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Abstract: We present an efficient numerical method to solve the time-dependent Schrödinger equation
in the single-active electron picture for atoms interacting with intense optical laser fields. Our
approach is based on a non-uniform radial grid with smoothly increasing steps for the electron
distance from the residual ion. We study the accuracy and efficiency of the method, as well as its
applicability to investigate strong-field ionization phenomena, the process of high-order harmonic
generation, and the dynamics of highly excited Rydberg states.
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1. Introduction

The development of intense and tunable optical light sources has revolutionized atomic
physics by revealing new strong-field phenomena, e.g., high-order harmonic generation
(HHG) [1], above-threshold ionization (ATI) [2], Rydberg- state stabilization [3,4], or the
transfer of the light’s orbital angular momentum (OAM) via optical vortex beams [5,6].
Even in atomic systems such as hydrogen, helium, the alkalis, and to some extent the heavy
noble gases, analytical models to describe strong-field processes require the introduction of
important approximations. Although numerous numerical methods, with various degrees
of sophistication, have been designed in recent decades to treat atoms in optical fields,
computing the electron dynamics in high-intensity long-wavelength pulses remains a
challenge, even in the single-active electron (SAE) approach.

Recently, time-dependent spectral techniques [7–9], based on functions with compact
support, e.g., B-splines [8,10–12] or Finite Element with Discrete Variable Representation
(FE-DVR) [13,14], have been developed to treat multi-electron systems. Despite their
impressive capabilities, these approaches remain computationally demanding and non-
trivial to implement. In addition, they can hardly describe high-intensity optical pulses,
besides a few exceptions, such as the R-matrix with time dependence (RMT) [7], or methods
based on infinite exterior complex scaling (iECS) [15]. These methods also require handling
large-size matrices, which can lead to additional complications and limitations.

On the other hand, SAE approaches based on finite-difference methods remain among
the most favorite methods to implement, while enabling an accurate treatment of a plethora
of strong-field processes where the single-electron dynamics dominates. Indeed, the Crank–
Nicholson method [16], combined with a three-point formula to evaluate the action of
the kinetic energy operator, allows one to produce highly efficient propagation schemes.
Moreover, these methods can be combined with sophisticated techniques, such as flux
methods [17,18], to produce some of the most efficient time-dependent methods.

An important limiting aspect of methods based on finite differences lies in the choice
of the radial grid. Typically, a uniform grid with a fine radial mesh is needed to describe the
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highly localized electronic wave function at short distances, where the electron possesses
substantial kinetic energy. Otherwise, bound-state energies can rapidly become inaccurate.
At large radial distances, however, low-energy electrons, as produced in many strong-field
ionization processes with optical pulses [19–21], do not require a high density of radial
points due to their relatively long wavelength. The same principle applies in HHG, since
the recolliding electron responsible for the light emission in the high-harmonic plateau
region acquires its highest kinetic energy near the ionic core. Therefore, the need for a small
radial mesh at short distances often imposes an unnecessary constraint at large distances
if a uniform grid is employed. This restriction, however, does not exist with the use of
compact functions since their density as a function of radial distance can easily be varied.

In this work, we present the implementation of a non-uniform radial grid with a
finite-difference method to solve the time-dependent Schrödinger equation (TDSE) for
atoms in optical fields. We build upon past methods developed for one-dimensional time-
independent problems [22,23] to the three-dimensional time-dependent case, focusing
on the study of atoms interacting with high-intensity optical pulses. We demonstrate
considerable improvements in time propagation while at the same time conserving high
accuracy. The validity of the scheme is demonstrated through benchmark calculations
performed on the hydrogen atom interacting with infrared light. However, the method
can be employed for any atom where the single-electron dynamics can be approximately
described by a mean-field potential, such as the alkalis, helium, and often even the heavier
noble gases. In particular, we show applications of the non-uniform grid to efficiently
treat strong-field ionization, the computation of HHG spectra, and the dynamics of highly
excited Rydberg states.

This manuscript is constructed as follows. In the next section, we describe the approach
to solve the TDSE with a non-uniform radial grid, and we also discuss the theoretical
framework needed to compute physical observables. In Section 3, we demonstrate the
efficiency of the method and its potential applications in strong-field physics. We finish
with a summary and our conclusions in Section 4.

Unless stated otherwise, atomic units are used throughout this manuscript.

2. Theoretical Approach
2.1. General Formalism Using a Uniform Radial Grid

In the SAE approach, the TDSE for an atomic system interacting with an electromag-
netic field takes the form

−i∂t|Ψ(t)⟩ = Ĥ(t)|Ψ(t)⟩, (1)

where Ĥ(t) = Ĥ0 + Ĥint(t) is the time-dependent Hamiltonian of the system comprising the
field-free Hamiltonian Ĥ0 = T̂ + V̂, where T̂ and V̂ are the kinetic energy and the spherical
electronic potential operators, respectively, while Ĥint(t) is the atom–field interaction
Hamiltonian. Employing the dipole approximation and the Coulomb gauge, we express
the interaction operator either in the length gauge (LG), ĤL

int(t) = r · E(t), or in the velocity
gauge (VG), ĤV

int(t) = p · A(t), where A(t) and E(t) = −dA(t)/dt are the vector potential
and electric field, respectively, while r and p are the electron position and momentum
vectors. To simplify the presentation of the method in the following development, we
consider linearly polarized light with the electric-field vector along the z-axis and define
the vector potential as

A(t) = A0 sin2
(

ωt
2N

)
sin(ωt)ẑ (2)

for 0 ≤ t ≤ tend, where tend = 2πN/ω and N is the number of cycles. The method can be
extended to encompass light with arbitrary polarization in a straightforward way.

The temporal evolution of the wave function from time tn = n∆t to tn+1 = tn + ∆t
is given by the relation |Ψ(tn+1)⟩ = Û(tn+1, tn)|Ψ(tn)⟩, where Û(tn+1, tn) is the time-
evolution operator in the Schrödinger picture between tn and tn+1. The exponential time
propagator is further split into field-free and atom–field interaction components as
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Û(tn+1, tn) ≈ e−iĤ0
∆t
2 e−iĤint(tn+∆t/2)∆te−iĤ0

∆t
2 , (3)

resulting in a third-order method in the time step.
The action of these operators is evaluated by expanding the wave function in a

truncated series of partial waves as

Ψ(r, t) =
1
r

ℓmax

∑
ℓ=|m|

uℓ(r, t)Ym
ℓ (Ωe), (4)

where r is the electron’s radial distance, Ωe denotes its spherical coordinates, and the
Ym
ℓ (Ωe) = ⟨Ωe|ℓm⟩ are the spherical harmonics with ℓ and m representing the electron’s

angular momentum and its projection on the z-axis, respectively. In Equation (4), we
impose the boundary condition uℓ(0, t) = 0 at any time t, and m is fixed by the magnetic
quantum number of the initial state.

The field-free Hamiltonian in spherical coordinates is represented by

Ĥ0 = −1
2

[
1
r2

∂

∂r

(
r2 ∂

∂r

)
− ℓ̂2

r2

]
+ V(r), (5)

where ℓ̂ is the one-particle orbital angular momentum operator acting on the angular part
of the wave function. The action of Ĥ0 on |Ψ(t)⟩, expressed in the |rℓm⟩ basis, is given by

⟨rℓm|Ĥ0|Ψ(t)⟩ = −1
2

∂2uℓ(r, t)
∂r2 + Veff(r)uℓ(r, t), (6)

where Veff(r) = V(r) + ℓ(ℓ+ 1)/2 r2.
We initially introduce a standard uniform radial grid rj = (j − 1)h of constant step

h for j = 1, . . . , M, and the vectors uℓ(t) with components uℓ,j(t) = uℓ(rj, t). Using the
second-order central difference formula to approximate the radial kinetic energy term for
equidistant grid points gives

∂2uℓ(rj, t)
∂r2 =

uℓ,j+1(t)− 2uℓ,j(t) + uℓ,j−1(t)
h2 +O(h2). (7)

This leads to the following non-zero elements of the field-free finite-difference Hamilto-
nian matrix

(H0)
ℓ,ℓ′
j,j′ = δℓ,ℓ′


− 1

2h2 , j′ = j ± 1,

1
h2 + Veff(rj), j′ = j,

(8)

which exhibits a block-diagonal structure in the partial waves ℓ, ℓ′ and a tridiagonal form
in the radial grid points. Utilizing Cayley’s transform [24] of the complex exponential
time-evolution operator for the field-free Hamiltonian, i.e.,

e−iĤ0
∆t
2 ≈ [ Î + iĤ0∆t/4]−1[ Î − iĤ0∆t/4] +O(∆t3), (9)

provides an unconditionally stable third-order method whose action can be evaluated by
either inverting a tridiagonal matrix or by solving a tridiagonal system of linear equations
using the Thomas algorithm.

Moving to the atom–field interaction Hamiltonian in the length gauge, ĤL
int(t) =

E(t) r cos θ, its action on |Ψ(t)⟩ is expressed as

⟨rℓm|ĤL
int(t)|Ψ(t)⟩ = E(t)r[cm

ℓ uℓ+1(r, t) + cm
ℓ−1uℓ−1(r, t)], (10)

where the coefficients cm
ℓ are given by
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cm
ℓ =

[
(ℓ− m + 1)(ℓ+ m + 1)

(2ℓ+ 1)(2ℓ+ 3)

] 1
2
. (11)

The non-zero elements of the interaction Hamiltonian take the form

(HL
int)

ℓ,ℓ′
j,j′ = δj,j′E(t)rj

{
cm
ℓ , ℓ′ = ℓ+ 1,

cm
ℓ−1, ℓ′ = ℓ− 1,

(12)

exhibiting a block-diagonal structure in the radial coordinate and a tridiagonal form in the
angular momentum quantum number. The same approach used in the case of the field-free
Hamiltonian can thus be employed to evaluate its action on the wave function.

The form of the velocity–gauge interaction Hamiltonian in spherical coordinates is
given by

ĤV
int(t) = −iA(t)

(
cos θ

∂

∂r
− sin θ

r
∂

∂θ

)
. (13)

Using a central difference formula to evaluate the first derivative, the non-zero elements of
the finite difference interaction Hamiltonian become

(HV
int)

ℓ,ℓ′
j,j′ = −iA(t)



±
cm
ℓ

2h
, ℓ′ = ℓ+ 1, j = j′ ± 1,

(ℓ+ 2)
cm
ℓ

rj
, ℓ′ = ℓ+ 1, j = j′,

±
cm
ℓ−1
2h

, ℓ′ = ℓ− 1, j = j′ ± 1,

−(ℓ− 1)
cm
ℓ−1
rj

, ℓ′ = ℓ− 1, j = j′.

(14)

Due to the radial derivative, the velocity gauge requires more computational operations
than the length gauge. However, since fewer partial waves are often sufficient in the
velocity gauge to achieve convergence, this gauge becomes more efficient at high intensity
and long wavelengths [25,26].

Finally, a maximum grid size Rmax should be chosen such that the propagated wave
packet remains within the grid at all times. Since the description of the electron dynamics is
only required in the region where the wave packet has expanded, it proves efficient to em-
ploy a dynamically increasing grid size Rmax(t) that contains the wave packet at any time,
but avoids unnecessary computation at distances where the wave function’s value is negli-
gible. Here, we expand our grid as Rmax(t+∆t) = Rmax(t) +∆R, whenever it is found that
the wave packet probability amplitude has increased above a certain accuracy parameter,
|Ψ(r, t)| ≥ ε, in a region just below Rmax(t), i.e., for (Rmax(t)− ∆R) < r < Rmax(t), where
∆R is a radial interval. As a result, one can still obtain highly converged results while
saving a considerable amount of computational resources.

2.2. Modification of the Formalism with a Non-Uniform Radial Grid
2.2.1. Finite Difference with Smoothly Varying Radial Steps

The efficiency of the method outlined in Section 2.1 stems from the tridiagonal structure
of the kinetic energy operator, originating from the three-point kinetic energy formula in (7).
Therefore, it is desirable to seek a method preserving the three-point finite scheme while
enabling flexibility in the choice of the radial steps.

To accomplish this goal, we introduce a non-uniform radial grid with non-equidistant
steps hj = rj+1 − rj, for j = 1, . . . , M, with r1 = 0, as illustrated in Figure 1. Omitting
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the time dependence to simplify the expressions, we first expand uℓ,j+1 = uℓ(rj+1) and
uℓ,j−1 = uℓ(rj−1) in Taylor series around rj:

uℓ,j+1 = uℓ,j + hju′
ℓ,j +

h2
j

2
u′′
ℓ,j +

h3
j

6
u′′′
ℓ,j +

h4
j

24
u(4)
ℓ,j +O(h5

j ), (15)

uℓ,j−1 = uℓ,j − hj−1u′
ℓ,j +

h2
j−1

2
u′′
ℓ,j −

h3
j−1

6
u′′′
ℓ,j +

h4
j−1

24
u(4)
ℓ,j +O(h5

j−1), (16)

where the primed uℓ,j represent derivatives of uℓ evaluated at rj. We solve for u′′
ℓ,j by taking

hj−1 × (15) + hj × (16). This leads to

u′′
ℓ,j =

2
(

hj−1uℓ,j+1 − (hj + hj−1)uℓ,j + hjuℓ,j−1

)
hjh2

j−1 + h2
j hj−1

−
(hj − hj−1)

3
u′′′
ℓ,j +O(h2

j ) +O(h2
j−1). (17)

Equation (17) gives the correct expression for u′′
ℓ,j to O(hj − hj−1), i.e., to first order in

the difference in the grid increment. For a uniform grid, hj = hj−1, and we recover the
second-order central difference formula in (7), i.e.,

u′′
ℓ,j =

uℓ,j+1 − 2uℓ,j + uℓ,j−1

h2 +O(h2). (18)

The subtle cancellation of first-order terms due to the symmetry of the uniform grid is
thus responsible for the second-order accuracy of the method. Any increment of the form
hj − hj−1 = O(hj−1), even if applied at just one grid point to bridge grids with distinct step
sizes, will introduce a significant error that will propagate across space and time, ultimately
undermining the accuracy of the method.

Figure 1. Schematic representation of the non-uniform radial grid used to represent the radial
components of the electronic wave function.

Consequently, it is essential to choose a grid increment such that hj − hj−1 = O(h2
j−1)

to maintain second-order accuracy. Following the idea introduced in [22], we employ grid
steps defined by the recursive relation

hj = hj−1(1 + αhj−1), (19)

where α is a fixed parameter controlling the rate of incremental change in the radial step
size. At larger distances, we impose an upper limit hmax on the radial step size to be able
to describe electrons with a maximum momentum p0. Consequently, beyond a grid index
j0, we use again a standard uniform grid where hj = hmax for all j ≥ j0 (see Figure 1).
Typically, about ten radial points should span the electronic wavelength for an accurate
representation of the wave function, leading to hmax ≈ π/5p0. For electron energies up
to about 20 eV, this corresponds to a maximum grid size of hmax ≈ 0.5 a.u. This value
should be contrasted with the radial step of h ≈ 0.01 a.u. needed to reproduce the hydrogen
ground-state energy with high precision.
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The non-zero elements of the field-free Hamiltonian for the general case of a non-
uniform grid become

(H0)
ℓ,ℓ′
j,j′ = δℓ,ℓ′



−1
2

1
L2

j

1
hj

, j′ = j + 1,

−1
2

1
L2

j

1
hj−1

, j′ = j − 1,

1
2

1
L2

j

(
1

hj−1
+

1
hj

)
+ Veff(rj), j′ = j,

(20)

where we introduced L2
j = (hj−1 + hj)/2. Although Ĥ0 keeps its tridiagonal structure, it is

no longer symmetric. As described in the next section, this tridiagonal matrix is similar to a
hermitian matrix through a diagonal change of the basis matrix. Hence, its eigenvalues
are real, and the general properties resulting from the hermicity of the operators can be
recovered by using the appropriate metric space (see Section 2.2.2).

The interaction operator in the length gauge (12) is unaffected by the change to
a non-uniform grid. However, the velocity–gauge operator requires the evaluation of
the first radial derivative. Repeating our previous approach, we can isolate u′

ℓ,j by taking

h2
j−1 × (15)− h2

j × (16), leading to a three-point formula [22] with an error of order O(hjhj−1).
In our case, the application of a three-point formula to evaluate the first derivative is un-
necessary since the same accuracy can already be achieved with a simpler two-point
central-difference formula. Indeed, subtracting directly (15) and (16), we obtain

u′
ℓ,j =

uℓ,j+1 − uℓ,j−1

hj−1 + hj
+

h2
j − h2

j−1

2
u′′
ℓ,j +O(h2

j−1)

+O(h2
j ) +O(hj−1hj) (21)

for the general case. With our choice of grid in (19), h2
j − h2

j−1 = O(h3
j−1), and Equation (21)

is thus also accurate to second order. Using the latter formula, the non-zero elements of the
interaction Hamiltonian in the velocity gauge become

(HV
int)

ℓ,ℓ′
j,j′ = −iA(t)



±1
2

cm
ℓ

Lj
, ℓ′ = ℓ+ 1, j = j′ ± 1,

(ℓ+ 2)
cm
ℓ

rj
, ℓ′ = ℓ+ 1, j = j′,

±1
2

cm
ℓ−1
Lj

, ℓ′ = ℓ− 1, j = j′ ± 1,

−(ℓ− 1)
cm
ℓ−1
rj

, ℓ′ = ℓ− 1, j = j′.

(22)

The implementation of the non-uniform grid is seen to involve straightforward mod-
ifications of the standard SAE method, but it can yield a considerable improvement in
computational efficiency. The method, however, necessitates the utilization of a consistent
inner product rule to normalize eigenstates and to obtain physical observables, as de-
tailed below.

2.2.2. Modified Inner Product Rule with the Non-Uniform Grid

Let us consider the finite-difference field-free Hamiltonian Ĥ0 in the case of a non-
uniform radial grid (20). Since the Hamiltonian is tridiagonal, and the upper and lower
diagonals have the same sign, Ĥ0 can be diagonalized, Ĥ0|Ψn,ℓ⟩ = En,ℓ|Ψn,ℓ⟩, with real
eigenvalues En,ℓ and eigenstates |Ψn,ℓ⟩. Here, we enforce fixed-boundary conditions on
the wave function, i.e., uℓ,1 = uℓ,M = 0, at r1 = 0 and at the maximum grid size rM.
The eigenstates |Ψn,ℓ⟩ with En,ℓ < 0 correspond to the bound states of the atomic system.
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As previously noted, Ĥ0 is not hermitian for a non-uniform grid. It can, however, be
transformed into a hermitian matrix H̄0 by a similar transformation using a diagonal matrix
L̂ with elements Lj for j = 1, . . . , M in each ℓ block. Specifically, H̄0 = L̂Ĥ0 L̂−1 with

(L̂)ℓ,ℓ′
j,j′ = δℓ,ℓ′δj,j′ Lj. (23)

Introducing the functions |Ψ̄n,ℓ⟩ = L̂|Ψn,ℓ⟩, |Ψ̄n,ℓ⟩ is an eigenstate of H̄0 with eigenvalue
En,ℓ, since

H̄0|Ψ̄n,ℓ⟩ = L̂Ĥ0 L̂−1 L̂|Ψn,ℓ⟩ = En,ℓ|Ψ̄n,ℓ⟩. (24)

Hence, the eigenstates |Ψn,ℓ⟩ of H̄0 can be normalized to form an orthonormal basis in the
sense that

⟨Ψ̄m,ℓ|Ψ̄n,ℓ′⟩ = ⟨Ψm,ℓ|M̂|Ψn,ℓ′⟩ = δm,nδℓ,ℓ′ , (25)

where M̂ = L̂2 is a diagonal weighting matrix. Considering two given wave functions |Λ⟩
and |Ω⟩, respectively, defined by their discrete radial components uj,ℓ and vj,ℓ, their inner
product is given by

⟨Λ̄|Ω̄⟩ = ⟨Λ|M̂|Ω⟩ =
ℓmax

∑
ℓ=|m|

M−1

∑
j=2

L2
j u∗

j,ℓvj,ℓ. (26)

In particular, this metric preserves the norm of the wave function through time propagation.
Indeed, since H̄L

int = HL
int and H̄V

int = L̂HV
int L̂

−1 are both hermitian, the time-dependent
Hamiltonian H̄(t) = L̂Ĥ(t)L̂−1 is hermitian in both gauges. If |Ψ(t)⟩ is a solution of
Equation (1), then |Ψ̄(t)⟩ = L̂|Ψ(t)⟩ is a solution of −i∂t|Ψ̄(t)⟩ = H̄(t)|Ψ̄(t)⟩, and the norm
of |Ψ(t)⟩ is thus conserved under the inner product rule (26).

2.2.3. Calculation of Physical Observables

The modification of the inner product rule necessitates some adjustments when eval-
uating physical observables. Let us consider the time-dependent wave function |Ψ(t)⟩
solution of the TDSE in Equation (1) along with an observable of the form Ô(∇,∇2, rn),
whose action is evaluated on the non-uniform grid using the finite-difference formula
introduced in Section 2.2. This observable can be transformed into a hermitian operator
through the similarity transformation, Ō = L̂OL̂−1. Its expectation value is calculated as

⟨Ψ̄(t)|Ō|Ψ̄(t)⟩ = ⟨Ψ(t)|M̂Ô|Ψ(t)⟩. (27)

Moreover, the probability of finding the electron at the end of the pulse in an excited
atomic bound state |Ψn,ℓ⟩ is given by |⟨Ψn,ℓ|M̂|Ψ(t)⟩|2. To calculate physical quantities
related to asymptotically free states of the electron, one expands the eigenfunction of the
atomic Hamiltonian, corresponding to a photoelectron with asymptotic momentum k,
in partial waves as

Φ(−)
k =

4π

r ∑
ℓm

iℓe−iδEℓwEℓ(r)Ym∗
ℓ (Ωk)Ym

ℓ (Ωe). (28)

In the above equation, Ωk are the spherical angles that characterize the direction of k,
δEℓ = δ0

ℓ + σℓ is the scattering phase, including the short-range potential-scattering phase
shift δ0

ℓ and the Coulomb phase σℓ = Γ(ℓ+ 1 − i/k). The radial functions wEℓ(r) are solu-
tions of the time-independent equation

d2wEℓ(r)
dr2 + 2[E − Veff(r)]wEℓ(r) = 0. (29)

Here, it is essential to use (17) to evaluate the second derivative in (29). Introducing
wj,Eℓ = wEℓ(rj), we obtain the relation
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wj+1,Eℓ =

(
1 +

hj

hj−1

)
wj,Eℓ −

hj

hj−1
wj−1,Eℓ − 2hj−1Lj(E − Veff(rj))wj,Eℓ (30)

for j ≥ 2. This can be solved recursively, after fixing w1,Eℓ = 0 and w2,Eℓ = w0, where w0
acts as an overall scaling factor of the wave function. Using energy-normalized scattering
functions, the energy-resolved angular distribution calculated after the end of the pulse,
t = t f , is given by

dP
dEdΩk

= |⟨Φ(−)
k |M̂|Ψ(t f )⟩|2,

dP
dEdΩk

=
PE
4π

[
1 + ∑

L>0
βL(E)Pℓ(cos θk)

]
, (31)

where E = k2/2, Pℓ(x) is a standard Legendre polynomial, and θk is the polar angle char-
acterizing the direction of k. The angle-integrated probability density can be expressed as

PE =
∫

dΩk
dP

dEdΩk
=

ℓmax

∑
ℓ=|m|

|ZEℓ|2, (32)

where the coefficients

ZEℓ =
M−1

∑
j=2

L2
j wj,Eℓuj,ℓ (33)

are evaluated after the end of the pulse. The total ionization probability is given by
W =

∫
PEdE, and the anisotropy parameters take the form

βL(E) =
1
PE

∑
ℓℓ′

iℓ
′−ℓei(δEℓ−δEℓ′ )νL

ℓℓ′mZ∗
Eℓ′ZEℓ, (34)

where νL
ℓℓ′m =

√
(2ℓ+ 1)(2ℓ′ + 1)CL0

ℓm,ℓ′−m with CL0
ℓm,ℓ′−m denoting a Clebsch–Gordan

coefficient.

3. Results and Discussion
3.1. Benchmark Study on Strong-Field Ionization

We start by investigating the efficiency and accuracy of the non-uniform grid with
our focus on strong-field ionization of atomic hydrogen. We employ a 400 nm pulse with
N = 6 cycles at a peak intensity I = 1014 W/cm2. Considering at first the LG, a highly
converged spectrum was achieved for a uniform grid with h = 0.01, ℓmax = 25, dt = 0.01,
and dynamical grid parameters ε = 10−10 and ∆R = 20 (see Section 2.1). The calculated
ionization spectrum, shown in Figure 2a, will serve as a benchmark for assessing the
accuracy of subsequent results.

The calculation was then repeated for uniform grids with different radial steps
h = 0.1, 0.25, and 0.5 while keeping all other parameters unchanged. For each uniform
radial grid, the initial ground state of hydrogen was recomputed by diagonalizing the
field-free Hamiltonian in (8). The obtained spectra are shown in Figure 2a and reveal signif-
icant discrepancies with our benchmark calculation at h = 0.01. Noticeable differences are
already apparent for a radial step as small as h = 0.1. These discrepancies stem from the
inaccurate description of the ground-state wave function, which can also lead to incorrect
spectral features. These results underscore the necessity of employing a uniform grid with
small steps to reproduce accurate spectra.
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Figure 2. Comparison between ionization spectra calculated for a 6-cycle 400 nm pulse with a peak
intensity of 1014 W/cm2: (a) uniform grid results in LG with various equidistant steps h, (b) non-
uniform grid results in LG, and (c) non-uniform grid results in VG. See text for details.

We proceeded to replicate the calculation employing different non-uniform radial
grids, as defined in Equation (19), setting an increment parameter of α = 0.05 throughout
the following development. In all calculations, we fixed the initial radial step h1 = 0.01 to
maintain a good representation of the ground state, and we used various maximum mesh
sizes, hmax = 0.01, 0.1, 0.25, and 0.5, while again keeping all other parameters unchanged.
Therefore, the grid with hmax = 0.01 corresponds to our benchmark calculation and will
be referred to as such throughout our discussion. The ionization spectra with different
non-uniform grids are depicted in Figure 2b and show excellent agreement with the
benchmark calculation. Upon closer inspection, slight discrepancies become apparent
in the high-energy part of the spectrum for hmax = 0.5. To assess the accuracy of the
calculations, we evaluated the relative error as ϵr(E) = |Png

E −Pbe
E |/Pbe

E , where Png
E and

Pbe
E represent the energy-resolved ionization probability computed with the non-uniform

grid and benchmark (uniform grid) calculations, respectively. In addition, we introduced
the maximum relative error ϵmax

r (I) = max{E∈I} ϵr(E) over an energy interval I , and the
relative error on the total ionization probability ϵion

r = |Wng − Wbe|/Wbe, where Wng

and Wbe are the total ionization probabilities computed for the non-uniform grid and
benchmark calculation, respectively.

Table 1 provides an overview of the calculation characteristics. As hmax increases, there
is a corresponding decrease in the final number of grid points Ng needed to describe the
wave function, resulting in an enhanced computational efficiency η, which was estimated by
comparing the propagation time between the non-uniform grid and benchmark calculations.
Because we employ a dynamical grid, the efficiency η does not scale as 1/Ng. However,
we observe a considerable improvement of about one order of magnitude even for this
relatively short pulse. Additionally, we present the relative error on the total ionization
probability, alongside with the maximum relative error on two energy intervals with
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different upper bonds for the energy: I1 = [0, 0.3] and I2 = [0, 0.5]. As expected, the relative
errors increase with larger hmax and higher electron energies.

Table 1. Summary of the accuracy and efficiency of the calculations using the non-uniform grid in LG
from Figure 2b.

hmax Ng η ϵmax
r (I1) ϵmax

r (I2) ϵion
r

0.01 83,000 1.0 −− −− −−
0.10 9490 6.3 2.2 × 10−3 8.2 × 10−3 0.3 × 10−3

0.25 4830 9.4 1.1 × 10−2 4.5 × 10−2 1.9 × 10−3

0.50 3290 12.2 3.6 × 10−2 9.5 × 10−2 7.6 × 10−3

We then repeated the calculation in VG using dt = 0.005 and ℓmax = 10 to achieve
converged results for the uniform grid. The obtained spectrum is depicted in Figure 2c,
alongside spectra computed using non-uniform grids with various maximum mesh sizes.
While the results are compared in the same gauge for consistency, however, we verified that
the benchmark spectra in LG and VG are in excellent agreement with each other, with a
maximum relative error on I2 of about 5 × 10−3. A summary of the characteristics of the
calculations in VG is presented in Table 2. It shows excellent accuracy and a significant
gain in efficiency.

In the above calculations, we utilized an increment parameter α = 0.05. Experi-
mentation with a smaller increment parameter, such as α = 0.025, revealed only a slight
improvement in accuracy (not shown). Therefore, we generally recommend employing
α = 0.05, as it is typically adequate to achieve the required level of accuracy in most
practical applications.

Table 2. Summary of the accuracy and efficiency of the calculations using the non-uniform grid in
VG from Figure 2c.

hmax Ng η ϵmax
r (I1) ϵmax

r (I2) ϵion
r

0.01 84,100 1.0 −− −− −−
0.10 9690 5.4 1.7 × 10−3 3.2 × 10−3 0.3 × 10−3

0.25 4910 7.5 6.1 × 10−3 1.8 × 10−2 1.9 × 10−3

0.50 3210 9.1 3.1 × 10−2 3.2 × 10−2 7.6 × 10−3

The previous calculation, corresponding to a Keldysh parameter [27] γ = 2.13, was
relatively straightforward. However, it is also crucial to assess whether non-uniform
grids can maintain high accuracy when electron tunneling and re-scattering events play
significant roles. To address this aspect, we performed additional calculations using an
800 nm pulse with N = 6 cycles at a peak intensity of 1014 W/cm2, corresponding to
γ = 1.06. Converged results were achieved in VG for the uniform grid using dt = 0.0005
and ℓmax = 40. In Figure 3a, we compare the spectra between the benchmark and the
non-uniform grid calculations for hmax = 0.25. We observe excellent agreement in the
reproduction of the complex spectrum structure across the entire energy interval I = [0, 1],
with the calculated maximum relative error ϵmax

r (I) = 1.8 × 10−2, while obtaining an
efficiency gain of η ≈ 13 using the non-uniform grid.

The gain in efficiency using the non-uniform grid increases towards the ratio
η ≈ hmax/h for longer pulse duration. To demonstrate this aspect, we performed ad-
ditional calculations using a 150 nm pulse with N = 100 cycles, at an intensity 1013 W/cm2.
The spectra, depicted in Figure 3b, again show excellent agreement in all features. In this
case, the wave packet required the dynamical grid to extend to a final radius of 3500 a.u.,
leading to an efficiency gain by the non-uniform grid of η ≈ 20.
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Figure 3. Comparison between calculated ionization spectra for the benchmark (uniform) and non-
uniform grids: (a) results for the 800 nm, 6-cycle, 1014 W/cm2 pulse, and (b) results for the 150 nm,
100-cycle, 1013 W/cm2 pulse. See text for details.

We conclude this section by pointing out that the non-uniform grid method can be
integrated with the t-SURFF surface-flux method [17]. In the t-SURFF approach, the energy-
resolved ionization probability is translated into calculating the flux through a surface
boundary positioned at a distance where the long-range Coulomb potential is assumed to
be negligible. Typically, a surface boundary of approximately 200 atomic units is chosen,
such that the non-uniform radial could only provide an additional improvement of a factor
two to three. However, the non-uniform grid method offers several advantages on its
own. Specifically, reproducing low-energy spectra in t-SURFF poses significant challenges
and can be computationally demanding without sophisticated infinite-time propagation
techniques [28,29], as the entire ionizing wave packet must cross the surface boundary. In
contrast, the non-uniform grid has the ability to produce highly accurate spectra in the low-
electron energy region. Furthermore, the t-SURFF method is not well-suited for computing
HHG spectra or incorporating the dynamics of excited Rydberg states. In contrast, as will
be demonstrated below, the non-uniform grid method naturally lends itself to handling
such applications efficiently.

3.2. Application to High-Order Harmonic Generation

We now shift our focus to the computation of HHG spectra using the non-uniform
grid, utilizing the same 800 nm pulse previously employed in Section 3.1. At each time
step, we compute the time-dependent dipole moment z(t) = ⟨Ψ(t)|z|Ψ(t)⟩ using the
modified Formula (27) for evaluating physical observables on the non-uniform grid. From
the obtained value of z(t), we compute the dipole acceleration a(t) = d2z(t)/dt2, which is
then used to deduce the spectral density [30] as

S(ω) =
2

3πc3 |ã(ω)|2, (35)

where ã(ω) =
∫

a(t)e−iωtdt and c is the speed of light.
The benchmark calculation was performed in LG, using dt = 0.005 and ℓmax = 100 to

achieve converged results for a uniform grid with h = 0.01. Subsequently, the calculation
was repeated in LG for a non-uniform grid with hmax = 0.5 using the same time step and
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maximum angular momentum parameters. An additional calculation was performed in
VG, using dt = 0.0005 and ℓmax = 40.

The spectra resulting from these three calculations are shown in Figure 4, demon-
strating remarkable agreement between the different gauges, despite the utilization of a
maximum mesh size as large as hmax = 0.5. Detailed features across the entire spectra,
including the structure near the plateau cutoff, are faithfully reproduced. The plateau
cutoff is smooth for this relatively short pulse [31], and we also observe oscillations in the
high-energy region due to the interference between recombining quantum trajectories. The
excellent agreement can be attributed to the fact that the crucial part of the dipole moment
resides near the atom, where the density of radial points remains high and the fact that
returning trajectories do not acquire their highest kinetic energy during the far-range excur-
sion of the electron. Nevertheless, for high-intensity, long-wavelength pulses, a reasonable
maximum mesh size hmax needs to be chosen to achieve converged results. In a recent
study [32], we used the non-uniform grid method to compute the HHG spectrum of Ne
with a 2000 nm driving laser at an intensity of 2 × 1014 W/cm2 and obtained converged
spectra with hmax = 0.2. This leads to a gain of efficiency of nearly η = 10 when compared
to the uniform grid. Consequently, the non-uniform grid method offers an accurate and
efficient approach for calculating HHG spectra in atoms, including those generated by
long-wavelength pulses with harmonics extending even into the water window [33]. The
method will become particularly important for the treatment of high-Z targets (e.g., xenon).

Figure 4. Comparison between the HHG spectra produced by an 800 nm pulse with 6 cycles at a
peak intensity of 1014 W/cm2, calculated using a uniform grid (hmax = 0.01) and a non-uniform grid
(hmax = 0.5) in LG and VG. See text for details.

3.3. Application to the Study of Rydberg States

The dynamics of highly excited Rydberg states in intense laser fields have sparked
lively interest and debate. These states have been shown to survive high-intensity
fields [3,4,34], can be used to create highly coherent wavepackets [35], and have also
been suggested [36] to play a significant role in the low-energy electron peaks observed in
the photoionization of atoms by mid-infrared pulses [37]. Moreover, Rydberg states with
large angular momentum [38,39] represent attractive platforms for quantum information
processing tasks due to their long lifetime and long-range dipole–dipole inteaction [40].

Describing highly excited Rydberg states presents challenges due to their large spatial
extent. Computing Rydberg states up to principal quantum number n = 50 necessitates a
grid size exceeding 6000 atomic units. Utilizing a uniform grid with h = 0.01, necessary
for accurately capturing the rapid oscillations of the wave function near the atomic core,
therefore involves diagonalizing the N × N field-free Hamiltonian (20) with N = 60,000.
This task is computationally demanding, even with state-of-the-art matrix diagonalization
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techniques. In contrast, employing a non-uniform radial grid with hmax = 0.5 only requires
diagonalizing a matrix with N = 15,000, a task that can be completed in about ten minutes
on a desktop. Given that matrix diagonalization formally scales as O(N3), a calculation
using the uniform grid would take more than ten hours. While the calculation of Rydberg
states up to n = 100 could still be performed rather inexpensively using the non-uniform
grid, it would currently be impractical on a uniform grid.

We computed Rydberg states φn,ℓ for ℓ = 0 and ℓ = 1 up to n = 50, and obtained a
maximum relative error on their energy En,ℓ of less than 0.01% for all calculated states. To
illustrate the accuracy of the method, we employed a weak pulse with N = 20 cycles at
a peak intensity of 1012 W/cm2, with two different central frequencies, ω = 0.5 and 0.52,
near the ionization potential of hydrogen to both ionize the atom and populate highly ex-
cited Rydberg states via a one-photon transition. At the end of the pulse, we evaluated the
population of Rydberg states Pn,ℓ = |⟨φn,ℓ|Ψ(t)⟩|2 using the inner product rule (26). Follow-
ing Li et al. [41], the energy-resolved ionization probability can be extended to the region
of excited Rydberg states by defining a probability density dPn/dE = Pn(dn/dE) = Pnn3

for hydrogen since En = −1/(2 n2). Using this prescription, we were able to obtain an
accurate continuation of the ionization probability below the ionization threshold, as shown
in Figure 5.

Figure 5. Ionization spectra (positive energy—solid lines) and renormalized Rydberg states excita-
tion probability (negative energy—connected squares) for two different frequency pulses. See text
for details.

While our aim in this section was to demonstrate the accuracy and efficiency of the non-
uniform grid and the validity of the inner-product formula to compute the population of
excited states, such an approach opens the door to study strong-field processes with highly
excited Rydberg states. This includes ionization suppression near channel closing [42],
formation and dynamics of coherent Rydberg wave packets [35], interference stabilization
effects [4,43], Freeman resonances [44,45], and low-energy electron peaks [37].

4. Conclusions and Outlook

We have presented a computational method to speed up frequently used single-
active-electron computer codes for solving the time-dependent Schrödinger equation for
the response of atoms to intense, short-pulse electromagnetic fields. The method was
tested on three well-known benchmark problems involving the hydrogen atom, namely
ejected-electron spectra in strong-field ionization, high-order harmonic generation, and the
study of highly excited Rydberg states. Without losing any serious accuracy, speed-ups
of at least an order of magnitude, but generally even more, were achieved. The Rydberg
problem, in particular, would be intractable for states with principal quantum numbers
significantly above n = 50 with currently available computational resources if the usual
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approach with a uniform grid was employed. While other methods based on finite-element
rather than finite-difference approaches are available, the non-uniform grid approach
presented here is certainly competitive and should be attractive due to its relatively straight-
forward implementation.
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