeman substates is shown to
be 2∆Z, where gS ≈ 2 is the g-factor of the electron spin, µB is the Bohr magneton, B is the
magnetic field magnitude, and ∆HFS is the hyperfine splitting of the ground state.

To estimate the phase shift caused by this second order Zeeman effect, we consider an
example case where an atom is exposed to a magnetic field of 3 G in the first half of the
Raman pulse sequence but moves to a region with a magnetic field of 3.01 G in the second
half. These values of the magnetic field and the gradient thereof are merely examples based
on what might reasonably be expected in the presence of a Faraday rotator in the path of
the Raman beams. For a physical implementation of the PSI employing the Faraday rotator,
one has to measure the actual magnetic field and the gradient thereof, and scale the results
of the analysis presented below accordingly.

For these values of the magnetic field and its gradient, the energy gap between the
two mF = 0 Zeeman substates differs by 35 Hz between the first half and the second
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half of the Raman pulse sequence. For T = 20 ms, the extra phase shift would be about
1.4π. Another effect of the magnetic field gradient is a force acting on the atoms resulting
from the gradient of the second order Zeeman shift. The F = 1(2), mF = 0 Zeeman
substate is a high (low) field seeking state. The force can be calculated to be ℏd∆Z/dz =
(dB/dz)

(
ℏg2

Sµ2
BB/2∆HFS

)
, which is about 1.1 × 10−23 dyn when B = 3 G and dB/dz =

1 G · cm−1. This force causes an acceleration of about 81 micro-g for 87Rb atoms. Therefore,
it would be very difficult to measure the absolute acceleration directly from the phase shift.
Even for measuring a relative acceleration, strong magnetic shielding may be needed to
decrease the uncertainty due to the magnetic field distribution. In addition, it would be
useful to measure, as precisely as possible, the residual magnetic field gradient produced
by the Faraday rotator and include the effect of this gradient in the analysis of the measured
signal. Since Faraday rotators make use of permanent magnets, this approach would be
immune to any fluctuations and would enable adequate suppression of the effect of the
magnetic field gradient, limited mostly by the accuracy of the measurement of the gradient.

4. Conceptual Modality of an Inertial Measurement Unit Employing Point Source
Interferometry

To realize a PSI-based IMU suitable for an arbitrary platform that may or may not be
terrestrial, we present a concrete scheme, as illustrated in Figure 5. Of course, an operational
IMU also includes many parts in addition to the inertial sensors, like a clock, electronic
devices, and mechanical frames. Here, we only focus on the inertial sensors themselves,
assuming the existence of the other necessary parts. To simplify the discussion, we defer to
the next section the technical details necessary for augmenting this system with LMT for
enhancing sensitivity. A single MOT inside a spherical vacuum chamber is to be used for
such an IMU. One pair of beams for the MOT, denoted as MOT 1 and MOT 1′, is applied
along the x axis, as shown in the top panel of Figure 5. The other two pairs are applied in
the y-z plane (MOT 2, MOT 2′, MOT 3, MOT 3′), as shown in the bottom panel of Figure 5.
Additional beams are used to realize three different PSIs orthogonal to one another. For
each PSI, a pair of Raman beams and an imaging beam are first combined and sent through
an optical fiber.

Consider first the case of one of these PSIs, denoted as PSI-1. The propagation axis
for PSI-1 is along the z axis (PSI 1), as shown in the top panel of Figure 5. We assume that
absorptive instead of fluorescence imaging is to be used so that the cameras do not need
to be placed very close to the atomic cloud. The imaging system for PSI-1 is also shown
in the top panel of Figure 5. The Raman beams have the polarization of (|x⟩+ |y⟩)/

√
2,

where |x(y)⟩ denotes the linear polarization along the x(y) axis. The imaging beam has
the polarization of (|x⟩ − |y⟩)/

√
2. The Raman beams and imaging beams are aligned with

the fast and the slow axis of the optical fiber. After they pass through the upper quarter
waveplate, the Raman beams become σ+-polarized and the imaging beam σ−-polarized.
The fast axis of the lower quarter waveplate is aligned with the slow axis of the upper one so
that the beams are all restored to their original linear polarizations. Then a Faraday rotator
turns the polarization of the Raman beams to |y⟩ and the imaging beam to |x⟩. Given the
state-of-the-art technology, the aperture of the Faraday rotator will not be sufficiently large
for the Raman beams. To circumvent this problem, a pair of lenses can be used (not shown
in Figure 5) to reduce the size of the optical beams before entering the Faraday rotator. Of
course, this would introduce a scale factor between the actual angle of rotation experienced
by the reflected beams at the atomic cloud and the angle of rotation of the retro-reflecting
mirror, and this factor has to be taken into account when using such a rotation to calibrate
the rotation sensitivity of the PSI [26].

The Raman beams are transmitted through a PBS and the imaging beam is reflected
by the PBS to the camera. The retroreflected Raman beams have the polarization of
(|x⟩ − |y⟩)/

√
2 after they pass through the Faraday rotator for the second time. In this way,

after they pass through the lower quarter waveplate, they become σ+-polarized again. It
should be noted that the Faraday rotator is necessary for restoring the polarization after
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the Raman beam is retroreflected. We assume that the reflections from the windows can be
ignored due to either antireflection coating or a slight angle between the Raman beams and
the normal direction of the windows. In what follows, we will use the following notations
for different components of the Raman beams. Specifically, the Raman beams propagating
in the +ẑ(−ẑ) direction will be denoted as R+z

1
(

R−z
1

)
and R−z

2
(

R+z
2

)
. The other two PSIs

(PSI-2 and PSI-3) have propagation axes in the x-y plane, as shown in the bottom panel of
Figure 5. These two PSIs are configured in a manner identical to that of PSI-1.
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Figure 5. Schematic illustration of a three-dimensional PSI apparatus. The diagram on the top shows
a cross-sectional view in the y-z plane. The red arrows reprenst the Raman beams and the blue ones
the imaging beams.

Here, MOT 2 and MOT 2′ are a pair of counter-propagating beams for the magneto-
optic trap (MOT). So are MOT 3 and MOT 3′. The remaining pair needed for the MOT is
not shown in this view but rather in the diagram at the bottom, since they propagate along
the x direction. PSI-1 represents all the beams used for the PSI process along the z axis.
Specifically, the red arrows represent the Raman beams, and the blue ones represent the
imaging beams. The green rectangles represent quarter waveplates and the black boxes
represent Faraday rotators. The quarter waveplates and the Faraday rotator are configured
in such a way that the Raman beams pass through the PBS and are retroreflected while
the imaging beam is reflected by the PBS to the camera. The Faraday rotator is necessary
since the incident and the retroreflected Raman beams are both σ+-polarized in the vacuum
chamber. The diagram on the bottom shows a cross-sectional view in the x-y plane without
showing the beams that are already illustrated in the top diagram. Here PSI-2 and PSI-3
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represent the other two sets of beams (Raman beams and imaging beams) for the third
PSI process in the x-y plane. The waveplates for these PSIs are configured in a manner
analogous to that described for PSI-1.

To generate an offset velocity along each of the three PSI axes, we propose the use of
moving optical molasses [2]. In what follows, this operation is referred to as launching. For
each PSI, the moving optical molasses is created by reducing the frequencies of some MOT
beams. Consider first the case of PSI-1. For this PSI, we have to reduce the frequencies
of MOT 2′ and MOT 3′. This will produce a velocity along the MOT 2 - MOT 2′ axis and
the MOT 3 - MOT 3′ axis. Two of the velocity components will cancel each other, while
the other two will add to each other, thus generating a net velocity along the z-axis. Using
similar arguments, it is easy to determine the MOT beams whose frequencies must be
reduced for the other two PSIs. The complete list for the MOT beams whose frequencies
need to be reduced for each of the three PSIs is shown in Table 1. It should be noted that
under this process the atoms are adiabatically dragged along by the moving dipole force
potentials produced by the molasses beam. As such, the velocity of the atoms at the start of
the interferometry process would be essentially independent of any ambient acceleration,
such as the one due to gravity in a terrestrial apparatus or those due to vibrations.

Table 1. Relation between the moving direction of the molasses and the frequency configuration of
the beams.

Moving Direction of the Molasses Beams Whose Frequencies Are Reduced

Propagation axis for PSI-1 MOT 2′, MOT 3′

Propagation axis for PSI-2 MOT 1′, MOT 2′, MOT 3

Propagation axis for PSI-3 MOT 1, MOT 2′, MOT 3

We note that both co-propagating and counter-propagating Raman transitions can
be excited by the Raman beams, as illustrated schematically in Figure 6, using the case of
the D2 manifold in 87Rb for concreteness. In Figure 6a, we show the process that would
generate co-propagating Raman excitations in both +ẑ and −ẑ directions. It should be
noted that for a co-propagating Raman excitation, the difference in the Doppler shifts
is very small and can be ignored. In this diagram, we have considered only the Raman
transitions that couple the F = 1, mF = 0 and F = 2, mF = 0 Zeeman sublevels, under the
assumption that the atoms in the other Zeeman sublevels would be blown away prior to the
PSI operation, as discussed later. In Figure 6b we show one possible counter-propagating
Raman transition, and in Figure 6c we show the process that would generate the other
counter-propagating Raman excitation. As indicated in these figures, these two types of
counter-propagating Raman transitions would have opposite Doppler shifts. For a given
spread of velocities in the atoms, the velocity imparted by the launching process has to be
large enough to distinguish between these three types of Raman transitions [27].

The launching technique has two advantages compared to the case of free fall em-
ployed in a conventional, one-dimensional PSI. The first advantage is that this technique
makes it possible to make use of Doppler shifts to discriminate between the three types
of Raman transitions discussed earlier for any orientation of the PSI, including the case
when it is horizontal. Of course, for a horizontal PSI, the effect of the falling of the atoms
transverse to the Raman beams needs to be considered if operating the IMU terrestrially or
in a near-Earth platform. Specifically, the value of Raman pulse sequence time, 2T, needs
be chosen in a manner that balances the trade-off between the effect of σf/σ0 shown in
Figure 3 and the falling distance. As described earlier, a reasonable value of the sequence
time is 2T = 40 ms, which yields a value of ~80% for the ratio of the actual sensitivity to the
ideal one. For this choice of the sequence time, the falling distance would be about 8 mm.
In order to ensure that such a drop does not produce a significant change in the Raman
Rabi frequency, it would be necessary to ensure that the radius of each of the Raman beams
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be at least ~4 cm. Alternatively, one can choose to use a smaller value of the sequence time
at the expense of reducing the ratio of the actual sensitivity to the ideal one.
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The second advantage is that the atomic cloud will expand less when gaining the
offset velocity, for two reasons. First, the acceleration induced by a moving optical molasses
can be much higher than gravitational acceleration and shorten the time of expansion. For
example, in Ref. [28], atoms are accelerated to 2.6 m · s−1 within 0.5 ms. To impart such
an offset velocity with gravity, 270 ms is needed. Second, the atomic cloud expands much
more slowly in an optical molasses field. For example, in Ref. [29], the e−2 radius of the
atomic cloud increases by 0.2 mm within 100 ms in the molasses field. The atoms released
from this optical molasses are at a temperature of 6 µK. If the free-fall approach were to be
used for such an ensemble of atoms, the radius would increase by 4.8 mm within 100 ms. If
the atomic cloud remains relatively small at the application of the first Raman pulse, with
a fixed constraint on the final size of the atomic cloud, the dark period duration T can be
longer, which increases the phase shift.

The state selection can be implemented with the counter-propagating Raman
pulse [28,30,31] and a blow-away pulse, realized using the imaging beam for each PSI.
In this way, the atoms are not only concentrated in the F = 1, mF = 0 Zeeman substates
but also at a lower temperature longitudinally due to the high Doppler sensitivity of the
counter-propagating Raman transition. The transverse temperature of the atoms would
remain unaffected by this process.

5. Incorporation of Large Momentum Transfer in the PSI-Based IMU

We next discuss the method to implement LMT with such a PSI-based IMU. It is
evident that the LMT process described in Figure 1 can be applied to each of the three PSIs.
In Ref. [14], we presented a detailed analysis of how the enhancement in sensitivity varies
with increasing order of LMT. The phase shift increases with the order of LMT according to
the expression derived above, causing narrowing of the interference fringes. However, as
the order of LMT increases, the fringe amplitude decreases due to increasing Doppler shift
and spontaneous emission. Therefore, there exists an optimal order of LMT that maximizes
the sensitivity. The optimal order and the maximum sensitivity increase monotonically
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with the intensity of the Raman beams. The results of this analysis remain valid for each of
the three PSIs in the IMU.

It should be noted that, for the modality described in Figure 5, no additional optical
beams or hardware are needed for implementing the LMT process for any order. To see why,
note that for the LMT protocol illustrated in Figure 7a, the effective propagation directions
of the (counter-propagating) Raman beams need to be swapped for some π pulses. As
illustrated earlier in Figure 7b, there already exist two pairs of counter-propagating Raman
beams in opposite effective directions. For concreteness, we assume that the two frequencies
for the Raman excitation are generated with an electro-optical modulator (EOM) driven
by a voltage-controlled oscillator (VCO). When the atoms move with an offset velocity
parallel to the Raman beams, the resonant frequencies of these two pairs of Raman beams
are different due to the Doppler shift. Therefore, by tuning the frequency of the VCO,
it is possible to make the atoms experience Raman transitions due to only one of these
counter-propagating Raman beams and not the other. Thus, the propagation directions
of the Raman beams can be effectively swapped by simply tuning the frequency of the
VCO. The timing of the VCO frequency necessary for the n = 2 LMT protocol is illustrated
in Figure 7b. The Raman pulses are typically on the order of a few microseconds, and
the frequency jump shown in Figure 7b can be completed in 0.1 ms (corresponding to a
modulation bandwidth of 100 kHz, which is commonly achievable). These time scales are
much shorter than the interrogation time. Therefore, it is generally not difficult to fit in all
the LMT pulses within the interrogation period.
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6. Specific Layout of a PSI-Based IMU Using 87Rb Atoms

For concreteness, a possible implementation of a PSI-based IMU employing 87Rb is
shown in Figure 8. Figure 8a shows the layout of the optical beams. Only one laser is
needed in this implementation, assuming it has high enough output power. For example, a
Toptica TAPro with an output of 4 W should work for such a design. The laser frequency is
locked to the cross-over saturated absorption resonance occurring between the S1/2, F = 2
to P3/2, F = 1 transition and the S1/2, F = 2 to P3/2, F = 3 transition. Under this condition,
the laser is 212 MHz red-detuned from the S1/2, F = 2 to P3/2, F = 3 transition [32]. The
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part of the laser output to be used for producing the MOT and molasses cooling is split into
six separate beams (in Figure 8a, we have shown explicitly only one of these six beams). The
beam for each MOT is sent through an upshifting AOM in the double-pass configuration,
operating at a frequency of 100 MHz so that each MOT beam is detuned by 12 MHz below
the S1/2, F = 2 to P3/2, F = 3 transition. The MOT beams turn into molasses beams when
each of the AOMs is tuned to 60 MHz [10]. In this way, the detuning of the molasses
beams is increased to 92 MHz and the intensity is also significantly reduced because the
modulation frequency is far from the central frequency of the AOMs. The double-pass
configuration ensures the stability of the alignment when the modulation frequency for the
AOMs varies. Note that six different AOMs are needed in order to be able to generate the
moving molasses for the launching process.
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Figure 8. Layout of a PSI-based IMU using 87Rb atoms. (a) Optical system. Each of the six
MOT/molasses beams is produced and controlled by an AOM optimized at a modulation frequency
of 100 MHz. The modulation frequency is ramped down to 60 MHz during the process of optical
molasses cooling. These beams also pass through an EOM to generate the repumping frequency
component. The Raman beams (red) are produced by a 500 MHz AOM and an EOM. The imaging
beam (blue) is produced by an AOM tuned to 92 MHz. The Raman beams are directed to each of the
three fiber ports with PBSs (black boxes with a slash inside) and variable retarders VR1 and VR 2.
The imaging beam is directed to each of the three fiber ports with variable retarders VR 3 and VR 4.
(b) Frequencies of the beams used in (a).

The repump frequency is produced by modulating the primary MOT beam (before
it is split six-ways) with an EOM driven at a modulation frequency of 6.623 GHz. For
this choice of the modulation frequency, the +1 order sideband of the output of the EOM
becomes resonant to the S1/2, F = 1 to P3/2, F = 2 transition, as needed for repumping. It
should be noted that when the molasses cooling process is activated, the detuning of the
repump beam from the S1/2, F = 1 to P3/2, F = 2 transition is ramped up to 80 MHz. Since
the rate of leakage to S1/2, F = 1 during the molasses cooling process decreases along with
the detuning, the repumping rate is still adequate [3].

The Raman beams are produced in the following way. The majority of the laser output
first passes through an AOM that down-shifts the beam frequency by 500 MHz and then
passes through an EOM modulated with the Raman transition frequency, which is about
6.835 GHz plus the Doppler shift resulting from the launching process. The carrier and the
+1 order sideband work as the Raman frequency components. The driving power for the
EOM should be adjusted to such a value that the light shifts induced by the two Raman
beams are canceled. It should be noted that although this beam is intense, for example,
on the order of hundreds of mW, the Raman pulses are too short to cause photorefractive
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damage to the EOM [3]. The AOM serves two purposes. First, it makes it possible to turn on
and off the Raman beams rapidly. Second, it produces a large common detuning for them.
The PBSs enable this beam to be directed to any one of the three axes depending on the
states of the variable retarders VR 1 and VR 2. Here, variable retarders instead of Pockels
cells are used because a fast switch process is not necessary and variable retarders do not
need to be driven with high voltages. It should be noted that for each axis of operation,
all output power from the AOM is directed to only one fiber port, instead of being split
into three beams. The probe beam is resonant to the S1/2, F = 2 to P3/2, F = 3 transition,
which is produced by blue-shifting a piece of the laser output by 212 MHz. The imaging
beam can also be directed to any of the three axes depending on the states of the variable
retarders VR 3 and VR 4.

We next describe the steps to operate each of the PSIs for the IMU. First, atoms are
captured in an MOT. Then, the MOT is turned into optical molasses by turning off the
MOT magnetic field and shifting the modulation frequency for the AOMs from 100 MHz to
60 MHz. Next, the frequencies of some molasses beams are reduced to produce a moving
molasses field, using the protocol summarized earlier in Table 1. Upon the completion of
the launching with the moving molasses, the molasses beams are turned off so that the
optical pumping also gets turned off. At this point, the atoms are all in the S1/2, F = 2
hyperfine state, with populations distributed among the Zeeman sublevels defined with
respect to a quantization axis that is the same as the propagation axis of the PSI being
realized. This is now followed by the implementation of a state selection process. This
process consists of the following steps. First, an offset magnetic field parallel to the Raman
beams is turned on. Then, a Raman π pulse is applied, with the EOM tuned to a frequency
that causes a resonant, counter-propagating Raman transition (with the effective direction
of +z) between the F = 2, mF = 0 state and the F = 1, mF = 0. The offset field should
be strong enough to avoid excitation of Raman transitions of the other Zeeman substates.
The intensity of the Raman beams for this step should be small enough so that they can
select atoms in a narrow longitudinal velocity range [30,31]. The state selection process is
followed by the application of the imaging beam to blow away the remaining atoms in the
S1/2, F = 2 state.

After the state selection, the Raman pulses are applied to implement the LMT-augmented
PSI protocol. For the LMT process, the propagation directions of the two Raman beams
need to be swapped for some π pulses, as discussed above. However, it should be noted
that in this configuration, there already exist two pairs of counter-propagating Raman
beams in opposite effective directions. Therefore, by tuning the EOM from one Doppler-
broadened Raman resonant peak to the other, the propagation directions of the Raman
beams can be effectively swapped. Finally, the spatial population distribution of state
S1/2, F = 2 is imaged with the imaging beam and the camera.

7. Discussion and Conclusions

We have presented a systematic and rigorous analysis of the sensitivity and bandwidth
of accelerometry and rotation sensing with a point source atom interferometer employing
large momentum transfer with molasses-launched atoms. This analysis yields a generalized
expression for these sensitivities in terms of the signals measured by each pixel of a camera
used for monitoring the distributed signal. We show that when the acceleration or rotation
exceeds certain levels, it is possible to express the sensitivity in a closed form. Otherwise,
the sensitivity can only be determined via a numerical evaluation of the general expression.
We also show how the molasses-based launching process makes it possible to realize the
LMT process without the need to physically change directions of the Raman pulses, thus
significantly simplifying the apparatus and reducing the amount of time needed to make
the measurements. These advantages become more important when this process is used
for realizing an IMU. We describe an explicit scheme for a such an IMU and determine the
expected sensitivity and bandwidth thereof for experimentally accessible parameters. Of
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course, for any specific apparatus, experimental studies need to be carried out in order to
evaluate and suppress the effects of systematic sources of error.
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Appendix A

Here, we derive the phase shift, due to both acceleration and rotation, for each atom
in a PSI augmented by large momentum transfer (LMT). Consider first the acceleration-
induced phase shift. To determine this shift in the presence of LMT, it is convenient to
review briefly the derivation for the conventional π/2-π-π/2 atom interferometer, which
only includes pulses A0, B0, and C0 in Figure 7. The phase shift can be expressed as

ϕ0 = ϕA0 + ϕC0 − ϕ↑
B0

− ϕ↓
B0

=

ϕC0 −
ϕ↑

B0
+ ϕ↓

B0

2

−

ϕ↑
B0

+ ϕ↓
B0

2
− ϕA0

 ≡
(
ϕC0 − ϕB0

)
−

(
ϕB0 − ϕA0

)
(A1)

where ϕA0 denotes the relative phase between the two Raman beams at pulse A0, ϕ
↑(↓)
B0

denotes this relative phase at the upper (lower) arm at pulse B0, and ϕB0 ≡
(

ϕ↑
B0

+ ϕ↓
B0

)
/2

the Raman beam relative phase at the mean position at B0. Then the acceleration-induced
phase shift can be derived to be

ϕ0 =
(
ϕC0 − ϕB0

)
−

(
ϕB0 − ϕA0

)
= keff ·

(
∆rC0,B0 − ∆rB0,A0

)
= keff ·

(
vC0,B0 − vB0,A0

)
T = keff · (aT)T = keff · aT2 (A2)

For simplicity, in what follows, the displacement or velocity of the mean position of
the atoms are referred to as the displacement or velocity of the atoms. In Equation (A2),
∆rC0,B0 , for example, denotes the displacement of the atoms between pulse C0 and B0, vC0,B0

denotes the average velocity of the atoms in this interval, keff is the effective wavenumber
of the counter-propagating Raman beams, whose absolute value is approximately 2k, and a
is the linear acceleration. It should be noted that the relation vC0,B0 − vB0,A0 = aT is used in
the second to last step of Equation (A2). In the case of LMT, the four additional pulses A1,
B−1,B1, and C−1 yield an additional phase shift, given by

ϕ1 = 2
[(

ϕC−1 − ϕB−1

)
−

(
ϕB1 − ϕA1

)]
= 2keff ·

(
∆rC−1,B−1 − ∆rB1,A1

)
= 2keff ·

(
vC−1,B−1 − vB1,A1

)
T1 = 2keff · (aT)T1 = 2keff · aTT1

(A3)

For the case of an LMT process with an arbitrary order n, the expression of the total
phase shift can be easily generalized to be ϕ = keff · a

(
T + 2∑n

j=1 Tj

)
.
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Consider next the rotation-induced phase shift, which comes from the rotation of the
vector keff. The shift resulting from the original three pulses A0, B0, C0 still equals the
difference between ϕC0 − ϕB0 and ϕB0 − ϕA0 . The phase ϕC0 − ϕB0 is calculated to be

ϕC0 − ϕB0 = kC0 · rC0 − kB0 · rB0

= kC0 ·
( rC0+rB0

2 +
rC0−rB0

2

)
− kB0 ·

( rC0+rB0
2 − rC0−rB0

2

)
≡ kC0 ·

(
rC0,B0 + ∆rC0,B0

)
− kB0 ·

(
rC0,B0 − ∆rC0,B0

)
=

(
kC0 − kB0

)
· rC0,B0 +

(
kC0 + kB0

)
· ∆rC0,B0

≡ ∆kC0,B0 · rC0,B0 + 2kC0,B0 · ∆rC0,B0

(A4)

Similarly, it can be shown that ϕB0 − ϕA0 = ∆kB0,A0 · rB0,A0 + 2kB0,A0 · ∆rB0,A0 . Noting
that ∆kC0,B0 = ∆kB0,A0 ≈ keff ×ΩT in the limit ΩT ≪ 1 and that ∆rC−j ,Bj = ∆rB−j ,Aj = r/2,
where Ω is the angular velocity and r is the displacement of the atoms from pulse A0 to
pulse C0, the net phase shift resulting from the four pulses can be expressed as

ϕ0 =
(
ϕC0 − ϕB0

)
−

(
ϕB0 − ϕA0

)
≈ (keff × ΩT) ·

(
rC0,B0 − rB0,A0

)
+

(
kC0,B0 − kB0,A0

)
· r

2

≈ (keff × ΩT) · r
2 + (keff × ΩT) · r

2 = (keff × ΩT) · r
(A5)

Following the same steps, it can also be shown that the rotation-induced phase shift re-
sulting from Aj, B−j, Bj, and C−j is 2

(
keff × ΩTj

)
· r. Summing up the phase shifts resulting

from all pulses, the total phase shift is calculated to be ϕ = (keff × Ω) · r
(

T + 2∑n
j=1 Tj

)
.
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