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Abstract: We provide an analytic expression of the spectrum of the cooperative decay rate
of N two-level atoms regularly distributed on a ring in the single-excitation configuration.
The results are obtained first for the scalar model and then extended to the vectorial light
model, assuming all the dipoles are aligned.
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1. Introduction
In this paper, we study the cooperative emission of an array of identical two-level

atoms, organized in a circular ring of radius ρ. This study is part of the general subject
of cooperative spontaneous emission by N excited two-level atoms, extensively studied
since the seminal work by Dicke in 1954 [1] and Lehmberg in 1970 [2]. It includes the
well-known effect of superradiance, i.e., enhanced spontaneous emission due to construc-
tive interference between the emitters [3,4], and subradiance, i.e., inhibited emission due
to destructive interference between the emitters, which is more elusive and difficult to
observe [5–9]. Subradiance has seen a large increase in interest in the last few years, as it
offers the opportunity of storing photons in emitter ensembles for times longer than the
single emitter lifetime [10–17]. In particular, superradiance and subradiance have been
studied in the single-excitation configuration, belonging to the regime of linear optics. In
disordered systems, the cooperative decay must be studied numerically, usually by solving
the dynamics of an initially excited ensemble [18,19]. A more appealing situation is when
the atoms form ordered arrays, where cooperativity may be enhanced. For instance, infinite
and finite linear chains of two-level atoms are considered in ref. [14,15,20,21]. Subradiance
has been experimentally observed also in a bidimensional lattice [22] or in an ensemble of
atoms coupled to the guided mode of an optical nanofiber [23].

Having recently studied the finite chain of atoms [21], we are interested here in
studying the decay rates when the atoms form a closed configuration since it it expected to
lead to a stronger suppression of the excitation. The cooperative single-quantum excitation
of a closed-ring chain was studied in the past in ref. [24] and more recently in [14,15,20,25].
Starting from the effective non-Hermitian Hamiltonian, which includes an imaginary part
describing the cooperative spontaneous decay and a real part describing the cooperative
energy shift [2,26], we focus on the cooperative decay only, calculating analytically the
spectrum of the decay rates. The analysis is carried out by initially assuming the scalar
model of light and neglecting the vectorial nature of the dipoles. The scalar model is
particularly attractive because, since the polarization direction does not play any role, it
is able to catch the main features of cooperativity just considering the relative phases of
the emitters. Then, we extend the results to the vectorial light model for a set of N equally
oriented dipoles.
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2. Scalar Model
We consider N identical two-level atoms with transition frequency ω0 = ck0, linewidth

Γ, and dipole µ. The atoms are prepared in a single-excitation state; |gj⟩ and |ej⟩ are the
ground and excited states, respectively, of the j-th atom, j = 1, . . . , N, which is placed
at position rj. We consider here the single-excitation effective Hamiltonian in the scalar
approximation, whereas the exact vectorial model will be considered later. If we assume
that only one photon is present, when tracing over the radiation degrees of freedom, the
dynamics of the atomic system can be described by the non-Hermitian Hamiltonian [19,27]

Ĥ = −i
h̄
2 ∑

j,m
Gjm σ̂†

j σ̂m, (1)

where σ̂j = |gj⟩⟨ej| and σ̂†
j = |ej⟩⟨gj| are the lowering and raising operators, Gjm is the

scalar Green function,

Gjm =

{
Γjm − i Ωjm if j ̸= m,

Γ if j = m,
(2)

and

Γjm = Γ
sin(k0rjm)

k0rjm
, Ωjm = Γ

cos(k0rjm)

k0rjm
, (3)

where rjm = |rj − rm|. Ĥ contains both real and imaginary parts, which takes into account
that the excitation is not conserved since it can leave the system by emission. We focus our
attention on the decay term Γjm.

We consider N atoms on a ring of radius ρ and angles ϕj = (2π/N)(j − 1), with
j = 1, . . . , N (see Figure 1).

Figure 1. Scheme of the system: a ring with interparticle distance d, radius ρ, and angular position
given by ϕj = 2π(j − 1)/N.

We write

Γjm = Γ
sin(k0rjm)

k0rjm
=

Γ
2

∫ 1

−1
ei(k0rjm)tdt (4)
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where k0rjm = 2k0ρ sin(ϕjm/2) and ϕjm = ϕj − ϕm. Then, we expand the exponential

e2iat sin(ϕjm/2) = J0(2at) + 2
∞

∑
n=1

J2n(2at) cos(nϕjm)

+ 2i
∞

∑
n=1

J2n+1(2at) cos[(2n + 1)ϕjm/2]

where a = k0ρ. The last term is odd in t, so it can be dropped from the integral in
Equation (4), obtaining

Γjm = Γ
+∞

∑
n=−∞

cn(a)ein(ϕj−ϕm) (5)

where

cn(a) =
∫ 1

0
J2n(2at)dt =

a2n

Γ(2 + 2n) 1F2[1/2 + n; 3/2 + n, 1 + 2n;−a2] (6)

where 1F2[α; β1, β2; z] is the Hypergeometric PFQ function and Γ(n) is the gamma function.
Notice that cn(a) = c−n(a) and

+∞

∑
n=−∞

cn(a) = 1 (7)

so that Γjj = Γ. We define the spectrum of the decay rates as [25]

Γk =
1
N

N

∑
j,m=1

eikϕjm Γjm (8)

where k = −N/2, . . . , N/2 is discrete (let us suppose N is even). Since by Equation (5) the
sum on j and m factorizes, we obtain

Γk =
Γ
N

+∞

∑
n=−∞

cn(a)|Fk+n|2 (9)

where

|Fk|2 =

∣∣∣∣∣ N

∑
j=1

eik(2π/N)(j−1)

∣∣∣∣∣
2

=
sin2(kπ)

sin2(kπ/N)
= N2

+∞

∑
m=−∞

δk,mN (10)

and

Γk = ΓN
+∞

∑
m=−∞

ck−mN(a). (11)

The advantage of this expression is that is valid for an arbitrarily large number of
atoms N. Furthermore, the spectrum is symmetric, with Γ−k = Γk. Equation (11) is the
main result of the paper.

Analysis

It results that cn(a) ≈ 0 for |n| > a; for a → 0, cn(a) = δn,0, whereas for a ≫ 1,
cn(a) ∼ 1/(2a) for |n| < a (see the example of Figure 2 for a = 50).

Hence, in the limit a → 0, Γk = ΓNδk,0: the spectrum is composed by a single
superradiant component k = 0 and the remaining subradiant components with k ̸= 0
(Dicke limit). If a < N/2, Γk ≈ 0 for |k| > a (subradiance). Instead, assuming a ≫ N/2,
the sum of Equation (11) spans from −mmax to mmax, where mmax is determined by the
condition mmaxN − k ∼ a. Hence,



Atoms 2025, 13, 8 4 of 9

mmax ∼ a
N

+
k
N

∼ a
N

(12)

since |k| < N/2 and a ≫ N. Then, Equation (11) gives, in the limit a ≫ N/2,

Γk ∼ ΓN
mmax

∑
m=−mmax

ck−mN(a) ∼ ΓN
1
2a

2a
N

∼ Γ. (13)

As expected, when a/N becomes very large, the distance d between adjacent atoms
becomes much larger than the wavelength λ0, and cooperativity disappears. Ref. [14]
investigated numerically a ring distribution of N atoms with fixed atom–atom separation
d. In our case, the spectrum of the decay rate is a function of radius ρ and of the number
of atoms N. The distance d between adjacent atoms is d = 2ρ sin(π/N) ≈ 2πρ/N, where
the last expression is valid for large N. The previous necessary condition for subradiance,
k0ρ < N/2, implies d/λ0 < 0.5. As discussed before, the sum in Equation (11) spans from
−mmax to +mmax, where mmax is determined by mmaxN − k ∼ k0ρ ∼ (d/λ0)N so that
mmax ∼ (k/N) + (d/λ0). Taking the most subradiant value k = N/2 (since subradiance
occurs for (d/λ0)N < k < N/2), then mmax ∼ (d/λ0) + 0.5 < 1, and the only term
surviving in the sum of Equation (11) is m = 0:

ΓN/2 ∼ ΓNcN/2(dN/λ0) (14)

For N ≫ 1,

ΓN/2 ∼ ΓJN(2dN/λ0) ∼
1√

2πN
(ed/λ0)

N , (15)

where Jn(x) is the Bessel function of order n, and the last expression is valid when ed/λ0 < 1.
In conclusion, the spontaneous emission is exponentially suppressed, as seen in ref. [14], if we
increase N, keeping the distance between adjacent atoms constant, i.e., increasing the radius
ρ proportionally to N. On the contrary, in the continuous limit, we tend to let N → ∞ and
d/λ0 → 0 such that k0ρ remains finite. Then, in the sum of Equation (11), there remains only
the term m = 0, and

Γcont
k ∼ ΓNck(k0ρ) (16)

Subradiance occurs for k0ρ < |k| < N/2, whereas superradiance occurs for |k| < k0ρ.
When k0ρ → 0, then Γcont

k ∼ ΓNδk,0, whereas when k0ρ ≫ 1, then Γcont
k ∼ ΓN/(2k0ρ) when

|k| < k0ρ.
In Figure 3, we plot the decay rate for different values of k = 0, 1, 2, 4 for N = 10 as

a function of λ0/d. We see that as λ0/d → 0, Γk ≈ ΓN/2a ∼ (Γ/2)(λ0/d) (dashed line),
whereas for λ0/d → ∞, the emitters are so close that the range of interaction is effectively infi-
nite, yielding a single superradiant mode decaying at rate NΓ and N − 1 perfectly subradiant
modes. This may be explained since Γk ≈ 0 for k > a; since a ≈ N(d/λ0), when λ0/d → ∞,
a → 0 and the mode k = 0 decays superradiantly as NΓ, whereas the other modes with k > 0
are dark. Conversely, when λ0/d ≪ 1, a ≫ 1 and Γk ∼ NΓ/(2a) ∼ Γ(λ0/2d). The results are
in agreement with those presented in Ref. [25].
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Figure 2. cn(a) vs. n for a = 50. Vertical dashed lines are for n = ±a.
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 k = 2
 k = 4

Figure 3. Γk/Γ vs. λ0/d for N = 10 and k = 0, 1, 2, 4. In the Dicke limit, λ0/d → ∞, only the
superradiant k = 0 with a decay rate NΓ is present, and N − 1 modes are completely subradiant. In
the limit λ0/d → 0, all the modes decay with the rate Γk/Γ = λ0/2d (dashed line).

3. Vectorial Model
We now extend the previous expressions to the vectorial model, taking into account

the polarization of the electromagnetic field. The non-Hermitian Hamiltonian is now

Ĥ = −i
h̄
2 ∑

α,β
∑
j,j′

Gα,β(rj − rj′) σ̂†
j,ασ̂j′ ,β. (17)

where α, β = (x, y, z). Here σ̂j,x = (σ̂
mJ=1
j + σ̂

mJ=−1
j )/2, σ̂j,y = (σ̂

mJ=1
j − σ̂

mJ=−1
j )/2i and

σ̂j,z = σ̂
mJ=0
j , where σ̂

mJ
j = |gj⟩⟨e

mJ
j | is the lowering operator between the ground state

|gj⟩ and the three excited states |emJ
j ⟩ of the jth atom with quantum numbers J = 1 and

mJ = (−1, 0, 1). The vectorial Green function in Equation (17) is

Gα,β(r) =
3Γ
2

eik0r

ik0r

[
δα,β − n̂αn̂β +

(
δα,β − 3n̂αn̂β

)( i
k0r

− 1
k2

0r2

)]
(18)
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with r = |r| and n̂α being the components of the unit vector n̂ = r/r. We consider a ring
with rjm = 2ρ sin(ϕjm/2) and all the dipoles aligned with an angle δ with respect to ring’s
plane so that n̂α = n̂β = cos δ and

G(δ)(rjm) =
3Γ
2

eik0rjm

ik0rjm

[
sin2 δ + (1 − 3 cos2 δ)

(
i

k0rjm
− 1

k2
0r2

jm

)]
. (19)

The decay rate for the vectorial model is given by the real part of G(δ)(rjm),

Γ(δ)(rjm) =
3Γ
2

[
sin2 δj0(k0rjm) + (3 cos2 δ − 1)

j1(k0rjm)

k0rjm

]
(20)

where j0(x) = sin x/x and j1(x) = sin x/x2 − cos x/x are the spherical Bessel functions of
the orders n = 0 and n = 1. By using the identities

j0(x) =
1
2

∫ 1

−1
eixtdt

j0(x)− 2
j1(x)

x
=

1
2

∫ 1

−1
t2eixtdt,

we can write

Γ(δ)(rjm) =
3Γ
8

{
(1 + cos2 δ)

∫ 1

−1
ei(k0rjm)tdt + (1 − 3 cos2 δ)

∫ 1

−1
t2ei(k0rjm)tdt

}
=

3Γ
4

∞

∑
n=−∞

{
(1 + cos2 δ)cn(a) + (1 − 3 cos2 δ)dn(a)

}
ein(ϕj−ϕm) (21)

where a = k0ρ and

dn(a) =
∫ 1

0
t2 J2n(2at)dt =

a2n

2
Γ(3/2 + n)

Γ(1 + 2n)Γ(5/2 + n) 1F2[3/2 + n; 5/2 + n, 1 + 2n; − a2] (22)

As before, the spectrum is

Γ(δ)
k =

1
N

N

∑
j,m=1

eikϕjm Γ(δ)
jm (23)

where k = −N/2, . . . , N/2 is discrete (let suppose N even). Then,

Γ(δ)
k =

3Γ
4N

+∞

∑
n=−∞

{
(1 + cos2 δ)cn(a) + (1 − 3 cos2 δ)dn(a)

}
|Fk+n|2 (24)

and

Γ(δ)
k =

3ΓN
4

+∞

∑
m=−∞

{
(1 + cos2 δ)ck−mN(a) + (1 − 3 cos2 δ)dk−mN(a)

}
(25)

It results again that dn(a) ≈ 0 for |n| > a; for a → 0, dn(a) = (1/3)δn,0, whereas for
a ≫ 1, dn(a) ∼ 1/(2a3)(n2 − 1/4) for |n| < a (see the example of Figure 4 for a = 50).

Hence, in the limit a → 0, Γ(δ)
k = ΓN, whereas for a ≫ 1 and |k| < a,

Γ(δ)
k =

3ΓN
8a

{
1 + cos2 δ +

1
a2 (1 − 3 cos2 δ)(k2 − 1/4)

}
(26)

As for the scalar model, we plot in Figure 5 the decay rate Γ(δ)
k (in units of Γ) for

N = 10 and for different values of k = 0, 1, 2, 4 as a function of λ0/d for δ = 0. The
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curves are similar to those of the scalar model. The only difference is that as λ0/d → 0,
Γ(δ)

k ≈ (3Γ/4)(λ0/d) (dashed line in Figure 5).

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6

0 . 0 0 8

0 . 0 1 0

0 . 0 1 2

0 . 0 1 4

d n(
a)

n
Figure 4. dn(a) vs. n for a = 50. The red dots are the exact solution of Equation (22) and the dashed
line is the approximated solution dn(a) ∼ 1/(2a3)(n2 − 1/4).

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
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Γ k
(δ)

/Γ

λ / d

 k = 0
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Figure 5. Γ(δ)
k /Γ vs. λ0/d for N = 10 and k = 0, 1, 2, 4, for δ = 0. In the Dicke limit, λ0/d → ∞, only

the superradiant k = 0 with a decay rate NΓ is present, and N − 1 modes are completely subradiant.

In the limit λ0/d → 0, all the modes decay with the rate Γ(δ)
k /Γ = (3/4)(λ0/d) (dashed line).

4. Conclusions
In conclusion, we have presented an analytical expression for the discrete spectrum

Γk of the decay rates of N atoms regularly distributed on a ring in the single-excitation
configuration, both in the scalar and in the vectorial model. The results are in agreements
with those presented in Refs. [14,25], where the rates are calculated numerically as the
imaginary part of the eigenvalues of the effective Hamiltonian. The analytical expression
shows that the decay rates are proportional to N times a function of the parameter a = k0ρ,
where ρ is the ring’s radius. The modes with |k| > a are dark, with almost zero decay rates,
whereas the modes with |k| < a are superradiant, with Γk ∼ NΓ/(2a) for large values of
a. Keeping fixed the distance d ∼ 2πρ/N between adjacent atoms on the ring, the most
subradiant modes decay exponentially with N when d/λ0 < 0.5 as seen in Ref. [14]. Is it
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interesting to note that in the ring configuration, the subradiant spectrum depends on the
parameter a and not on the atomic number N, as it occurs, for instance, in a finite linear
chain [21].

These analytical results may be important for the future implementation in experimen-
tal setups. While ring configurations are not so easy to implement using individual atoms
in optical traps, closely related ring-shaped structures of dipoles appear naturally in biolog-
ical light harvesting complexes [28] or can be set up using quantum dot micro-arrays [29].
Alternatively, one could study such structures in tweezer arrays [30]. As a potential utility
of the present results, it has been shown that subradiance may reduce errors for applications
such as quantum memories, enabling more efficient quantum information processing and
quantum communication protocols [31], or may greatly extend the excited-state lifetimes in
optical-lattice clocks [32].

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.
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