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Abstract: Using a high-precision code, we generate the eigenstates of a PT-symmetric Hamiltonian.
We solve the time-dependent Schrödinger equation (TDSE) of the non-Hermitian system based on
the eigenset. Since the formulation is relatively new and the observables are calculated differently
than conventional quantum mechanics, we justify it with a paradigmatic case in Hermitian quantum
mechanics. We present the harmonic generation spectra on some model PT-Hamiltonians driven by an
electric pulse. We discuss the physical differences with the harmonic spectra of a pulse-driven atom.
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1. Introduction

The Hamiltonian is a Hermitian operator in conventional quantum mechanics so
that the eigenvalues are all real and the eigenstates are stationary. In 1998, Bender and
Boettcher [1] revealed that non-Hermitian Hamiltonians with space-time reflection symme-
try and vanishing boundary conditions in Stokes wedges will have real eigenvalues. This
parity time reversal was named PT-symmetry, and the Hamiltonian can be complex. Their
paper has become highly cited since its inception. A book edited by Bender provides both
theoretical and experimental works, updated to 2018 [2]. The related exploration in modern
optics has been fascinating [3–6]. Jones reviewed the fundamental theory and many novel
experiments in optics in a chapter of Ref. [2]. Consider a medium with variable dielectric
function ϵ(x). The Maxwell equations of E , H are

∇2E − µ0ϵ(x)
∂2

∂t2 E = ∇[ϵE · ∇ 1
ϵ(x)

], (1)

∇2H− µ0ϵ(x)
∂2

∂t2 H = −1
ϵ
∇ϵ(x)× (∇×H). (2)

For a medium with specific dielectric function in the (x, z)-plane, Burckardt [7] solved
the modes of field E in the polarization plane (E-mode) or in perpendicular to the polariza-
tion plane (H-mode). For example , in the E-mode, we can set H = ŷH(x, z)eik0z−iωt under
the paraxial approximation, (that is, assuming ∂2 H

∂z2 ≪ ∂2 H
∂x2 ); we then have

i
∂H
∂z

=
−1
2k0

{∂2H
∂x2 + (ω2ϵµ − k2

0)H − ϵ(x)′

ϵ

∂H
∂x

}. (3)

The function H(x, z) has a close analogy to the Schrödiner equation with z correspond-
ing to t and the right-hand side corresponding to a stationary eigenvalue Hamiltonian. The
electromagnetic wave in the medium has a close analog to the matter wave. We expect
that there will be interesting problems to investigate with a complex function ϵ(x). The
PT-symmetric quantum mechanics is then closely related to fundamental physics.

In this paper, we aim to compute the eigenvalue problem of the non-Hermitian Hamil-
tonian and develop a method to solve the time-dependent Schrödinger equation with
an interaction term. We formulate the eigenvalue problem on the Fourier basis. We
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use the quadruple precision solver HTDQLS for the complex–symmetric matrix released
by Noble et al. [8]. The code calculates eigenvalues and normalized eigenvectors. In a
comparison of complex rotated harmonic oscillator ground state energy, the errors of
quadruple precision HTDQLS are about 10−16 times that of the double precision LAPACK
code ZGEEVX [9] at grid numbers around 200 ∼ 1000. Our calculation faithfully repro-
duces some of Bender’s tabulated results [10]. Motivated by the development of attosecond
science in atomic and molecular physics [11–13], the time-dependent interaction on a PT-
Hamiltonian will be interesting. First, we applied the TDSE method for the Hamiltonian
H0 = − 1

2
d2

dx2 +
x2

2 + igx3 under the dipole interaction term x f (t). With a tiny value of g, the
eigenspectrum of H0 has no visible difference from that of a simple harmonic oscillator. We
justify our TDSE algorithm with the paradigmatic example of a driven oscillator [14–16],
for which we know the analytical results. Also, we propose the expectation of (x(t)) as
(Ψ(x, t)|x|Ψ(x, t)) in the next section. We calculate the emitted spectrum by taking the
Fourier transform of (x(t)) [17,18]. We then study several model problems. We interpret the
results and explain the fundamental differences from the driven atoms. There are several
relevant works on time-dependent problems. Some are in a more general pseudo-Hermitian
framework [19–22].

In the rest of the paper, Section 2 presents the method of calculation, Section 3 displays
comprehensive results and discussions, and Section 4 includes the concluding remarks.
The atomic units are used throughout unless otherwise stated.

2. Method of Calculation
2.1. The Eigenstates

Consider an example PT-symmetric eigenvalue problem in coordinate space,

E < x|ψ > = < x|−1
2m

d2

dx2 |ψ > + < x|V(x)|ψ >, (4)

V(x) =
mω2

0
2

x2 + igx3. (5)

In the Fourier basis < x|k >= 1√
2π

eikx,

∫
dk′dx′ < x|k′ > −1

2m
d2

dx2 < k′|x′ > ψ(x′) =
1

2π

∫
dk′dx′eik′(x−x′) k′2

2m
ψ(x′), (6)

< x|V(x)|ψ > = V(x)ψ(x). (7)

Numerically, we use the grids [23]

xk = k · ∆x, k = −M,−M + 1, · · · ,−1, 0, 1, · · · , M − 1, M, (8)

kµ = µ · ∆k, µ = −M,−M + 1, · · · ,−1, 0, 1, · · · , M − 1, M, (9)

∆x · ∆k =
π

M
. (10)

We obtain the matrix eigenvalue equation

1
M

k=M

∑
k=−M

µ=M

∑
µ=1

k2
µ

m
cos[kµ(xj − xk)]ψ(xk) + V(xj)ψ(xj) = Eψ(xj), (11)

with the matrix elements

Hj,k =
1
M

µ=M

∑
µ=1

k2
µ

m
cos[kµ(xj − xk)] + V(xj)δj,k. (12)

This is a complex–symmetric matrix eigenvalue problem within the representation. We
use the high-precision code HTDQLS [8] and reproduce the levels we could find for the PT-
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symmetric potential. For instance, we obtain precisely the first ten levels of H = −d2/dx2 + ix3

listed in Table 1 of [10].
We list the lowest six levels of H = −d2/dx2 + igx3 for g = 0.01, 0.05, 0.1, 0.5, and 1.0

in Table 1.

Table 1. The lowest six eigenvalues for H = −d2/dx2 + igx3 with g = 0.01, 0.05, 0.1, 0.5, and 1.0.

g E0 E1 E2 E3 E4 E5

0.01 0.18326 0.65127 1.19854 1.79321 2.42355 3.08284
0.05 0.34886 1.23979 2.28160 3.41366 4.61360 5.86870
0.1 0.46032 1.63591 3.01059 4.50435 6.08768 7.74379
0.5 0.87629 3.11421 5.73113 8.57473 11.58883 14.74150
1.0 1.15627 4.10923 7.56227 11.31442 15.29155 19.45153

And the lowest six energy levels for H = − 1
2m

d2

dx2 + x2/2 + igx3 with m = 1 at a
coupling constant g from 10−4 to 1 are listed in Table 2.

Table 2. The lowest six eigenvalues for H = − 1
2m

d2

dx2 +
x2

2 + igx3 with m = 1, g = 10−4, 10−3, 10−2,
0.05, 0.1, 0.5, and 1.0.

g E0 E1 E2 E3 E4 E5

10−4 0.50000 1.50000 2.50000 3.50000 4.50000 5.50000
10−3 0.50000 1.50000 2.50002 3.50005 4.50008 5.50011
10−2 0.50014 1.50088 2.50238 3.50462 4.50760 5.51131
0.05 0.50335 1.52118 2.55564 3.60558 4.67002 5.74811
0.1 0.51254 1.57560 2.68971 3.84603 5.03863 6.26325
0.5 0.64588 2.18448 3.94769 5.85246 7.86517 9.96627
1.0 0.79734 2.77352 5.06782 7.55590 10.19040 12.94420

Since the characteristic polynomials of the matrix representation of the H and its
transpose Ht are identical, they have the same set of eigenvalues, but may have different
eigenvectors. Let

H|uj >= Ej|uj >, Ht|vk >= Ek|vk >, (13)

take transpose, and with Ht = H for the complex–symmetric matrix, we then can derive

< vk|H = Ek < vk|, (14)

< vk|{H|uj >} = Ej < vk|uj >, (15)

{< vk|H}|uj > = Ek < vk|uj >, thus (16)

< vk|uj > = 0, for k ̸= j. (17)

But, < vk| is simply the transpose of |vk > without taking a complex conjugate; we
will have the convention of the inner product except for the Hermitian quantum mechanics.
We designate the inner product as

(vk|uj) ≡
∫

vk(x)uj(x)dx. (18)

The convention of the inner product is consistent with the definition on page 87 of
Ref. [2], where the inner product associated with a PT-symmetric Hamiltonian is shown as

(ψ|ϕ) ≡
∫

C
dx[ψ(x)]PTϕ(x), (19)
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where C is a contour that terminates in the Stokes sectors with imposed boundary condi-
tions. So, for an observable, we may define the expectation of Ô as

(ψ(x, t)|Ô|ψ(x, t)) ≡
∫

dx[ψ(x, t)]PTÔψ(x, t). (20)

2.2. Time-Dependent Schrödinger Equation, TDSE

Consider that the motion of a charge in a PT-symmetric potential V(x) interacts with
an electric field pulse,

E(t) = Em cos2(
πt
τ
) sin(ωt), t ∈ [−τ/2, τ/2]. (21)

Let

H0 = − 1
2m

d2

dx2 + V(x), (22)

H0|φj(x) > = Ej|φj(x) >, (23)

H = H0 + xE(t), (24)

where Em is the peak field in atomic units and Em = 1 corresponds to the peak intensity
of 7.02 × 1016 watt/cm2. τ is the pulse duration and ω is the carrier frequency. The pulse
frequency peaked at ω and banded around (ω − Ω, ω + Ω), where Ω = 2π/τ comes from
the pulse shape. For the TDSE,

i
∂ψ(x, t)

∂t
= {H0 + xE(t)}ψ(x, t), (25)

ψ(x, t) ≡ ∑
j

cj(t)|φj(x) > e−iEj(t+τ/2), (26)

i
dcj(t)

dt
= E(t)∑

k
ck(t)e

i(Ej−Ek)(t+τ/2)(φj(x)|x|φk(x)), (27)

where the inner product (18) is applied. Let

cj(t) ≡ uj(t) + ivj(t), (28)

(φj(x)|x|φk(x)) ≡ xj,k + iyj,k, (29)

wjk ≡ Ej − Ek, t′ = t + τ/2, (30)

we then derive

duj(t)
dt

= E(t)∑
k
{xjk[uk(t) sin(wjkt′) + vk(t) cos(wjkt′)]

− yj,k[vk(t) sin(wjkt′)− uk(t) cos(wjkt′)]}, (31)

dvj(t)
dt

= E(t)∑
k
{xjk[vk(t) sin(wjkt′)− uk(t) cos(wjkt′)]

+ yj,k[uk(t) sin(wjkt′) + vk(t) cos(wjkt′)]}. (32)

Solving the TDSE becomes the integration of a set of coupled ordinary differential
equations with given initial conditions. We use the routine D02CJF of NAG [24] which
integrates the system by a variable-order, variable-step Adams method.
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For the dipole function, we have

(Ψ(t)|x|Ψ(t)) = ∑
j,k

c∗j (t)ck(t)e
i(Ej−Ek)(t+τ/2)

∫
φj(x)xφk(x)dx, (33)

= ∑
j,k

c∗j (t)ck(t)e
i(Ej−Ek)(t+τ/2)[xj,k + iyj,k], (34)

≡ (x(t)). (35)

The Fourier transformation of the time sequence (x(t)) will be related to the emitted
harmonic spectrum intensity I [17,18]:

I(ω′) = | 1
τ

∫ τ/2

−τ/2
e−iω′t(x(t))dt |2. (36)

2.3. Driven Harmonic Oscillator

Consider especially an electron in a harmonic potential driven by electric field f (t),
the Hamiltonian in the dipole approximation is

H =
−h̄2

2m
∂2

∂x2 +
1
2

mω2
0x2 + x f (t). (37)

The transition probability Pbn from ground state n = 0 to state n at large time is given
by the Poisson distribution [14–16]:

σ =
1

2h̄mω0
|
∫ ∞

−∞
f (t)eiω0t|2, (38)

Pbn = e−σ σn

n!
, (39)

where h̄ = me = ω0 = 1 in the scaled unit. Furthermore, the eigenvalues are εn =
n + 1/2, n = 0, 1, 2 · · · . We can calculate the dipole function in the Hermitian quantum
mechanics as follows:

< x(t) >=
∫

ψ(x, t)∗xψ(x, t)dx. (40)

The Fourier transform of the sequence < x(t) > gives the emitted spectrum. Sakurai
listed that the only nonvanishing dipole matrix elements are [25]

< n − 1|x|n > =

√
h̄

2mω0

√
n, (41)

< n + 1|x|n > =

√
h̄

2mω0

√
n + 1. (42)

These transition elements are the nearest neighboring states. For a simple harmonic
oscillator, all energy levels are equally spaced. Hence, the emitted harmonic will be
only one unit of natural frequency. The harmonic mission of a driven simple harmonic
oscillator is drastically different from the atomic cases. Applying a laser pulse on an atom
will drive the electron back and forth around the parent nucleus. The recollision of the
electron wave packet with the nucleus will induce the emission of harmonics [26]. Since
the inception of high-order harmonic generations (HHGs), there has been tremendous
progress in producing frontier light pulses. The harmonic generation reveals the new
field of attosecond physics [11–13]. We will investigate the pulse effects on a PT-symmetric
potential. The simple harmonic oscillator will calibrate in the case of a small coupling
constant g. As we see in Table 2, the energy levels of case g = 10−4 are nearly identical
to a simple harmonic oscillator. As an example, the dipole interaction Hamiltonian H′ =
xE(t), t ∈ (−τ/2, τ/2) with E(t) in (21) is a PT-symmetric term. Figure 1a shows the
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electric field pulse, and Figure 1b depicts the corresponding frequency spectrum. The pulse
frequency peaks at the carrier frequency ω and is banded around a width of the shape
frequency Ω.

Figure 2 depicts the excitation from the initial ground state to other states. It is
precisely Poisson’s distribution (39). Also shown in Figure 2 is the excitation from the
ground state of H0 = −1

2
∂2

∂x2 +
1
2 x2 + igx3 with g = 0.0001. The difference from the exact

results of a driven simple harmonic oscillator is negligible, while we calculate the latter by
the non-Hermitian TDSE.
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Figure 1. (a) The electric field pulse with Em = 0.1, ω = 1.0, τ = 20-cycle. (b) The corresponding
frequency spectrum of the pulse peaked at ω and banded around ω − Ω and ω + Ω, where ω is the
carrier frequency and Ω comes from the pulse duration.
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Figure 2. Occupation probability in excited state k after the same pulse of Figure 1 with the initial
state in the ground state. The Hermitian quantum mechanical (blue-dotted) results and non-
Hermitian one with a small value of g = 0.0001 (red) show negligible differences. The connected
line is for visual guidance.
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3. Results and Discussions

We apply the TDSE method described to study a model PT-system under the dipole inter-
action xE(t). The electric field is in the form of (21) with Em = 0.1, ω = E1 − E0, τ = 20-cycle,
where cycle= 2π/ω for the case in Section 3.1 below, but τ = 50-cycle for the cases in
Sections 3.2 and 3.3.

3.1. H = − 1
2

d2

dx2 +
x2

2 + igx3 + xE(t), g = 0.0001

Table 2 shows that the energy levels without the interacting Hamiltonian xE(t) are
nearly identical to the harmonic oscillator at g = 0.0001. Figure 2 shows that the TDSE
results of the current case are equal to the Hermitian quantum mechanical Poisson’s
distribution results of the driving harmonic oscillator. Figure 3a depicts the emitted
light from the Fourier transform of < x(t) > (40) of the driven harmonic oscillator and
from (x(t)) (35) of the non-Hermitian TDSE. The two spectra are nearly identical. It is
worth noting that only the natural frequency ω is dominant in these spectra. As the
selection rules shown in (42), the only nonvanishing transitions are between the nearest
states with the energy difference always equal to ω in both the harmonic oscillator and
the PT-system with a minimal value of g. Excitation with resonant frequency will be more
efficient than nonresonant excitation. Figure 3b shows the time history of the expansion
coefficients (26). The transition from the ground state c0 to the first excited state c1 occurs
around t ∼ −6.5τ, then c2 starts near t ∼ −4τ and so on. At the end of pulse t = 10τ, the
Poisson’s distribution is equal to the results shown in Figure 2. We can conclude that the
non-Hermitian TDSE formalism and the form (x(t)) (35) are correct.
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Figure 3. (a) The emitted light spectra of a pulse-driven harmonic oscillator. The spectra of a system
with an additional term igx3, g = 0.0001 under the same pulse show no difference from those of the
harmonic oscillator. (b) The time history of dominant coefficients ck(t) for the pulse-driven harmonic
oscillator with an additional term igx3, g = 0.0001. At the end of the pulse, the coefficients are in the
Poisson’s distribution.

3.2. H = −d2/dx2 + igx3 + xE(t), g = 0.1 and g = 1

We list the lowest six energy levels for several g-values in Table 1 and the dom-
inant dipole moments in Table 3 for g = 0.1 and g = 1.0. We can have transitions
for quantum number increments in ∆n = 1, 2, 3, 4. Figure 4a plots the emitted light
intensity (in logarithmic scale) versus frequency for g = 0.1 at carrier frequency ω reso-
nant to E1 − E0 = 1.1756. For a 50-cycle duration pulse, we have the frequency band
in (ω − Ω, ω + Ω) = (1.1521, 1.1991). It characterizes the horizontal frequency posi-
tions of the first harmonic. The second harmonic is located at two times of the three
frequencies peaked at 2.3042, 2.3512, 2.3982. The third harmonic is around the frequency
in (3.4563, 3.5973). In the case of g = 1, we use the carrier frequency ω equal to
E1 − E0 = 2.9530. The pulse frequency banded in (ω − Ω, ω + Ω) = (2.894, 3.012) and
(2ω − 2Ω, 2ω + 2Ω) = (5.788, 6.024). Figure 4b shows the emitted frequency spectrum of
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the first and second harmonics. In Figure 5, we plot |(x(t))| with time for g = 0.1 and g = 1.
For the interaction-free condition, from the TDSE formulation, we have dcj(t)/dt = 0, and
the system will stay with c0(t) = 1. Hence, (x(t)) = (ψ0(x, t = 0)|x|ψ0(x, t = 0)) is a
constant of time. With the dipole interaction, (x(t)) oscillates but stays bounded. In the
intense pulse-driven atom, the ponderomotive energy of nearly free electrons inside the
pulse causes the suppression of photoelectron peaks [27] and the cut-off in HHG [28]. It
plays no role in the present cases because the charge motion is bounded.
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Figure 4. The harmonic generation spectra of Hamiltonian H = −d2/dx2 + igx3 + xE(t) with carrier
frequency ω = E1 − E0, Em = 0.1, τ = 50-cycle. (a) g = 0.1, (b) g = 1.
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Figure 5. The |(x(t))| versus time of g = 0.1 and g = 1 for Hamiltonian H = −d2/dx2 + igx3 + xE(t)
with carrier frequency ω = E1 − E0, Em = 0.1, τ = 50-cycle.
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Table 3. The matrix elements (j|x|k) for H = −d2/dx2 + igx3, g = 0.1 and g = 1. Note that
(k|x|j) = (j|x|k).

g = 0.1 g = 1

j (j|x|j + 1) (j|x|j + 2) (j|x|j + 3) (j|x|j + 4) (j|x|j + 1) (j|x|j + 2) (j|x|j + 3) (j|x|j + 4)

0 0.9462 −0.1449 i −0.0157 0.0015 i −0.5970 0.0915 i 0.0099 −0.0009 i
1 −1.2486 0.1792 i 0.0188 0.0017 i −0.7878 0.1131 i 0.0119 −0.0011 i
2 −1.4677 0.2057 i −0.0213 0.0019 i −0.9260 0.1298 i 0.0134 −0.0012 i
3 −1.6464 −0.2277 i −0.0234 0.0021 i −1.0388 0.1437 i 0.0147 0.0013 i

3.3. H = − 1
2

d2

dx2 +
x2

2 + igx3 + xE(t), g = 0.1 and g = 1

Table 2 shows the lowest six energy levels for several g-values, and Table 4 lists the
dominant dipole moments for g = 0.1 and g = 1.0. The energy levels are generally no longer
equally spaced like the harmonic oscillator. The dominant transition moments are for the
nearest and following near-neighbor states. Figure 6a depicts the harmonic generation spec-
trum for g = 0.1 driven by the carrier frequency ω = E1 − E0 = 1.0631, Em = 0.1, τ = 50-cycle.
The fundamental harmonic has a frequency around (ω − Ω, ω + Ω), where Ω = ω/50.
The frequency is banded in (2ω − 2Ω, 2ω + 2Ω) for the second harmonic. The higher-order
harmonics are negligibly small. Figure 6b shows the harmonic spectrum for the case g = 1
driven by carrier frequency ω = E1 − E0 = 1.9762, Em = 0.1, τ = 50-cycle. Now that
Ω = 0.0395, the fundamental harmonic frequency is in (1.9367, 2.0157) and the second
harmonic is in (3.8734, 4.0314). The higher-order harmonics are negligible unless using
a stronger electric field. We display the |(x(t))| versus time in Figure 7. Similar to the
previous Section 3.2, the |(x(t))| is bounded and oscillating. Without the field, (x(t)) is a
constant of time. Again, the ponderomotive energy [27,28] of an ionized electron inside the
pulse in a driven atom plays no role here.

Table 4. The matrix elements (j|x|k) for H = − 1
2

d2

dx2 + x2

2 + igx3, g = 0.1 and g = 1. Note that
(k|x|j) = (j|x|k).

g = 0.1 g = 1

j (j|x|j + 1) (j|x|j + 2) (j|x|j + 3) (j|x|j + 4) (j|x|j + 1) (j|x|j + 2) (j|x|j + 3) (j|x|j + 4)

0 −0.6904 0.0559 i 0.0038 0.0002 i −0.5154 −0.0770 i −0.0082 −0.0008 i
1 −0.9585 0.0862 i −0.0062 −0.0004 i 0.6825 −0.0964 i 0.0100 0.0009 i
2 −1.1560 −0.1108 i 0.0083 0.0006 i −0.8033 −0.1112 i 0.0114 0.0010 i
3 1.3175 0.1319 i −0.0102 −0.0007 i 0.9018 0.1235 i −0.0126 0.0011 i
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Figure 6. The harmonic generation spectra of Hamiltonian H = − 1
2

d2

dx2 + x2

2 + igx3 + xE(t) with
carrier frequency ω = E1 − E0, Em = 0.1, τ = 50-cycle. (a) g = 0.1, (b) g = 1.
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Figure 7. The |(x(t))| versus time of g = 0.1 and g = 1 for Hamiltonian H = − 1
2

d2

dx2 +
x2

2 + igx3 +

xE(t) with carrier frequency ω = E1 − E0, Em = 0.1, τ = 50-cycle.

4. Conclusions

Using the high-precision code HTDQLS [8], we generate the eigenstates of a PT-
symmetric Hamiltonian and calibrate the literature results well. The constructed eigenstates
are applied to solve the non-Hermitian TDSE. We establish the calculation of observables
in non-Hermitian quantum mechanics and justify the method by comparing a pulse-driven
harmonic oscillator in Hermitian quantum mechanics and a harmonic oscillator with an
additional term igx3 at g = 0.0001. We studied four cases of a PT-Hamiltonian driven by
an electric field pulse in dipole approximation in Sections 3.2 and 3.3. The emitted spectra
from the Fourier transform of (x(t)) show harmonics generated at multiples of the carried
frequency with widths of the shape frequency. The nonvanishing transition moments among
several nearby states allow the emission of multiple photons. In the case of a harmonic
oscillator, there are transition moments between the nearest neighbors only and the energy
level difference is ω. Hence, the harmonic spectrum contains simply one photon.

In the atomic high-order harmonic generation, the electric field drives the wavepacket
back and forth. The wavepacket collides with the atomic ion twice per cycle; hence, the
emitted photon energy spectrum is in 2ω. When the electron is nearly free, the pon-
deromotive energy is essential. The PT-system we studied has no scattering center and
generates different emitted spectra. The ponderomotive energy [27,28] again plays no
role in the PT-symmetric cases studied in the paper because the (x(t)) is bounded instead
of nearly free.

Considering the exponential growth of works in quantum optics with the PT-symmetric
model, the investigation by TDSE presented in this paper would be fascinating.
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