Energy Levels and Radiative Rates for Transitions in F-like Sc XIII and Ne-like Sc XII and Y XXX
Abstract
:1. Introduction
2. Energy Levels
2.1. Sc XIII
2.2. Sc XII
2.3. Y XXX
3. Radiative Rates
4. Conclusions
Supplementary Materials
Conflicts of Interest
References
- Pryce, M.H.L. The origin of coronal emission lines. Astrophys. J. 1964, 140, 1192–1205. [Google Scholar] [CrossRef]
- Jupén, C.; Träbert, E.; Doerfert, J.; Granzow, J.; Jeansch, R. Analysis of 3s, 3p, 3d and 4f configurations of Sc XIII and V XV. Phys. Scr. 2002, 66, 150–158. [Google Scholar] [CrossRef]
- Jönsson, P.; Alkauskas, A.; Gaigalas, G. Energies and E1, M1, E2 transition rates for states of the 2s22p5 and 2s2p6 configurations in fluorine-like ions between Si VI and W LXVI. At. Data Nucl. Data Tables 2013, 99, 431–446. [Google Scholar] [CrossRef]
- Aggarwal, K.M.; Keenan, F.P. Radiative rates for E1, E2, M1, and M2 transitions in F-like ions with 37 ≤ Z ≤ 53. At. Data Nucl. Data Tables 2016, 109–110, 205–338. [Google Scholar] [CrossRef]
- Cogordan, J.A.; Lunell, S. Energies of 2p53s, 3p and 3d levels of neon-like ions from relativistic MCDF calculations, 20 ≤ Z ≤ 54. Phys. Scr. 1986, 33, 406–411. [Google Scholar] [CrossRef]
- Hagelstein, P.L.; Jung, R.K. Relativistic distorted wave calculations of electron collision cross sections and rate coefficients for Ne-like ions. At. Data Nucl. Data Tables 1987, 37, 121–188. [Google Scholar] [CrossRef]
- Zhang, H.L.; Sampson, D.H. Relativistic distorted wave collision strengths for excitation to the 88 n = 3 and n = 4 levels in all 71 neon-like ions with 22 ≤ Z ≤ 92. At. Data Nucl. Data Tables 1989, 43, 1–69. [Google Scholar] [CrossRef]
- Quinet, P.; Gorila, T.; Biémont, E. Allowed and forbidden transitions in highly ionized neon-like atoms (N XIX–U LXXXIII). Phys. Scr. 1991, 44, 164–183. [Google Scholar] [CrossRef]
- Hibbert, A.; Le Dourneuf, M.; Mohan, M. Energies, oscillator strengths, and lifetimes for ions up to Kr XXVIII. At. Data Nucl. Data Tables 1993, 53, 23–112. [Google Scholar] [CrossRef]
- Jönsson, P.; Bengtsson, P.; Ekman, J.; Gustafsson, S.; Karlsson, L.B.; Gaigalas, G.; Fischer, C.F.; Kato, D.; Murakami, I.; Sakaue, H.A.; et al. Relativistic CI calculations of spectroscopic data for the 2p6 and 2p53ℓ configurations in Ne-like ions between Mg III and Kr XXVII. At. Data Nucl. Data Tables 2014, 100, 1–154. [Google Scholar] [CrossRef]
- Nilsen, J.; Scofield, J.H. Wavelengths of neon-like 3p → 3s x-ray laser transitions. Phys. Scr. 1994, 49, 588–591. [Google Scholar] [CrossRef]
- Silwal, R.; Takacs, E.; Dreilling, J.M.; Gillaspy, J.D.; Ralchenko, Y. Identification and plasma diagnostics study of extreme ultraviolet transitions in highly charged yttrium. Atoms 2017, 5, 30. [Google Scholar] [CrossRef]
- Aggarwal, K.M. Radiative rates for E1, E2, M1, and M2 transitions in F-like ions with 55 ≤ Z ≤ 73. At. Data Nucl. Data Tables 2018. [Google Scholar] [CrossRef]
- Aggarwal, K.M. Radiative rates for E1, E2, M1, and M2 transitions in Ne-like Cu XX, Zn XXI and Ga XXII. At. Data Nucl. Data Tables 2018. [Google Scholar] [CrossRef]
- Aggarwal, K.M. Radiative rates for E1, E2, M1, and M2 transitions in Ne-like Hf LXIII, Ta LXIV and Re LXVI. At. Data Nucl. Data Tables 2018. [Google Scholar] [CrossRef]
- Grant, I.P.; McKenzie, B.J.; Norrington, P.H.; Mayers, D.F.; Pyper, N.C. An atomic multiconfigurational Dirac-Fock package. Comput. Phys. Commun. 1980, 21, 207–231. [Google Scholar] [CrossRef]
- Jönsson, P.; He, X.; Fischer, C.F.; Grant, I.P. The GRASP2K relativistic atomic structure package. Comput. Phys. Commun. 2007, 177, 597–622. [Google Scholar] [CrossRef]
- Gu, M.F. The flexible atomic code. Can. J. Phys. 2008, 86, 675–689. [Google Scholar] [CrossRef]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: Oakland, CA, USA, 1981. [Google Scholar]
- Gu, M.F. Energies of 1s22lq (1 ≤ q ≤ 8) states for Z ≤ 60 with a combined configuration interaction and many-body perturbation theory approach. At. Data Nucl. Data Tables 2005, 89, 267–293. [Google Scholar] [CrossRef]
- Singh, N.; Aggarwal, S. Energy levels and radiative rates for Ne-like ions from Cu to Ga. Pramana—J. Phys. 2017, 89, 79. [Google Scholar] [CrossRef]
- Aggarwal, K.M. Comment on “Energy levels and radiative rates for Ne-like ions from Cu to Ga by N. Singh and S. Aggarwal [Pramana – J. Phys. 89 (2017) 79]”. arXiv 2018, arXiv:1803.04764. [Google Scholar]
- Aggarwal, K.M. Comment on “Atomic data for Ne-like ions useful in plasma diagnostic by Singh et al. [Can. J. Phys. 96 (2018) 36]”. arXiv 2018, arXiv:1803.11221. [Google Scholar]
- Aggarwal, K.M. Discrepancies in atomic data and suggestions for their resolutions. Atoms 2017, 5, 37. [Google Scholar] [CrossRef]
Index | Configuration | Level | NIST | HFR | GRASP1 | GRASP2 | FAC1 | FAC2 | FAC3 | (GRASP2) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2s2p | P | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | …….. |
2 | 2s2p | P | 0.345 | 0.3458 | 0.3543 | 0.3430 | 0.3426 | 0.3424 | 0.3425 | 1.045-03 |
3 | 2s2p | S | 6.959 | 6.9588 | 7.1071 | 7.0978 | 7.1152 | 7.1021 | 7.0877 | 1.363-11 |
4 | 2s2p3s | P | 32.016 | 32.0155 | 31.9299 | 31.9067 | 31.9416 | 31.9404 | 31.7915 | 9.843-11 |
5 | 2s2p3s | P | 32.173 | 32.1703 | 32.0898 | 32.0666 | 32.1064 | 32.1073 | 31.9452 | 3.494-12 |
6 | 2s2p3s | P | 32.324 | 32.3235 | 32.2361 | 32.2104 | 32.2440 | 32.2429 | 32.0925 | 6.617-11 |
7 | 2s2p3s | P | 32.394 | 32.3937 | 32.3158 | 32.2906 | 32.3375 | 32.3419 | 32.1612 | 1.623-12 |
8 | 2s2p3s | P | 32.570 | 32.5696 | 32.4940 | 32.4684 | 32.5216 | 32.5282 | 32.3353 | 1.093-12 |
9 | 2s2p3s | D | 32.983 | 32.9833 | 32.9299 | 32.8984 | 32.9169 | 32.9188 | 32.7710 | 2.825-12 |
10 | 2s2p3s | D | 32.995 | 32.9951 | 32.9402 | 32.9088 | 32.9285 | 32.9308 | 32.7803 | 2.613-12 |
11 | 2s2p3p | P | 33.5910 | 33.5112 | 33.4860 | 33.5231 | 33.5164 | 33.3813 | 4.776-10 | |
12 | 2s2p3p | P | 33.6070 | 33.5246 | 33.5032 | 33.5404 | 33.5341 | 33.3978 | 4.386-10 | |
13 | 2s2p3p | P | 33.7247 | 33.6439 | 33.6209 | 33.6564 | 33.6488 | 33.5135 | 4.412-10 | |
14 | 2s2p3p | D | 33.7869 | 33.7148 | 33.6891 | 33.7260 | 33.7283 | 33.5782 | 2.996-10 | |
15 | 2s2p(P)3p | D | 33.8297 | 33.7568 | 33.7331 | 33.7528 | 33.7554 | 33.6173 | 3.445-10 | |
16 | 2s2p3s | S | 33.885 | 33.8851 | 33.7722 | 33.7480 | 33.7750 | 33.7791 | 33.6554 | 2.766-12 |
17 | 2s2p(P)3p | P | 33.9692 | 33.9064 | 33.8823 | 33.9155 | 33.9094 | 33.7678 | 2.856-10 | |
18 | 2s2p3p | D | 33.9882 | 33.9151 | 33.8892 | 33.9264 | 33.9289 | 33.7729 | 3.208-10 | |
19 | 2s2p3p | D | 34.0260 | 33.9515 | 33.9265 | 33.9635 | 33.9658 | 33.8135 | 2.813-10 | |
20 | 2s2p3p | D | 34.0802 | 34.0104 | 33.9827 | 34.0211 | 34.0248 | 33.8624 | 3.175-10 | |
21 | 2s2p(P)3p | P | 34.1222 | 34.0295 | 34.0001 | 34.0359 | 34.0291 | 33.8819 | 2.730-10 | |
22 | 2s2p3p | S | 34.1913 | 34.1203 | 34.0949 | 34.1350 | 34.1412 | 33.9804 | 1.730-10 | |
23 | 2s2p(P)3p | S | 34.2408 | 34.1738 | 34.1455 | 34.1823 | 34.1861 | 34.0219 | 3.267-10 | |
24 | 2s2p(P)3p | D | 34.2327 | 34.1795 | 34.1505 | 34.1919 | 34.1968 | 34.0268 | 2.310-10 | |
25 | 2s2p3p | F | 34.5951 | 34.5491 | 34.5172 | 34.5357 | 34.5381 | 34.3973 | 3.788-10 | |
26 | 2s2p3p | F | 34.6571 | 34.6149 | 34.5803 | 34.5979 | 34.5998 | 34.4607 | 3.335-10 | |
27 | 2s2p(D)3p | D | 34.8134 | 34.7669 | 34.7375 | 34.7570 | 34.7635 | 34.6168 | 2.215-10 | |
28 | 2s2p(D)3p | D | 34.8524 | 34.8089 | 34.7765 | 34.7965 | 34.8037 | 34.6550 | 2.420-10 | |
29 | 2s2p(D)3p | P | 35.3175 | 35.2384 | 35.2135 | 35.2915 | 35.2895 | 35.0662 | 3.438-11 | |
30 | 2s2p(D)3p | P | 35.3499 | 35.2733 | 35.2479 | 35.3197 | 35.2996 | 35.1242 | 3.100-11 | |
31 | 2s2p(S)3p | P | 35.6572 | 35.5598 | 35.5353 | 35.5557 | 35.5546 | 35.4494 | 1.052-10 | |
32 | 2s2p(S)3p | P | 35.7942 | 35.6876 | 35.6585 | 35.7274 | 35.7096 | 35.5420 | 1.080-10 | |
33 | 2s2p3d | D | 35.7683 | 35.6967 | 35.6671 | 35.7200 | 35.7015 | 35.5418 | 1.979-10 | |
34 | 2s2p3d | D | 35.7785 | 35.7053 | 35.6778 | 35.7450 | 35.7267 | 35.5494 | 1.877-10 | |
35 | 2s2p3d | D | 35.8200 | 35.7383 | 35.7131 | 35.7605 | 35.7436 | 35.5824 | 7.254-11 | |
36 | 2s2p3d | D | 35.8654 | 35.7854 | 35.7602 | 35.8086 | 35.7919 | 35.6295 | 6.519-11 | |
37 | 2s2p3d | F | 35.9488 | 35.8847 | 35.8552 | 35.8991 | 35.8891 | 35.7268 | 1.705-10 | |
38 | 2s2p3d | F | 36.0225 | 35.9661 | 35.9375 | 35.9733 | 35.9668 | 35.7922 | 1.598-10 | |
39 | 2s2p3d | P | 36.102 | 36.1017 | 36.0325 | 36.0065 | 36.0384 | 36.0374 | 35.8618 | 3.624-12 |
40 | 2s2p3d | F | 36.162 | 36.1618 | 36.1014 | 36.0715 | 36.1102 | 36.1035 | 35.9298 | 2.505-12 |
41 | 2s2p3d | P | 36.162 | 36.1618 | 36.1030 | 36.0757 | 36.1108 | 36.1083 | 35.9327 | 2.022-12 |
42 | 2s2p(P)3d | P | 36.215 | 36.2147 | 36.1592 | 36.1328 | 36.1694 | 36.1614 | 35.9864 | 2.918-12 |
43 | 2s2p3d | F | 36.2171 | 36.1703 | 36.1415 | 36.1833 | 36.1737 | 36.0088 | 1.689-11 | |
44 | 2s2p(P)3d | F | 36.2271 | 36.1716 | 36.1404 | 36.1762 | 36.1690 | 35.9923 | 1.708-10 | |
45 | 2s2p3d | P | 36.257 | 36.2575 | 36.1973 | 36.1672 | 36.2024 | 36.1985 | 36.0251 | 3.312-12 |
46 | 2s2p(P)3d | D | 36.307 | 36.3067 | 36.2530 | 36.2252 | 36.2604 | 36.2531 | 36.0767 | 7.388-13 |
47 | 2s2p(P)3d | F | 36.336 | 36.3359 | 36.2848 | 36.2537 | 36.2843 | 36.2816 | 36.0964 | 4.289-12 |
48 | 2s2p(P)3d | P | 36.453 | 36.4534 | 36.4051 | 36.3721 | 36.4022 | 36.3954 | 36.2186 | 1.771-12 |
49 | 2s2p(P)3d | D | 36.494 | 36.5236 | 36.4578 | 36.4230 | 36.4572 | 36.4527 | 36.2662 | 4.378-13 |
50 | 2s2p3d | G | 36.7662 | 36.7310 | 36.6935 | 36.7185 | 36.7056 | 36.5569 | 1.725-10 | |
51 | 2s2p3d | G | 36.7702 | 36.7362 | 36.6980 | 36.7210 | 36.7076 | 36.5605 | 1.855-10 | |
52 | 2s2p(D)3d | S | 36.945 | 36.9446 | 36.9226 | 36.8871 | 36.8926 | 36.8953 | 36.7196 | 1.683-13 |
53 | 2s2p(D)3d | F | 36.971 | 36.9710 | 36.9441 | 36.9105 | 36.9207 | 36.9199 | 36.7583 | 3.243-12 |
54 | 2s2p(D)3d | F | 37.0086 | 36.9805 | 36.9442 | 36.9522 | 36.9526 | 36.7894 | 1.494-10 | |
55 | 2s2p(D)3d | P | 37.103 | 37.1041 | 37.0808 | 37.0477 | 37.0676 | 37.0699 | 36.8950 | 1.329-13 |
56 | 2s2p(D)3d | D | 37.104 | 37.1041 | 37.1013 | 37.0663 | 37.0875 | 37.0874 | 36.8952 | 1.644-13 |
57 | 2s2p(D)3d | D | 37.219 | 37.1889 | 37.2125 | 37.1749 | 37.1913 | 37.1936 | 36.9972 | 1.723-13 |
58 | 2s2p(D)3d | P | 37.2186 | 37.2138 | 37.1737 | 37.1914 | 37.1949 | 37.0132 | 1.250-13 | |
59 | 2s2p(S)3d | D | 37.817 | 37.8167 | 37.7296 | 37.7007 | 37.6980 | 37.6961 | 37.5840 | 1.283-12 |
60 | 2s2p(S)3d | D | 37.873 | 37.8732 | 37.7955 | 37.7637 | 37.7723 | 37.7703 | 37.6458 | 3.332-13 |
61 | 2s2p3s | P | 38.2026 | 38.1736 | 38.2253 | 38.2262 | 38.1003 | 2.172-11 | ||
62 | 2s2p3s | P | 38.3683 | 38.3358 | 38.3890 | 38.3892 | 38.2588 | 1.090-11 | ||
63 | 2s2p3s | P | 38.5119 | 38.4763 | 38.5271 | 38.5275 | 38.3978 | 1.457-11 | ||
64 | 2s2p(P)3s | P | 38.657 | 38.7074 | 38.6767 | 38.7624 | 38.7552 | 38.5795 | 2.206-12 | |
65 | 2s2p(P)3s | P | 38.858 | 38.9127 | 38.8779 | 38.9622 | 38.9548 | 38.7779 | 1.786-12 | |
66 | 2s2p3p | S | 39.6759 | 39.6458 | 39.6939 | 39.6906 | 39.5885 | 2.118-11 | ||
67 | 2s2p3p | D | 39.9070 | 39.8754 | 39.9253 | 39.9294 | 39.8137 | 2.538-11 | ||
68 | 2s2p3p | D | 39.9142 | 39.8845 | 39.9395 | 39.9432 | 39.8207 | 6.173-12 | ||
69 | 2s2p3p | D | 40.0059 | 39.9752 | 40.0297 | 40.0333 | 39.9103 | 5.149-12 | ||
70 | 2s2p(P)3p | D | 40.0974 | 40.0672 | 40.1225 | 40.1258 | 39.9996 | 1.897-12 | ||
71 | 2s2p3p | D | 40.1030 | 40.0700 | 40.1348 | 40.1367 | 40.0040 | 1.119-11 | ||
72 | 2s2p(P)3p | P | 40.2049 | 40.1709 | 40.2330 | 40.2379 | 40.1008 | 1.138-12 | ||
73 | 2s2p3p | P | 40.2454 | 40.2083 | 40.2694 | 40.2718 | 40.1391 | 2.380-12 | ||
74 | 2s2p3p | P | 40.2683 | 40.2337 | 40.2965 | 40.2950 | 40.1644 | 8.976-12 | ||
75 | 2s2p3p | P | 40.2727 | 40.2375 | 40.3026 | 40.3034 | 40.1676 | 2.442-12 | ||
76 | 2s2p(P)3p | P | 40.3322 | 40.2980 | 40.3619 | 40.3654 | 40.2250 | 8.998-13 | ||
77 | 2s2p(P)3p | D | 40.4258 | 40.3874 | 40.4508 | 40.4558 | 40.3139 | 1.344-12 | ||
78 | 2s2p(P)3s | P | 40.6851 | 40.6536 | 40.6805 | 40.6761 | 40.5309 | 2.445-12 | ||
79 | 2s2p(P)3s | P | 40.7039 | 40.6724 | 40.7017 | 40.6969 | 40.5482 | 3.133-12 | ||
80 | 2s2p(P)3p | S | 40.7756 | 40.7424 | 40.8127 | 40.7916 | 40.6547 | 6.595-13 | ||
81 | 2s2p3d | P | 41.8397 | 41.8097 | 41.8679 | 41.8520 | 41.7237 | 2.127-11 | ||
82 | 2s2p3d | P | 41.8813 | 41.8485 | 41.9081 | 41.8915 | 41.7630 | 1.966-11 | ||
83 | 2s2p3d | F | 41.9310 | 41.8952 | 41.9715 | 41.9390 | 41.8241 | 3.837-11 | ||
84 | 2s2p3d | P | 41.9563 | 41.9210 | 41.9821 | 41.9639 | 41.8356 | 2.265-11 | ||
85 | 2s2p3d | F | 41.9942 | 41.9587 | 42.0314 | 41.9999 | 41.8824 | 3.677-11 | ||
86 | 2s2p3d | F | 42.0775 | 42.0414 | 42.1135 | 42.0830 | 41.9626 | 3.450-11 | ||
87 | 2s2p3d | F | 42.1521 | 42.1161 | 42.1905 | 42.1589 | 42.0387 | 1.909-11 | ||
88 | 2s2p3d | D | 42.2121 | 42.1770 | 42.2404 | 42.2204 | 42.0850 | 2.897-11 | ||
89 | 2s2p(P)3p | D | 42.2732 | 42.2418 | 42.2675 | 42.2594 | 42.1287 | 1.646-12 | ||
90 | 2s2p3d | D | 42.3243 | 42.2883 | 42.3572 | 42.3311 | 42.2035 | 4.572-12 | ||
91 | 2s2p(P)3p | D | 42.3436 | 42.3095 | 42.3363 | 42.3263 | 42.1962 | 1.957-12 | ||
92 | 2s2p3d | D | 42.3491 | 42.3095 | 42.3746 | 42.3497 | 42.2201 | 2.657-11 | ||
93 | 2s2p3d | D | 42.3633 | 42.3246 | 42.3937 | 42.3709 | 42.2401 | 7.444-12 | ||
94 | 2s2p(P)3d | F | 42.3700 | 42.3300 | 42.3888 | 42.3665 | 42.2308 | 2.915-11 | ||
95 | 2s2p(P)3d | D | 42.4019 | 42.3651 | 42.4224 | 42.4079 | 42.2585 | 2.755-11 | ||
96 | 2s2p(P)3p | P | 42.4522 | 42.4212 | 42.4358 | 42.4416 | 42.3088 | 2.255-12 | ||
97 | 2s2p(P)3p | P | 42.4859 | 42.4532 | 42.4688 | 42.4724 | 42.3407 | 2.618-12 | ||
98 | 2s2p(P)3d | D | 42.4946 | 42.4583 | 42.5160 | 42.5018 | 42.3507 | 2.525-12 | ||
99 | 2s2p(P)3d | F | 42.5757 | 42.5349 | 42.5907 | 42.5751 | 42.4246 | 2.676-11 | ||
100 | 2s2p(P)3p | S | 42.6749 | 42.6456 | 42.7496 | 42.7062 | 42.5135 | 7.520-12 | ||
101 | 2s2p(P)3d | P | 42.7307 | 42.6969 | 42.7642 | 42.7443 | 42.5888 | 1.981-13 | ||
102 | 2s2p(P)3d | P | 42.9165 | 42.8747 | 42.9294 | 42.9221 | 42.7626 | 1.912-13 |
Index | Configuration | Level | GRASP | FAC | (GRASP) |
---|---|---|---|---|---|
1 | 2s2p | S | 0.0000 | 0.0000 | …….. |
2 | 2s2p3s | P | 29.3855 | 29.2066 | 4.462-05 |
3 | 2s2p3s | P | 29.4771 | 29.2951 | 4.228-12 |
4 | 2s2p3s | P | 29.7278 | 29.5422 | 1.530-03 |
5 | 2s2p3s | P | 29.8033 | 29.6144 | 2.977-12 |
6 | 2s2p3p | S | 30.9051 | 30.7362 | 5.161-10 |
7 | 2s2p3p | D | 31.1455 | 30.9717 | 3.044-10 |
8 | 2s2p3p | D | 31.1574 | 30.9846 | 2.805-10 |
9 | 2s2p3p | D | 31.2401 | 31.0644 | 2.816-10 |
10 | 2s2p3p | P | 31.3076 | 31.1331 | 2.276-10 |
11 | 2s2p3p | P | 31.4772 | 31.2961 | 3.104-10 |
12 | 2s2p3p | P | 31.4838 | 31.3059 | 2.131-10 |
13 | 2s2p3p | P | 31.5815 | 31.4010 | 2.383-10 |
14 | 2s2p3p | D | 31.5802 | 31.3991 | 2.559-10 |
15 | 2s2p3p | S | 32.5413 | 32.3164 | 5.725-11 |
16 | 2s2p3d | P | 33.3120 | 33.1018 | 1.287-10 |
17 | 2s2p3d | P | 33.3461 | 33.1362 | 3.549-11 |
18 | 2s2p3d | P | 33.4151 | 33.2043 | 1.303-10 |
19 | 2s2p3d | F | 33.4436 | 33.2375 | 1.278-10 |
20 | 2s2p3d | F | 33.4876 | 33.2737 | 1.190-10 |
21 | 2s2p3d | F | 33.5655 | 33.3496 | 1.142-10 |
22 | 2s2p3d | D | 33.6145 | 33.3953 | 1.166-10 |
23 | 2s2p3d | D | 33.7817 | 33.5589 | 1.357-12 |
24 | 2s2p3d | D | 33.8489 | 33.6321 | 1.131-10 |
25 | 2s2p3d | D | 33.8858 | 33.6592 | 1.151-10 |
26 | 2s2p3d | F | 33.8933 | 33.6665 | 1.194-10 |
27 | 2s2p3d | P | 34.2991 | 34.0503 | 1.331-13 |
28 | 2s2p3s | S | 36.5770 | 36.4646 | 1.004-11 |
29 | 2s2p3s | S | 36.9177 | 36.7847 | 1.554-11 |
30 | 2s2p3p | P | 38.2806 | 38.1830 | 1.064-11 |
31 | 2s2p3p | P | 38.2949 | 38.1970 | 6.973-12 |
32 | 2s2p3p | P | 38.3440 | 38.2460 | 1.033-11 |
33 | 2s2p3p | P | 38.4635 | 38.3613 | 8.246-13 |
34 | 2s2p4s | P | 39.4229 | 39.2385 | 9.358-12 |
35 | 2s2p4s | P | 39.4492 | 39.2665 | 4.976-12 |
36 | 2s2p4s | P | 39.7631 | 39.5717 | 9.131-12 |
37 | 2s2p4s | P | 39.7790 | 39.5889 | 5.632-12 |
38 | 2s2p4p | S | 40.0442 | 39.8628 | 1.232-11 |
39 | 2s2p4p | D | 40.0825 | 39.9043 | 1.056-11 |
40 | 2s2p4p | D | 40.0825 | 39.9037 | 1.075-11 |
41 | 2s2p4p | P | 40.1279 | 39.9477 | 1.098-11 |
42 | 2s2p4p | P | 40.1497 | 39.9701 | 1.169-11 |
43 | 2s2p4p | P | 40.3069 | 40.1259 | 1.233-11 |
44 | 2s2p4p | D | 40.3850 | 40.2085 | 1.079-11 |
45 | 2s2p4p | D | 40.4298 | 40.2543 | 1.128-11 |
46 | 2s2p4p | P | 40.4623 | 40.2756 | 1.186-11 |
47 | 2s2p3d | D | 40.5465 | 40.4081 | 2.170-11 |
48 | 2s2p3d | D | 40.5616 | 40.4126 | 2.323-11 |
49 | 2s2p3d | D | 40.5614 | 40.4136 | 2.152-11 |
50 | 2s2p4p | S | 40.7344 | 40.5575 | 1.427-11 |
51 | 2s2p3d | D | 40.7676 | 40.6156 | 1.983-11 |
52 | 2s2p4d | P | 40.8897 | 40.7058 | 7.852-12 |
53 | 2s2p4d | P | 40.9080 | 40.7234 | 6.962-12 |
54 | 2s2p4d | F | 40.9328 | 40.7469 | 7.748-12 |
55 | 2s2p4d | P | 40.9388 | 40.7529 | 7.898-12 |
56 | 2s2p4d | F | 40.9524 | 40.7648 | 7.871-12 |
57 | 2s2p4d | D | 40.9819 | 40.7928 | 8.035-12 |
58 | 2s2p4d | D | 40.9966 | 40.8076 | 8.035-12 |
59 | 2s2p4d | D | 41.1063 | 40.9116 | 8.331-13 |
60 | 2s2p4f | G | 41.2824 | 41.0918 | 3.184-12 |
61 | 2s2p4f | G | 41.2829 | 41.0922 | 3.206-12 |
62 | 2s2p4d | F | 41.2919 | 41.0986 | 7.908-12 |
63 | 2s2p4f | F | 41.3078 | 41.1174 | 3.209-12 |
64 | 2s2p4d | D | 41.3095 | 41.1062 | 3.215-12 |
65 | 2s2p4f | F | 41.3006 | 41.1193 | 7.978-12 |
66 | 2s2p4d | F | 41.3128 | 41.1177 | 7.893-12 |
67 | 2s2p4f | F | 41.3262 | 41.1368 | 3.062-12 |
68 | 2s2p4f | F | 41.3284 | 41.1388 | 2.968-12 |
69 | 2s2p4f | D | 41.3386 | 41.1497 | 2.695-12 |
70 | 2s2p4f | D | 41.3388 | 41.1502 | 2.801-12 |
71 | 2s2p4d | P | 41.4470 | 41.2417 | 3.844-13 |
72 | 2s2p4f | G | 41.6359 | 41.4388 | 3.193-12 |
73 | 2s2p4f | G | 41.6383 | 41.4411 | 3.208-12 |
74 | 2s2p4f | D | 41.6614 | 41.4647 | 3.059-12 |
75 | 2s2p4f | D | 41.6638 | 41.4668 | 2.948-12 |
76 | 2s2p5s | P | 43.6194 | 43.3963 | 1.163-11 |
77 | 2s2p5s | P | 43.6353 | 43.4126 | 6.884-12 |
78 | 2s2p5p | S | 43.9292 | 43.7080 | 1.432-11 |
79 | 2s2p5p | D | 43.9556 | 43.7343 | 1.412-11 |
80 | 2s2p5p | D | 43.9580 | 43.7362 | 1.455-11 |
81 | 2s2p5p | P | 43.9727 | 43.7506 | 1.375-11 |
82 | 2s2p5s | P | 43.9636 | 43.7332 | 1.161-11 |
83 | 2s2p5p | P | 43.9820 | 43.7601 | 1.491-11 |
84 | 2s2p5s | P | 43.9717 | 43.7416 | 7.711-12 |
85 | 2s2p5p | P | 44.0864 | 43.8633 | 1.588-11 |
86 | 2s2p5p | D | 44.2937 | 44.0642 | 1.381-11 |
87 | 2s2p5p | P | 44.3076 | 44.0788 | 1.466-11 |
88 | 2s2p5p | D | 44.3137 | 44.0849 | 1.454-11 |
89 | 2s2p5d | P | 44.3373 | 44.1172 | 9.963-12 |
90 | 2s2p5d | P | 44.3475 | 44.1267 | 9.039-12 |
91 | 2s2p5d | F | 44.3578 | 44.1361 | 1.015-11 |
92 | 2s2p5d | P | 44.3628 | 44.1408 | 1.013-11 |
93 | 2s2p5d | F | 44.3676 | 44.1450 | 1.022-11 |
94 | 2s2p5d | D | 44.3816 | 44.1577 | 1.038-11 |
95 | 2s2p5d | D | 44.3883 | 44.1642 | 1.034-11 |
96 | 2s2p5p | S | 44.4089 | 44.1797 | 1.608-11 |
97 | 2s2p5d | D | 44.4555 | 44.2249 | 9.363-13 |
98 | 2s2p5f | D | 44.5338 | 44.3169 | 5.510-12 |
99 | 2s2p5f | G | 44.5342 | 44.3174 | 5.975-12 |
100 | 2s2p5f | G | 44.5348 | 44.3180 | 6.015-12 |
101 | 2s2p5f | D | 44.5363 | 44.3156 | 5.686-12 |
102 | 2s2p5f | F | 44.5440 | 44.3161 | 5.722-12 |
103 | 2s2p5f | F | 44.5458 | 44.3195 | 6.048-12 |
104 | 2s2p5g | F | 44.5470 | 44.3291 | 1.129-11 |
105 | 2s2p5f | F | 44.5470 | 44.3273 | 5.935-12 |
106 | 2s2p5g | F | 44.5475 | 44.3231 | 1.131-11 |
107 | 2s2p5f | F | 44.5479 | 44.3234 | 5.943-12 |
108 | 2s2p5g | H | 44.5509 | 44.3193 | 1.129-11 |
109 | 2s2p5g | H | 44.5513 | 44.3197 | 1.129-11 |
110 | 2s2p5g | G | 44.5545 | 44.3301 | 1.133-11 |
111 | 2s2p5g | G | 44.5548 | 44.3260 | 1.132-11 |
112 | 2s2p5g | G | 44.5575 | 44.3313 | 1.132-11 |
113 | 2s2p5g | G | 44.5579 | 44.3264 | 1.133-11 |
114 | 2s2p5d | F | 44.7084 | 44.4787 | 1.026-11 |
115 | 2s2p5d | D | 44.7113 | 44.4816 | 1.019-11 |
116 | 2s2p5d | F | 44.7189 | 44.4885 | 1.021-11 |
117 | 2s2p5d | P | 44.7748 | 44.5376 | 8.700-13 |
118 | 2s2p5f | G | 44.8831 | 44.6586 | 5.957-12 |
119 | 2s2p5f | G | 44.8846 | 44.6589 | 5.986-12 |
120 | 2s2p5f | D | 44.8870 | 44.6591 | 5.718-12 |
121 | 2s2p5f | D | 44.8884 | 44.6644 | 5.946-12 |
122 | 2s2p5g | F | 44.8973 | 44.6628 | 1.133-11 |
123 | 2s2p5g | F | 44.8977 | 44.6593 | 1.132-11 |
124 | 2s2p5g | H | 44.8982 | 44.6604 | 1.130-11 |
125 | 2s2p5g | H | 44.8987 | 44.6597 | 1.130-11 |
Index | Configuration | Level | FAC1 | FAC2 | FAC3 | GRASP1 | GRASP2 | GRASP3 | NIST |
---|---|---|---|---|---|---|---|---|---|
1 | 2s2p | S | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 2s2p3s | P | 29.2619 | 29.2128 | 29.2066 | 29.4042 | 29.4787 | 29.3855 | 29.4811 |
3 | 2s2p3s | P | 29.3592 | 29.3010 | 29.2951 | 29.5004 | 29.5695 | 29.4771 | 29.5720 |
4 | 2s2p3s | P | 29.5982 | 29.5483 | 29.5422 | 29.7468 | 29.8215 | 29.7278 | 29.8233 |
5 | 2s2p3s | P | 29.6831 | 29.6201 | 29.6144 | 29.8293 | 29.8956 | 29.8033 | 29.8970 |
6 | 2s2p3p | S | 30.8156 | 30.7434 | 30.7362 | 30.9214 | 30.9967 | 30.9051 | 30.9960 |
7 | 2s2p3p | D | 31.0546 | 30.9774 | 30.9717 | 31.1597 | 31.2317 | 31.1455 | 31.2312 |
8 | 2s2p3p | D | 31.0678 | 30.9905 | 30.9846 | 31.1703 | 31.2434 | 31.1574 | 31.2431 |
9 | 2s2p3p | D | 31.1490 | 31.0702 | 31.0644 | 31.2538 | 31.3235 | 31.2401 | 31.3234 |
10 | 2s2p3p | P | 31.2157 | 31.1387 | 31.1331 | 31.3230 | 31.3942 | 31.3076 | 31.3940 |
11 | 2s2p3p | P | 31.3817 | 31.3018 | 31.2961 | 31.4906 | 31.5606 | 31.4772 | 31.5598 |
12 | 2s2p3p | P | 31.3885 | 31.3117 | 31.3059 | 31.4988 | 31.5678 | 31.4838 | 31.5681 |
13 | 2s2p3p | P | 31.4852 | 31.4067 | 31.4010 | 31.5960 | 31.6668 | 31.5815 | 31.6662 |
14 | 2s2p3p | D | 31.4831 | 31.4046 | 31.3991 | 31.5952 | 31.6669 | 31.5802 | 31.6662 |
15 | 2s2p3p | S | 32.4021 | 32.3332 | 32.3164 | 32.4017 | 32.4890 | 32.5413 | 32.4845 |
16 | 2s2p3d | P | 33.1852 | 33.1085 | 33.1018 | 33.3191 | 33.3960 | 33.3120 | |
17 | 2s2p3d | P | 33.2200 | 33.1429 | 33.1362 | 33.3534 | 33.4287 | 33.3461 | 33.4302 |
18 | 2s2p3d | P | 33.2889 | 33.2110 | 33.2043 | 33.4229 | 33.4966 | 33.4151 | 33.4980 |
19 | 2s2p3d | F | 33.3187 | 33.2445 | 33.2375 | 33.4556 | 33.5222 | 33.4436 | 33.5237 |
20 | 2s2p3d | F | 33.3577 | 33.2807 | 33.2737 | 33.5008 | 33.5636 | 33.4876 | 33.5650 |
21 | 2s2p3d | F | 33.4356 | 33.3565 | 33.3496 | 33.5772 | 33.6396 | 33.5655 | 33.6413 |
22 | 2s2p3d | D | 33.4844 | 33.4020 | 33.3953 | 33.6274 | 33.6874 | 33.6145 | 33.6887 |
23 | 2s2p3d | D | 33.6480 | 33.5660 | 33.5589 | 33.7940 | 33.8517 | 33.7817 | 33.8510 |
24 | 2s2p3d | D | 33.7188 | 33.6389 | 33.6321 | 33.8605 | 33.9227 | 33.8489 | 33.9238 |
25 | 2s2p3d | D | 33.7487 | 33.6658 | 33.6592 | 33.8458 | 33.9598 | 33.8858 | 33.9608 |
26 | 2s2p3d | F | 33.7549 | 33.6732 | 33.6665 | 33.9062 | 33.9674 | 33.8933 | 33.9682 |
27 | 2s2p3d | P | 34.1446 | 34.0606 | 34.0503 | 34.3009 | 34.3355 | 34.2991 | 34.3300 |
28 | 2s2p3s | S | 36.6268 | 36.4760 | 36.4646 | 36.5770 | |||
29 | 2s2p3s | S | 36.9957 | 36.7993 | 36.7847 | 36.9177 | |||
30 | 2s2p3p | P | 38.3366 | 38.1944 | 38.1830 | 38.2806 | |||
31 | 2s2p3p | P | 38.3507 | 38.2084 | 38.1970 | 38.2949 | 38.2550 | ||
32 | 2s2p3p | P | 38.3981 | 38.2575 | 38.2460 | 38.3440 | |||
33 | 2s2p3p | P | 38.5280 | 38.3721 | 38.3613 | 38.4635 | 38.4100 | ||
34 | 2s2p4s | P | 39.3200 | 39.2610 | 39.2385 | 39.4229 | 39.5248 | ||
35 | 2s2p4s | P | 39.3463 | 39.2892 | 39.2665 | 39.4492 | 39.5430 | ||
36 | 2s2p4s | P | 39.6538 | 39.5950 | 39.5717 | 39.7631 | |||
37 | 2s2p4s | P | 39.6702 | 39.6123 | 39.5889 | 39.7790 | 39.9030 |
Index | Configuration | Level | GRASP1 | GRASP2 | FAC | DFS | YODA | (GRASP1) |
---|---|---|---|---|---|---|---|---|
1 | 2s2p | S | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ........ |
2 | 2s2p3s | P | 146.6987 | 146.8657 | 146.5497 | 146.8576 | 146.8047 | 8.827-08 |
3 | 2s2p3s | P | 146.9606 | 147.1241 | 146.8078 | 147.1295 | 147.0678 | 1.283-13 |
4 | 2s2p3p | S | 150.9658 | 151.1208 | 150.8223 | 151.0984 | 151.0374 | 1.067-10 |
5 | 2s2p3p | D | 151.1804 | 151.3472 | 151.0345 | 151.3336 | 151.2476 | 4.442-11 |
6 | 2s2p3p | D | 152.4685 | 152.6663 | 152.3230 | 152.6493 | 152.5405 | 4.083-11 |
7 | 2s2p3p | P | 152.4932 | 152.6816 | 152.3437 | 152.6640 | 152.5647 | 4.749-11 |
8 | 2s2p3s | P | 152.4791 | 152.7338 | 152.3099 | 152.7375 | 152.6132 | 1.805-07 |
9 | 2s2p3s | P | 152.6077 | 152.8713 | 152.4363 | 152.8771 | 152.7433 | 1.889-13 |
10 | 2s2p3p | P | 152.8584 | 153.0399 | 152.7116 | 153.0314 | 152.9293 | 2.449-11 |
11 | 2s2p3p | P | 154.2837 | 154.4569 | 154.1154 | 154.4647 | 154.3669 | 1.989-11 |
12 | 2s2p3p | D | 156.8517 | 157.1167 | 156.6846 | 157.1106 | 156.9475 | 1.010-10 |
13 | 2s2p3d | P | 157.6799 | 157.8546 | 157.5000 | 157.8309 | 157.7471 | 3.221-11 |
14 | 2s2p3d | P | 157.8890 | 158.0863 | 157.7075 | 158.0661 | 157.9573 | 3.807-12 |
15 | 2s2p3d | F | 158.1738 | 158.3932 | 157.9895 | 158.3822 | 158.2447 | 2.864-11 |
16 | 2s2p3d | D | 158.2712 | 158.4762 | 158.0866 | 158.4557 | 158.3395 | 3.116-11 |
17 | 2s2p3d | F | 158.2876 | 158.5230 | 158.1143 | 158.5071 | 158.3461 | 4.574-11 |
18 | 2s2p3p | P | 158.3146 | 158.5880 | 158.1492 | 158.5806 | 158.4160 | 3.794-11 |
19 | 2s2p3p | D | 158.4251 | 158.7151 | 158.2578 | 158.7129 | 158.5262 | 2.562-11 |
20 | 2s2p3d | D | 158.5283 | 158.7396 | 158.3391 | 158.7202 | 158.6004 | 3.485-11 |
21 | 2s2p3p | S | 158.6252 | 158.8512 | 158.4291 | 158.8893 | 158.7342 | 1.943-11 |
22 | 2s2p3d | D | 158.8049 | 159.0240 | 158.6145 | 159.0142 | 158.8812 | 4.014-11 |
23 | 2s2p3d | D | 159.7700 | 159.9925 | 159.5589 | 159.9991 | 159.8683 | 8.547-15 |
24 | 2s2p3d | F | 163.9104 | 164.2167 | 163.7151 | 164.2106 | 164.0077 | 2.803-11 |
25 | 2s2p3d | P | 164.2275 | 164.5414 | 164.0182 | 164.5340 | 164.3245 | 4.173-11 |
26 | 2s2p3d | F | 164.3548 | 164.6758 | 164.1453 | 164.6736 | 164.4495 | 4.267-11 |
27 | 2s2p3d | P | 164.8886 | 165.2049 | 164.6642 | 165.2175 | 164.9992 | 7.820-15 |
28 | 2s2p3s | S | 167.5933 | 167.8473 | 167.5051 | 167.8635 | 167.6790 | 2.216-12 |
29 | 2s2p3s | S | 168.4649 | 168.7070 | 168.3525 | 168.7381 | 168.5500 | 3.028-12 |
30 | 2s2p3p | P | 171.9546 | 172.1943 | 171.8826 | 172.2072 | 172.0073 | 2.413-12 |
31 | 2s2p3p | P | 172.0393 | 172.2913 | 171.9655 | 172.3028 | 172.0918 | 1.180-13 |
32 | 2s2p3p | P | 173.3963 | 173.6725 | 173.3240 | 173.6846 | 173.4560 | 2.304-12 |
33 | 2s2p3p | P | 173.6114 | 173.8890 | 173.5349 | 173.9051 | 173.6669 | 3.951-14 |
34 | 2s2p3d | D | 178.8170 | 179.0985 | 178.7101 | 179.1014 | 178.8809 | 2.685-12 |
35 | 2s2p3d | D | 178.8986 | 179.1968 | 178.7914 | 179.1970 | 178.9632 | 2.541-12 |
36 | 2s2p3d | D | 179.1053 | 179.4192 | 178.9983 | 179.4248 | 179.1624 | 2.585-12 |
37 | 2s2p3d | D | 179.7476 | 180.0497 | 179.6257 | 180.0789 | 179.8210 | 1.706-12 |
38 | 2s2p4s | P | 199.3165 | 199.5290 | 199.1716 | 199.5414 | 3.442-13 | |
39 | 2s2p4s | P | 199.4034 | 199.6142 | 199.2606 | 199.6296 | 1.803-13 | |
40 | 2s2p4p | S | 201.0886 | 201.2950 | 200.9476 | 201.3053 | 3.072-13 | |
41 | 2s2p4p | D | 201.1477 | 201.3587 | 201.0071 | 201.3641 | 3.033-13 | |
42 | 2s2p4p | D | 201.6754 | 201.8994 | 201.5336 | 201.9080 | 3.378-13 | |
43 | 2s2p4p | P | 201.6926 | 201.9130 | 201.5496 | 201.9227 | 3.317-13 | |
44 | 2s2p4p | P | 201.8149 | 202.0323 | 201.6736 | 202.0403 | 3.445-13 | |
45 | 2s2p4p | S | 202.4018 | 202.6089 | 202.2643 | 202.6210 | 3.651-13 | |
46 | 2s2p4d | P | 203.6528 | 203.8698 | 203.5107 | 203.8851 | 1.740-13 | |
47 | 2s2p4d | P | 203.7330 | 203.9577 | 203.5899 | 203.9733 | 1.709-13 | |
48 | 2s2p4d | F | 203.8229 | 204.0551 | 203.6770 | 204.0615 | 1.763-13 | |
49 | 2s2p4d | D | 203.8692 | 204.0950 | 203.7236 | 204.1056 | 1.763-13 | |
50 | 2s2p4d | F | 203.8863 | 204.1251 | 203.7419 | 204.1350 | 1.740-13 | |
51 | 2s2p4d | D | 203.9686 | 204.1992 | 203.8208 | 204.2085 | 1.754-13 | |
52 | 2s2p4d | D | 204.0699 | 204.3017 | 203.9220 | 204.3114 | 1.762-13 | |
53 | 2s2p4d | P | 204.4392 | 204.6729 | 204.2800 | 204.6789 | 1.619-14 | |
54 | 2s2p4f | D | 205.0260 | 205.2616 | 204.8713 | 205.2816 | 8.126-14 | |
55 | 2s2p4f | G | 205.0516 | 205.2961 | 204.8970 | 205.3184 | 8.452-14 | |
56 | 2s2p4f | D | 205.0755 | 205.3135 | 204.9208 | 205.3331 | 8.218-14 | |
57 | 2s2p4f | G | 205.0973 | 205.3419 | 204.9425 | 205.3625 | 8.462-14 | |
58 | 2s2p4f | F | 205.1329 | 205.3729 | 204.9787 | 205.3919 | 8.392-14 | |
59 | 2s2p4f | D | 205.1513 | 205.3899 | 204.9965 | 205.4139 | 8.569-14 | |
60 | 2s2p4f | F | 205.1659 | 205.4060 | 205.0108 | 205.4246 | 8.382-14 | |
61 | 2s2p4s | P | 205.1153 | 205.4217 | 204.9493 | 205.4433 | 3.427-13 | |
62 | 2s2p4f | F | 205.1953 | 205.4368 | 205.0410 | 205.4580 | 8.490-14 | |
63 | 2s2p4s | P | 205.1705 | 205.4783 | 205.0058 | 205.5021 | 3.381-13 | |
64 | 2s2p4p | D | 206.9038 | 207.2126 | 206.7408 | 207.2293 | 2.999-13 | |
65 | 2s2p4p | P | 207.3845 | 207.6802 | 207.2255 | 207.7071 | 3.224-13 | |
66 | 2s2p4p | P | 207.4992 | 207.8124 | 207.3363 | 207.8320 | 3.411-13 | |
67 | 2s2p4p | D | 207.5333 | 207.8527 | 207.3708 | 207.8688 | 3.384-13 | |
68 | 2s2p4d | F | 209.5980 | 209.9242 | 209.4319 | 209.9488 | 1.763-13 | |
69 | 2s2p4d | P | 209.7364 | 210.0653 | 209.5701 | 210.0884 | 1.744-13 | |
70 | 2s2p4d | F | 209.7832 | 210.1147 | 209.6157 | 210.1325 | 1.750-13 | |
71 | 2s2p4d | D | 209.9192 | 210.2458 | 209.7448 | 210.2648 | 2.381-14 | |
72 | 2s2p4f | G | 210.8816 | 211.2201 | 210.7060 | 211.2571 | 8.423-14 | |
73 | 2s2p4f | F | 210.9115 | 211.2487 | 210.7362 | 211.2791 | 8.427-14 | |
74 | 2s2p4f | G | 210.9436 | 211.2829 | 210.7674 | 211.3159 | 8.492-14 | |
75 | 2s2p4f | D | 210.9487 | 211.2869 | 210.7725 | 211.3159 | 8.335-14 | |
76 | 2s2p4s | S | 219.9878 | 220.2881 | 219.9299 | 220.3194 | 2.957-13 | |
77 | 2s2p4s | S | 220.3037 | 220.5991 | 220.2466 | 220.6134 | 3.127-13 | |
78 | 2s2p4p | P | 221.8067 | 222.1002 | 221.7550 | 222.1201 | 2.714-13 | |
79 | 2s2p4p | P | 221.8169 | 222.1140 | 221.7623 | 222.1495 | 1.018-13 | |
80 | 2s2p4p | P | 222.2897 | 222.5686 | 222.1888 | 222.7228 | 3.191-13 | |
81 | 2s2p4p | P | 222.4682 | 222.7721 | 222.4021 | 222.7963 | 5.936-14 | |
82 | 2s2p5s | P | 222.6048 | 222.8365 | 222.4369 | 2.513-13 | ||
83 | 2s2p5s | P | 222.6489 | 222.9041 | 222.5133 | 4.010-13 | ||
84 | 2s2p5p | S | 223.4433 | 223.6654 | 223.2605 | 3.891-13 | ||
85 | 2s2p5p | D | 223.4497 | 223.6750 | 223.2688 | 3.711-13 | ||
86 | 2s2p5p | D | 223.7106 | 223.9432 | 223.5300 | 4.028-13 | ||
87 | 2s2p5p | P | 223.7394 | 223.9689 | 223.5557 | 4.095-13 | ||
88 | 2s2p5p | P | 223.7892 | 224.0166 | 223.6064 | 4.206-13 | ||
89 | 2s2p5p | S | 224.0789 | 224.2965 | 223.8943 | 4.332-13 | ||
90 | 2s2p4d | D | 224.4288 | 224.7380 | 224.3693 | 224.7881 | 1.733-13 | |
91 | 2s2p4d | D | 224.4779 | 224.7928 | 224.4184 | 224.8249 | 1.720-13 | |
92 | 2s2p4d | D | 224.5842 | 224.9046 | 224.5246 | 224.9278 | 1.703-13 | |
93 | 2s2p5d | P | 224.6993 | 224.9276 | 224.5216 | 2.400-13 | ||
94 | 2s2p5d | P | 224.7374 | 224.9689 | 224.5588 | 2.383-13 | ||
95 | 2s2p5d | F | 224.7747 | 225.0091 | 224.5944 | 2.405-13 | ||
96 | 2s2p5d | D | 224.7997 | 225.0306 | 224.6191 | 2.418-13 | ||
97 | 2s2p5d | F | 224.8111 | 225.0491 | 224.6317 | 2.401-13 | ||
98 | 2s2p5d | D | 224.8502 | 225.0839 | 224.6686 | 2.407-13 | ||
99 | 2s2p4d | D | 224.7977 | 225.1145 | 224.7342 | 225.1336 | 1.696-13 | |
100 | 2s2p5d | D | 224.8972 | 225.1308 | 224.7150 | 2.409-13 | ||
101 | 2s2p5d | P | 225.0872 | 225.3180 | 224.8959 | 3.097-14 | ||
102 | 2s2p5g | F | 225.3178 | 225.5788 | 225.1566 | 2.050-13 | ||
103 | 2s2p5g | F | 225.3502 | 225.6094 | 225.1846 | 2.157-13 | ||
104 | 2s2p5f | G | 225.3857 | 225.6287 | 225.2042 | 1.608-13 | ||
105 | 2s2p5f | D | 225.3960 | 225.6370 | 225.2177 | 1.486-13 | ||
106 | 2s2p5f | G | 225.4076 | 225.6509 | 225.2261 | 1.611-13 | ||
107 | 2s2p5f | D | 225.4161 | 225.6579 | 225.2372 | 1.515-13 | ||
108 | 2s2p5f | F | 225.4264 | 225.6673 | 225.2451 | 1.586-13 | ||
109 | 2s2p5g | G | 225.4225 | 225.6782 | 225.2485 | 2.272-13 | ||
110 | 2s2p5f | D | 225.4457 | 225.6869 | 225.2651 | 1.602-13 | ||
111 | 2s2p5g | G | 225.4377 | 225.6930 | 225.2631 | 2.281-13 | ||
112 | 2s2p5f | F | 225.4515 | 225.6938 | 225.2713 | 1.551-13 | ||
113 | 2s2p5f | F | 225.4566 | 225.6982 | 225.2750 | 1.603-13 | ||
114 | 2s2p5g | H | 225.4899 | 225.7330 | 225.2931 | 2.882-13 | ||
115 | 2s2p5g | H | 225.5069 | 225.7498 | 225.3100 | 2.889-13 | ||
116 | 2s2p5g | G | 225.5151 | 225.7571 | 225.3186 | 2.882-13 | ||
117 | 2s2p5g | G | 225.5310 | 225.7730 | 225.3345 | 2.892-13 | ||
118 | 2s2p4f | F | 225.7962 | 226.1104 | 225.7044 | 226.0597 | 8.881-14 | |
119 | 2s2p4f | F | 225.8311 | 226.1473 | 225.7417 | 226.1111 | 8.798-14 | |
120 | 2s2p4f | F | 225.8669 | 226.1719 | 225.7639 | 226.0523 | 9.089-14 | |
121 | 2s2p4f | F | 225.9203 | 226.2297 | 225.8217 | 226.1332 | 8.967-14 | |
122 | 2s2p5s | P | 228.3506 | 228.6719 | 228.1423 | 4.345-13 | ||
123 | 2s2p5s | P | 228.3696 | 228.6922 | 228.1616 | 3.699-13 | ||
124 | 2s2p5p | D | 229.2465 | 229.5683 | 229.2483 | 3.776-13 | ||
125 | 2s2p5p | P | 229.4556 | 229.7686 | 229.0393 | 3.932-13 | ||
126 | 2s2p5p | P | 229.5449 | 229.8690 | 229.3380 | 4.238-13 | ||
127 | 2s2p5p | D | 229.5601 | 229.8870 | 229.3535 | 4.207-13 | ||
128 | 2s2p5d | F | 230.5663 | 230.8966 | 230.3626 | 2.415-13 | ||
129 | 2s2p5d | P | 230.6384 | 230.9698 | 230.4346 | 2.397-13 | ||
130 | 2s2p5d | F | 230.6603 | 230.9929 | 230.4558 | 2.407-13 | ||
131 | 2s2p5d | D | 230.7145 | 231.0425 | 230.5047 | 4.944-14 | ||
132 | 2s2p5f | G | 231.2020 | 231.5406 | 230.9968 | 1.599-13 | ||
133 | 2s2p5f | F | 231.2205 | 231.5584 | 231.0153 | 1.598-13 | ||
134 | 2s2p5f | G | 231.2348 | 231.5740 | 231.0291 | 1.612-13 | ||
135 | 2s2p5f | D | 231.2366 | 231.5751 | 231.0308 | 1.576-13 | ||
136 | 2s2p5g | H | 231.3059 | 231.6452 | 231.0853 | 2.883-13 | ||
137 | 2s2p5g | F | 231.3132 | 231.6521 | 231.0928 | 2.839-13 | ||
138 | 2s2p5g | H | 231.3233 | 231.6626 | 231.1026 | 2.891-13 | ||
139 | 2s2p5g | F | 231.3301 | 231.6691 | 231.1097 | 2.844-13 |
Index | Configuration | Level | FAC1 | FAC2 | FAC3 | GRASP1 | GRASP2 | GRASP3 |
---|---|---|---|---|---|---|---|---|
1 | 2s2p | S | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 2s2p3s | P | 146.6164 | 146.5697 | 146.5497 | 146.7014 | 146.6987 | |
3 | 2s2p3s | P | 146.8884 | 146.8272 | 146.8078 | 146.9787 | 146.9606 | |
4 | 2s2p3p | S | 150.9125 | 150.8425 | 150.8223 | 150.9653 | 151.0112 | 150.9658 |
5 | 2s2p3p | D | 151.1260 | 151.0538 | 151.0345 | 151.1747 | 151.1804 | |
6 | 2s2p3p | D | 152.4161 | 152.3427 | 152.3230 | 152.4651 | 152.5129 | 152.4685 |
7 | 2s2p3p | P | 152.4397 | 152.3634 | 152.3437 | 152.4908 | 152.5414 | 152.4932 |
8 | 2s2p3s | P | 152.3800 | 152.3298 | 152.3099 | 152.4813 | 152.5560 | 152.4791 |
9 | 2s2p3s | P | 152.5137 | 152.4558 | 152.4363 | 152.6247 | 152.6077 | |
10 | 2s2p3p | P | 152.8034 | 152.7307 | 152.7116 | 152.8575 | 152.8584 | |
11 | 2s2p3p | P | 154.2124 | 154.1432 | 154.1154 | 154.2961 | 154.3980 | 154.2837 |
12 | 2s2p3p | D | 156.7825 | 156.7041 | 156.6846 | 156.8470 | 156.9004 | 156.8517 |
13 | 2s2p3d | P | 157.5915 | 157.5213 | 157.5000 | 157.6708 | 157.7660 | 157.6799 |
14 | 2s2p3d | P | 157.8001 | 157.7287 | 157.7075 | 157.8813 | 157.8890 | |
15 | 2s2p3d | F | 158.0818 | 158.0112 | 157.9895 | 158.1763 | 158.2056 | 158.1738 |
16 | 2s2p3d | D | 158.1807 | 158.1077 | 158.0866 | 158.2663 | 158.2950 | 158.2712 |
17 | 2s2p3d | F | 158.2009 | 158.1363 | 158.1143 | 158.2879 | 158.3356 | 158.2876 |
18 | 2s2p3p | P | 158.2446 | 158.1690 | 158.1492 | 158.3102 | 158.3604 | 158.3146 |
19 | 2s2p3p | D | 158.3547 | 158.2770 | 158.2578 | 158.4209 | 158.4251 | |
20 | 2s2p3d | D | 158.4372 | 158.3602 | 158.3391 | 158.5266 | 158.5801 | 158.5283 |
21 | 2s2p3p | S | 158.5336 | 158.4648 | 158.4291 | 158.5319 | 158.5608 | 158.6252 |
22 | 2s2p3d | D | 158.7122 | 158.6354 | 158.6145 | 158.8041 | 158.8350 | 158.8049 |
23 | 2s2p3d | D | 159.6610 | 159.5862 | 159.5589 | 159.7764 | 159.7700 | |
24 | 2s2p3d | F | 163.8100 | 163.7367 | 163.7151 | 163.9070 | 163.9513 | 163.9104 |
25 | 2s2p3d | P | 164.1176 | 164.0390 | 164.0182 | 164.2192 | 164.2507 | 164.2275 |
26 | 2s2p3d | F | 164.2434 | 164.1664 | 164.1453 | 164.3523 | 164.3840 | 164.3548 |
27 | 2s2p3d | P | 164.7694 | 164.6913 | 164.6642 | 164.8795 | 164.8886 | |
28 | 2s2p3s | S | 167.6548 | 167.5336 | 167.5051 | 167.5933 | ||
29 | 2s2p3s | S | 168.5527 | 168.3882 | 168.3525 | 168.4649 | ||
30 | 2s2p3p | P | 172.0201 | 171.9109 | 171.8826 | 171.9546 | ||
31 | 2s2p3p | P | 172.1062 | 171.9936 | 171.9655 | 172.0393 | ||
32 | 2s2p3p | P | 173.4597 | 173.3526 | 173.3240 | 173.3963 | ||
33 | 2s2p3p | P | 173.6801 | 173.5627 | 173.5349 | 173.6114 | ||
34 | 2s2p3d | D | 178.8518 | 178.7405 | 178.7101 | 178.8170 | ||
35 | 2s2p3d | D | 178.9334 | 178.8218 | 178.7914 | 178.8986 | ||
36 | 2s2p3d | D | 179.1391 | 179.0286 | 178.9983 | 179.1053 | ||
37 | 2s2p3d | D | 179.7807 | 179.6561 | 179.6257 | 179.7476 |
i | j | A | f | S | A | A | A | R | |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 2.656 + 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.849 − 02 | 9.570 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 3 | 1.284 + 02 | 5.143 + 10 | 6.354 − 02 | 1.074 − 01 | 0.000 + 00 | 0.000 + 00 | 4.272 + 02 | 8.4 − 01 |
1 | 4 | 2.856 + 01 | 1.016 + 10 | 1.863 − 03 | 7.009 − 04 | 0.000 + 00 | 0.000 + 00 | 4.296 + 04 | 9.3 − 01 |
1 | 5 | 2.842 + 01 | 2.717 + 11 | 3.290 − 02 | 1.231 − 02 | 0.000 + 00 | 0.000 + 00 | 7.041 + 03 | 9.4 − 01 |
1 | 6 | 2.829 + 01 | 1.706 + 09 | 1.023 − 04 | 3.812 − 05 | 0.000 + 00 | 0.000 + 00 | 1.414 + 04 | 1.1 + 00 |
1 | 7 | 2.822 + 01 | 5.591 + 11 | 6.676 − 02 | 2.481 − 02 | 0.000 + 00 | 0.000 + 00 | 1.737 + 03 | 9.4 − 01 |
1 | 8 | 2.807 + 01 | 3.941 + 11 | 2.327 − 02 | 8.601 − 03 | 0.000 + 00 | 0.000 + 00 | 1.264 + 04 | 9.5 − 01 |
1 | 9 | 2.770 + 01 | 3.539 + 11 | 6.107 − 02 | 2.228 − 02 | 0.000 + 00 | 0.000 + 00 | 1.063 + 04 | 9.3 − 01 |
1 | 10 | 2.769 + 01 | 1.897 + 09 | 2.181 − 04 | 7.952 − 05 | 0.000 + 00 | 0.000 + 00 | 3.051 + 03 | 8.7 − 01 |
1 | 11 | 2.721 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.377 + 06 | 1.238 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 12 | 2.720 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.759 + 07 | 1.803 + 04 | 0.000 + 00 | 0.0 + 00 |
1 | 13 | 2.710 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.160 + 07 | 9.887 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 14 | 2.705 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.016 + 06 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 15 | 2.701 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.986 + 08 | 2.216 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 16 | 2.700 + 01 | 1.483 + 11 | 8.105 − 03 | 2.882 − 03 | 0.000 + 00 | 0.000 + 00 | 3.201 + 04 | 1.0 + 00 |
1 | 17 | 2.690 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.302 + 08 | 5.680 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 18 | 2.689 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.984 + 07 | 2.450 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 19 | 2.686 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.118 + 04 | 2.589 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 20 | 2.682 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.456 + 08 | 6.430 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 21 | 2.680 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.498 + 08 | 2.819 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 22 | 2.673 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.681 + 06 | 3.929 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 23 | 2.669 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.119 + 07 | 2.847 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 24 | 2.668 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.727 + 07 | 6.973 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 25 | 2.640 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.702 + 07 | 2.971 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 26 | 2.635 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.932 + 08 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 27 | 2.623 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.504 + 07 | 9.730 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 28 | 2.620 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.473 + 07 | 9.653 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 29 | 2.588 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.103 + 07 | 4.039 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 30 | 2.585 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.236 + 08 | 1.065 + 04 | 0.000 + 00 | 0.0 + 00 |
1 | 31 | 2.564 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.784 + 07 | 1.429 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 32 | 2.556 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.357 + 05 | 8.866 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 33 | 2.555 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.415 + 05 | 0.0 + 00 |
1 | 34 | 2.554 + 01 | 4.054 + 07 | 5.948 − 06 | 2.001 − 06 | 0.000 + 00 | 0.000 + 00 | 4.591 + 03 | 6.6 − 01 |
1 | 35 | 2.552 + 01 | 2.277 + 09 | 2.223 − 04 | 7.468 − 05 | 0.000 + 00 | 0.000 + 00 | 1.059 + 04 | 9.6 − 01 |
1 | 36 | 2.548 + 01 | 9.740 + 08 | 4.741 − 05 | 1.591 − 05 | 0.000 + 00 | 0.000 + 00 | 1.489 + 05 | 1.0 + 00 |
1 | 38 | 2.536 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.461 + 05 | 0.0 + 00 |
1 | 39 | 2.531 + 01 | 2.690 + 11 | 1.292 − 02 | 4.304 − 03 | 0.000 + 00 | 0.000 + 00 | 2.884 + 05 | 9.1 − 01 |
1 | 40 | 2.526 + 01 | 3.929 + 11 | 5.638 − 02 | 1.876 − 02 | 0.000 + 00 | 0.000 + 00 | 3.032 + 04 | 9.5 − 01 |
1 | 41 | 2.526 + 01 | 3.991 + 11 | 3.818 − 02 | 1.270 − 02 | 0.000 + 00 | 0.000 + 00 | 8.862 + 04 | 9.3 − 01 |
1 | 42 | 2.522 + 01 | 2.258 + 11 | 1.077 − 02 | 3.576 − 03 | 0.000 + 00 | 0.000 + 00 | 8.113 + 05 | 9.3 − 01 |
1 | 43 | 2.521 + 01 | 2.046 + 10 | 1.950 − 03 | 6.474 − 04 | 0.000 + 00 | 0.000 + 00 | 8.295 + 02 | 9.5 − 01 |
1 | 44 | 2.522 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.590 + 03 | 0.0 + 00 |
1 | 45 | 2.520 + 01 | 2.956 + 11 | 4.221 − 02 | 1.400 − 02 | 0.000 + 00 | 0.000 + 00 | 3.244 + 05 | 9.5 − 01 |
1 | 46 | 2.516 + 01 | 7.467 + 11 | 7.084 − 02 | 2.347 − 02 | 0.000 + 00 | 0.000 + 00 | 1.225 + 05 | 9.4 − 01 |
1 | 47 | 2.514 + 01 | 2.270 + 11 | 3.226 − 02 | 1.068 − 02 | 0.000 + 00 | 0.000 + 00 | 2.500 + 03 | 9.5 − 01 |
1 | 48 | 2.505 + 01 | 7.205 + 10 | 6.781 − 03 | 2.237 − 03 | 0.000 + 00 | 0.000 + 00 | 9.144 + 04 | 9.3 − 01 |
1 | 49 | 2.502 + 01 | 2.278 + 12 | 3.207 − 01 | 1.057 − 01 | 0.000 + 00 | 0.000 + 00 | 4.764 + 03 | 9.5 − 01 |
1 | 50 | 2.483 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.072 + 03 | 0.0 + 00 |
1 | 52 | 2.470 + 01 | 4.834 + 12 | 2.212 − 01 | 7.195 − 02 | 0.000 + 00 | 0.000 + 00 | 3.265 + 05 | 9.0 − 01 |
1 | 53 | 2.469 + 01 | 3.016 + 11 | 4.134 − 02 | 1.344 − 02 | 0.000 + 00 | 0.000 + 00 | 6.072 + 04 | 9.6 − 01 |
1 | 54 | 2.467 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.246 + 04 | 0.0 + 00 |
1 | 55 | 2.460 + 01 | 6.680 + 12 | 6.059 − 01 | 1.963 − 01 | 0.000 + 00 | 0.000 + 00 | 2.424 + 05 | 9.2 − 01 |
1 | 56 | 2.458 + 01 | 6.076 + 12 | 8.259 − 01 | 2.674 − 01 | 0.000 + 00 | 0.000 + 00 | 1.651 + 04 | 9.6 − 01 |
1 | 57 | 2.451 + 01 | 7.517 + 11 | 6.772 − 02 | 2.186 − 02 | 0.000 + 00 | 0.000 + 00 | 7.996 + 04 | 9.6 − 01 |
1 | 58 | 2.451 + 01 | 1.608 + 12 | 7.245 − 02 | 2.339 − 02 | 0.000 + 00 | 0.000 + 00 | 9.940 + 04 | 9.2 − 01 |
1 | 59 | 2.417 + 01 | 7.732 + 11 | 1.016 − 01 | 3.233 − 02 | 0.000 + 00 | 0.000 + 00 | 1.510 + 05 | 9.6 − 01 |
1 | 60 | 2.413 + 01 | 6.649 + 10 | 5.804 − 03 | 1.844 − 03 | 0.000 + 00 | 0.000 + 00 | 1.598 + 02 | 1.0 + 00 |
1 | 61 | 2.387 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.093 + 02 | 2.304 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 62 | 2.377 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.929 + 04 | 6.434 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 63 | 2.368 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.313 + 04 | 1.568 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 64 | 2.356 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.346 + 06 | 6.397 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 65 | 2.344 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.864 + 06 | 2.384 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 66 | 2.299 + 01 | 6.378 + 07 | 5.052 − 06 | 1.529 − 06 | 0.000 + 00 | 0.000 + 00 | 3.535 + 04 | 5.4 − 01 |
1 | 67 | 2.285 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.067 + 05 | 0.0 + 00 |
1 | 68 | 2.285 + 01 | 1.207 + 11 | 1.417 − 02 | 4.262 − 03 | 0.000 + 00 | 0.000 + 00 | 7.639 + 01 | 1.0 + 00 |
1 | 69 | 2.280 + 01 | 1.445 + 11 | 1.126 − 02 | 3.379 − 03 | 0.000 + 00 | 0.000 + 00 | 1.961 + 04 | 9.5 − 01 |
1 | 70 | 2.274 + 01 | 4.807 + 11 | 5.591 − 02 | 1.675 − 02 | 0.000 + 00 | 0.000 + 00 | 7.822 + 04 | 1.0 + 00 |
1 | 71 | 2.274 + 01 | 2.117 + 10 | 8.206 − 04 | 2.457 − 04 | 0.000 + 00 | 0.000 + 00 | 8.406 + 01 | 9.3 − 01 |
1 | 72 | 2.268 + 01 | 7.750 + 11 | 5.979 − 02 | 1.786 − 02 | 0.000 + 00 | 0.000 + 00 | 1.618 + 04 | 9.5 − 01 |
1 | 73 | 2.266 + 01 | 3.728 + 11 | 4.306 − 02 | 1.285 − 02 | 0.000 + 00 | 0.000 + 00 | 2.096 + 04 | 1.0 + 00 |
1 | 74 | 2.265 + 01 | 3.029 + 10 | 1.165 − 03 | 3.473 − 04 | 0.000 + 00 | 0.000 + 00 | 2.006 + 04 | 9.8 − 01 |
1 | 75 | 2.265 + 01 | 2.244 + 11 | 1.726 − 02 | 5.147 − 03 | 0.000 + 00 | 0.000 + 00 | 6.875 + 03 | 9.9 − 01 |
1 | 76 | 2.261 + 01 | 7.117 + 11 | 2.728 − 02 | 8.124 − 03 | 0.000 + 00 | 0.000 + 00 | 8.459 + 03 | 9.6 − 01 |
1 | 77 | 2.256 + 01 | 1.087 + 10 | 8.295 − 04 | 2.465 − 04 | 0.000 + 00 | 0.000 + 00 | 4.842 + 03 | 7.4 − 01 |
1 | 78 | 2.242 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.231 + 03 | 7.871 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 79 | 2.241 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.042 + 05 | 1.739 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 80 | 2.237 + 01 | 6.381 + 11 | 2.393 − 02 | 7.047 − 03 | 0.000 + 00 | 0.000 + 00 | 5.659 + 03 | 1.0 + 00 |
1 | 81 | 2.180 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.445 + 04 | 2.086 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 82 | 2.177 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.185 + 05 | 1.952 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 84 | 2.174 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.207 + 06 | 1.597 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 85 | 2.172 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.140 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 86 | 2.167 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.654 + 07 | 1.069 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 87 | 2.164 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.051 + 07 | 7.469 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 88 | 2.161 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.636 + 08 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 89 | 2.157 + 01 | 9.573 + 10 | 6.679 − 03 | 1.898 − 03 | 0.000 + 00 | 0.000 + 00 | 3.241 + 03 | 1.0 + 00 |
1 | 90 | 2.155 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.414 + 07 | 3.011 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 91 | 2.154 + 01 | 3.598 + 11 | 3.754 − 02 | 1.065 − 02 | 0.000 + 00 | 0.000 + 00 | 4.381 + 04 | 9.5 − 01 |
1 | 92 | 2.154 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.498 + 07 | 4.910 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 93 | 2.153 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.335 + 06 | 1.958 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 94 | 2.153 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.171 + 09 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 95 | 2.151 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.606 + 09 | 1.808 − 01 | 0.000 + 00 | 0.0 + 00 |
1 | 96 | 2.148 + 01 | 6.229 + 10 | 2.155 − 03 | 6.095 − 04 | 0.000 + 00 | 0.000 + 00 | 1.887 + 04 | 1.3 + 00 |
1 | 97 | 2.147 + 01 | 1.437 + 11 | 9.927 − 03 | 2.806 − 03 | 0.000 + 00 | 0.000 + 00 | 4.044 + 04 | 1.3 + 00 |
1 | 98 | 2.146 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.386 + 09 | 6.283 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 99 | 2.142 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.041 + 07 | 2.817 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 100 | 2.137 + 01 | 9.936 + 09 | 3.401 − 04 | 9.570 − 05 | 0.000 + 00 | 0.000 + 00 | 6.580 + 04 | 3.2 − 01 |
1 | 101 | 2.134 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.070 + 09 | 2.749 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 102 | 2.125 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.964 + 08 | 4.492 + 00 | 0.000 + 00 | 0.0 + 00 |
i | j | A | f | S | A | A | A | R | |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3.101 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.241 + 04 | 0.0 + 00 |
1 | 3 | 3.091 + 01 | 2.365 + 11 | 1.017 − 01 | 1.035 − 02 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.4 − 01 |
1 | 5 | 3.058 + 01 | 3.359 + 11 | 1.412 − 01 | 1.422 − 02 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.4 − 01 |
1 | 6 | 2.949 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.085 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 7 | 2.926 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.312 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 9 | 2.917 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.521 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 10 | 2.911 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.485 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 11 | 2.895 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.143 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 13 | 2.885 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.699 + 04 | 0.000 + 00 | 0.0 + 00 |
1 | 14 | 2.886 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.167 + 08 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 17 | 2.733 + 01 | 2.044 + 10 | 6.865 − 03 | 6.176 − 04 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.8 − 01 |
1 | 18 | 2.727 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.992 + 05 | 0.0 + 00 |
1 | 21 | 2.715 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.530 + 04 | 0.0 + 00 |
1 | 23 | 2.698 + 01 | 7.276 + 11 | 2.381 − 01 | 2.115 − 02 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.8 − 01 |
1 | 24 | 2.692 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.344 + 04 | 0.0 + 00 |
1 | 25 | 2.689 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.704 + 03 | 0.0 + 00 |
1 | 27 | 2.657 + 01 | 7.503 + 12 | 2.382 + 00 | 2.084 − 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.8 − 01 |
1 | 28 | 2.491 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.295 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 31 | 2.380 + 01 | 4.824 + 10 | 1.229 − 02 | 9.625 − 04 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.9 − 01 |
1 | 32 | 2.377 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.775 + 04 | 0.0 + 00 |
1 | 33 | 2.369 + 01 | 1.114 + 12 | 2.813 − 01 | 2.194 − 02 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.0 + 00 |
1 | 34 | 2.311 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.187 + 03 | 0.0 + 00 |
1 | 35 | 2.310 + 01 | 8.909 + 10 | 2.138 − 02 | 1.626 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.2 − 01 |
1 | 37 | 2.291 + 01 | 6.570 + 10 | 1.551 − 02 | 1.170 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.3 − 01 |
1 | 38 | 2.276 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.454 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 39 | 2.274 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.428 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 41 | 2.271 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.889 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 42 | 2.270 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.206 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 44 | 2.257 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.896 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 45 | 2.254 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.516 + 08 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 46 | 2.252 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.392 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 48 | 2.247 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.968 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 49 | 2.247 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.945 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 51 | 2.235 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.082 + 09 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 53 | 2.228 + 01 | 1.660 + 10 | 3.704 − 03 | 2.717 − 04 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.5 − 01 |
1 | 55 | 2.226 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.037 + 05 | 0.0 + 00 |
1 | 57 | 2.224 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.724 + 04 | 0.0 + 00 |
1 | 59 | 2.217 + 01 | 1.081 + 12 | 2.389 − 01 | 1.744 − 02 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.5 − 01 |
1 | 62 | 2.207 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.861 + 04 | 0.0 + 00 |
1 | 65 | 2.206 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.348 + 04 | 0.0 + 00 |
1 | 67 | 2.205 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.607 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 69 | 2.204 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.594 − 02 | 0.000 + 00 | 0.0 + 00 |
1 | 70 | 2.204 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.388 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 71 | 2.199 + 01 | 2.487 + 12 | 5.406 − 01 | 3.913 − 02 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.5 − 01 |
1 | 74 | 2.187 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.572 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 76 | 2.089 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.937 + 03 | 0.0 + 00 |
1 | 77 | 2.088 + 01 | 5.646 + 10 | 1.108 − 02 | 7.614 − 04 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.1 − 01 |
1 | 78 | 2.074 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.896 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 79 | 2.073 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.839 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 81 | 2.072 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.077 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 83 | 2.072 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.467 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 84 | 2.072 + 01 | 4.167 + 10 | 8.049 − 03 | 5.491 − 04 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.3 − 01 |
1 | 86 | 2.057 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.494 + 02 | 0.000 + 00 | 0.0 + 00 |
1 | 87 | 2.057 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.694 + 03 | 0.000 + 00 | 0.0 + 00 |
1 | 88 | 2.056 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.006 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 90 | 2.055 + 01 | 1.092 + 10 | 2.073 − 03 | 1.402 − 04 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.2 − 01 |
1 | 92 | 2.054 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.693 + 05 | 0.0 + 00 |
1 | 94 | 2.053 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.708 + 04 | 0.0 + 00 |
1 | 97 | 2.050 + 01 | 9.711 + 11 | 1.835 − 01 | 1.238 − 02 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.2 − 01 |
1 | 98 | 2.046 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.006 + 01 | 0.000 + 00 | 0.0 + 00 |
1 | 101 | 2.046 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.876 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 103 | 2.046 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.535 + 08 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 104 | 2.046 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.763 − 01 | 0.0 + 00 |
1 | 114 | 2.038 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.163 + 03 | 0.0 + 00 |
1 | 115 | 2.038 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.434 + 04 | 0.0 + 00 |
1 | 117 | 2.035 + 01 | 1.052 + 12 | 1.960 − 01 | 1.313 − 02 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.2 − 01 |
1 | 121 | 2.030 + 01 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.136 + 08 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
i | j | A | f | S | A | A | A | R | |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 6.212 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.133 + 07 | 0.0 + 00 |
1 | 3 | 6.201 + 00 | 7.791 + 12 | 1.347 − 01 | 2.750 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.8 − 01 |
1 | 4 | 6.036 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.716 + 07 | 0.000 + 00 | 0.0 + 00 |
1 | 5 | 6.028 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.212 + 10 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 7 | 5.976 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.612 + 06 | 0.000 + 00 | 0.0 + 00 |
1 | 9 | 5.971 + 00 | 5.295 + 12 | 8.492 − 02 | 1.669 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.8 − 01 |
1 | 10 | 5.962 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.207 + 10 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 12 | 5.810 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.393 + 05 | 0.000 + 00 | 0.0 + 00 |
1 | 14 | 5.772 + 00 | 2.314 + 11 | 3.467 − 03 | 6.588 − 05 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.9 − 01 |
1 | 16 | 5.758 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.542 + 08 | 0.0 + 00 |
1 | 18 | 5.756 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.680 + 07 | 0.000 + 00 | 0.0 + 00 |
1 | 19 | 5.752 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.360 + 10 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 20 | 5.748 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.417 + 08 | 0.0 + 00 |
1 | 23 | 5.704 + 00 | 1.170 + 14 | 1.711 + 00 | 3.213 − 02 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.9 − 01 |
1 | 24 | 5.560 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.046 + 07 | 0.0 + 00 |
1 | 25 | 5.549 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.876 + 07 | 0.0 + 00 |
1 | 27 | 5.527 + 00 | 1.278 + 14 | 1.756 + 00 | 3.195 − 02 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.9 − 01 |
1 | 28 | 5.437 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.951 + 06 | 0.000 + 00 | 0.0 + 00 |
1 | 31 | 5.297 + 00 | 8.047 + 12 | 1.015 − 01 | 1.771 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.0 + 00 |
1 | 32 | 5.255 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.146 + 07 | 0.0 + 00 |
1 | 33 | 5.249 + 00 | 2.487 + 13 | 3.082 − 01 | 5.326 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.0 + 00 |
1 | 34 | 5.096 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.141 + 05 | 0.000 + 00 | 0.0 + 00 |
1 | 35 | 5.094 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.792 + 09 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 37 | 5.070 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.910 + 11 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 38 | 4.572 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.736 + 06 | 0.0 + 00 |
1 | 39 | 4.570 + 00 | 2.603 + 12 | 2.445 − 02 | 3.679 − 04 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.4 − 01 |
1 | 40 | 4.532 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.509 + 07 | 0.000 + 00 | 0.0 + 00 |
1 | 41 | 4.530 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.685 + 09 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 43 | 4.518 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.076 + 06 | 0.000 + 00 | 0.0 + 00 |
1 | 44 | 4.515 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.666 + 09 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 47 | 4.473 + 00 | 1.232 + 11 | 1.108 − 03 | 1.632 − 05 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.7 − 01 |
1 | 49 | 4.470 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.720 + 07 | 0.0 + 00 |
1 | 51 | 4.468 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.694 + 08 | 0.0 + 00 |
1 | 53 | 4.457 + 00 | 5.627 + 13 | 5.028 − 01 | 7.379 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.8 − 01 |
1 | 54 | 4.445 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.868 + 04 | 0.000 + 00 | 0.0 + 00 |
1 | 56 | 4.444 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.124 + 09 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 59 | 4.442 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.106 + 10 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 63 | 4.442 + 00 | 4.538 + 08 | 4.026 − 06 | 5.887 − 08 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.4 − 02 |
1 | 64 | 4.404 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 6.172 + 05 | 0.000 + 00 | 0.0 + 00 |
1 | 66 | 4.392 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.599 + 06 | 0.000 + 00 | 0.0 + 00 |
1 | 67 | 4.391 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.185 + 09 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 68 | 4.348 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.712 + 06 | 0.0 + 00 |
1 | 69 | 4.345 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.947 + 07 | 0.0 + 00 |
1 | 71 | 4.341 + 00 | 3.645 + 13 | 3.089 − 01 | 4.415 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.8 − 01 |
1 | 73 | 4.321 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.337 + 10 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 76 | 4.142 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.683 + 06 | 0.000 + 00 | 0.0 + 00 |
1 | 79 | 4.108 + 00 | 6.095 + 12 | 4.626 − 02 | 6.257 − 04 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.7 − 01 |
1 | 80 | 4.100 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.307 + 07 | 0.0 + 00 |
1 | 81 | 4.096 + 00 | 1.361 + 13 | 1.027 − 01 | 1.385 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.6 − 01 |
1 | 82 | 4.094 + 00 | 1.530 + 12 | 1.153 − 02 | 1.554 − 04 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.1 + 00 |
1 | 83 | 4.093 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.039 + 07 | 0.0 + 00 |
1 | 84 | 4.078 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 7.559 + 06 | 0.000 + 00 | 0.0 + 00 |
1 | 85 | 4.078 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.121 + 09 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 87 | 4.073 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.142 + 06 | 0.000 + 00 | 0.0 + 00 |
1 | 88 | 4.072 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.314 + 09 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 90 | 4.060 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.209 + 05 | 0.000 + 00 | 0.0 + 00 |
1 | 91 | 4.060 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.615 + 08 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 94 | 4.055 + 00 | 3.708 + 10 | 2.742 − 04 | 3.660 − 06 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.6 − 01 |
1 | 96 | 4.054 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.795 + 07 | 0.0 + 00 |
1 | 98 | 4.053 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.017 + 08 | 0.0 + 00 |
1 | 99 | 4.054 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.670 + 10 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 101 | 4.049 + 00 | 2.818 + 13 | 2.077 − 01 | 2.769 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.7 − 01 |
1 | 102 | 4.044 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 1.852 + 03 | 0.0 + 00 |
1 | 105 | 4.043 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.972 + 04 | 0.000 + 00 | 0.0 + 00 |
1 | 107 | 4.043 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.482 + 07 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 110 | 4.042 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.045 + 10 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 120 | 4.035 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 5.833 + 02 | 0.0 + 00 |
1 | 123 | 3.990 + 00 | 3.816 + 11 | 2.733 − 03 | 3.590 − 05 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 8.3 − 01 |
1 | 124 | 3.975 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.987 + 05 | 0.000 + 00 | 0.0 + 00 |
1 | 126 | 3.970 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 4.065 + 06 | 0.000 + 00 | 0.0 + 00 |
1 | 127 | 3.970 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.774 + 09 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
1 | 128 | 3.952 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.570 + 06 | 0.0 + 00 |
1 | 129 | 3.951 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 2.334 + 07 | 0.0 + 00 |
1 | 131 | 3.950 + 00 | 1.609 + 13 | 1.129 − 01 | 1.468 − 03 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 9.7 − 01 |
1 | 133 | 3.941 + 00 | 0.000 + 00 | 0.000 + 00 | 0.000 + 00 | 3.073 + 10 | 0.000 + 00 | 0.000 + 00 | 0.0 + 00 |
E1 | E2 | ||||||
---|---|---|---|---|---|---|---|
I | J | GRASP | GRASP2K | I | J | GRASP | GRASP2K |
1 | 3 | 2.365 + 11 | 2.287 + 11 | 1 | 7 | 7.312 + 07 | 7.120 + 07 |
1 | 5 | 3.359 + 11 | 3.194 + 11 | 1 | 10 | 9.485 + 07 | 9.295 + 07 |
1 | 17 | 2.044 + 10 | 2.134 + 10 | 1 | 14 | 1.167 + 08 | 1.148 + 08 |
1 | 23 | 7.276 + 11 | 8.057 + 11 | 2 | 16 | 2.080 + 05 | 2.031 + 05 |
1 | 27 | 7.503 + 12 | 6.955 + 12 | 2 | 17 | 1.941 + 05 | 1.896 + 05 |
2 | 6 | 1.663 + 09 | 1.656 + 09 | 2 | 18 | 1.449 + 05 | 1.412 + 05 |
2 | 7 | 1.523 + 09 | 1.488 + 09 | 2 | 19 | 2.415 + 05 | 2.345 + 05 |
2 | 8 | 3.566 + 09 | 3.474 + 09 | 2 | 20 | 1.114 + 05 | 1.050 + 05 |
2 | 9 | 4.716 + 08 | 4.470 + 08 | 2 | 21 | 7.334 + 04 | 7.196 + 04 |
2 | 10 | 2.548 + 09 | 2.466 + 09 | 2 | 22 | 1.517 + 05 | 1.500 + 05 |
2 | 11 | 6.904 + 06 | 3.371 + 06 | 2 | 23 | 3.611 + 04 | 3.392 + 04 |
2 | 13 | 7.042 + 08 | 6.743 + 08 | 2 | 24 | 8.309 + 03 | 5.663 + 03 |
2 | 14 | 1.582 + 08 | 1.505 + 08 | 2 | 25 | 3.946 + 04 | 3.876 + 04 |
3 | 6 | 2.152 + 08 | 2.138 + 08 | 2 | 26 | 1.954 + 04 | 1.841 + 04 |
3 | 7 | 1.687 + 09 | 1.641 + 09 | 2 | 27 | 1.531 + 03 | 1.714 + 03 |
3 | 9 | 3.017 + 09 | 2.936 + 09 | 3 | 17 | 1.527 + 04 | 1.473 + 04 |
3 | 10 | 1.644 + 09 | 1.612 + 09 | 3 | 18 | 6.446 + 04 | 6.357 + 04 |
3 | 11 | 5.256 + 07 | 4.151 + 07 | 3 | 20 | 1.297 + 05 | 1.279 + 05 |
3 | 12 | 3.794 + 09 | 3.754 + 09 | 3 | 21 | 1.707 + 05 | 1.644 + 05 |
3 | 13 | 4.289 + 06 | 6.717 + 06 | 3 | 22 | 1.086 + 05 | 1.011 + 05 |
3 | 14 | 1.604 + 08 | 1.471 + 08 | 3 | 23 | 2.610 + 05 | 2.567 + 05 |
3 | 15 | 6.657 + 09 | 5.401 + 09 | 3 | 24 | 2.902 + 03 | 2.114 + 03 |
4 | 6 | 3.258 + 07 | 3.229 + 07 | 3 | 25 | 3.672 + 01 | 1.934 + 00 |
4 | 9 | 6.182 + 07 | 5.744 + 07 | 3 | 26 | 1.303 + 04 | 1.334 + 04 |
4 | 11 | 1.884 + 09 | 1.526 + 09 | 3 | 27 | 1.127 + 05 | 9.381 + 04 |
4 | 13 | 1.884 + 09 | 1.901 + 09 | 4 | 18 | 8.533 + 03 | 7.901 + 03 |
5 | 6 | 2.666 + 07 | 2.651 + 07 | 4 | 21 | 9.462 + 03 | 8.622 + 03 |
5 | 7 | 1.877 + 06 | 1.417 + 06 | 4 | 24 | 1.308 + 05 | 1.147 + 05 |
5 | 9 | 7.315 + 05 | 1.588 + 06 | 4 | 25 | 1.063 + 05 | 1.161 + 05 |
5 | 10 | 1.068 + 08 | 1.011 + 08 | 5 | 17 | 3.377 + 03 | 3.162 + 03 |
5 | 11 | 1.529 + 09 | 1.538 + 09 | 5 | 18 | 3.234 + 03 | 2.876 + 03 |
5 | 12 | 8.997 + 08 | 8.253 + 08 | 5 | 20 | 8.139 + 00 | 3.477 + 01 |
5 | 13 | 1.605 + 09 | 1.499 + 09 | 5 | 21 | 2.163 + 01 | 8.742 + 01 |
5 | 14 | 3.472 + 09 | 3.394 + 09 | 5 | 22 | 1.625 + 04 | 1.561 + 04 |
5 | 15 | 1.081 + 10 | 9.160 + 09 | 5 | 23 | 2.365 + 04 | 1.994 + 05 |
5 | 24 | 1.100 + 05 | 1.186 + 05 | ||||
5 | 25 | 1.267 + 05 | 1.097 + 05 | ||||
5 | 26 | 2.328 + 05 | 2.243 + 05 | ||||
5 | 27 | 3.928 + 05 | 3.671 + 05 |
E1 | E2 | ||||||
---|---|---|---|---|---|---|---|
I | J | GRASP | GRASP2K | I | J | GRASP | GRASP2K |
1 | 6 | 8.085 + 03 | 8.399 + 03 | 1 | 2 | 2.241 + 04 | 2.101 + 04 |
1 | 9 | 1.521 + 03 | 1.489 + 03 | 1 | 18 | 5.992 + 05 | 6.093 + 05 |
1 | 11 | 4.143 + 00 | 5.307 − 01 | 1 | 21 | 6.530 + 04 | 6.544 + 04 |
1 | 13 | 1.699 + 04 | 1.720 + 04 | 1 | 24 | 6.344 + 04 | 5.909 + 04 |
2 | 3 | 1.336 + 01 | 1.293 + 01 | 1 | 25 | 1.705 + 03 | 4.340 + 03 |
2 | 5 | 9.001 + 02 | 0.129 + 02 | 2 | 6 | 3.133 − 01 | 3.078 − 01 |
2 | 17 | 6.678 + 00 | 1.452 + 01 | 2 | 8 | 6.485 − 01 | 6.301 − 01 |
2 | 18 | 1.267 − 01 | 2.492 + 01 | 2 | 9 | 8.744 − 01 | 8.605 − 01 |
2 | 21 | 9.622 − 02 | 1.307 − 01 | 2 | 10 | 1.556 + 00 | 1.525 + 00 |
2 | 22 | 2.993 − 01 | 2.444 − 01 | 2 | 11 | 1.852 − 01 | 1.742 − 01 |
2 | 23 | 4.006 + 00 | 4.866 + 00 | 2 | 12 | 1.656 + 00 | 1.691 + 00 |
2 | 24 | 1.189 − 02 | 7.164 − 01 | 2 | 15 | 1.702 + 01 | 1.313 + 01 |
2 | 26 | 3.194 − 01 | 2.629 − 01 | 3 | 8 | 6.833 − 01 | 6.686 − 01 |
2 | 27 | 8.176 + 00 | 6.828 + 00 | 3 | 10 | 5.317 − 01 | 5.253 − 01 |
3 | 4 | 6.537 + 02 | 6.601 + 02 | 3 | 13 | 3.847 − 01 | 3.621 − 01 |
3 | 5 | 1.503 + 02 | 1.505 + 02 | 4 | 14 | 7.596 − 01 | 7.437 − 01 |
3 | 16 | 1.093 + 01 | 3.300 + 01 | 5 | 13 | 1.207 + 00 | 1.199 + 00 |
3 | 17 | 2.078 + 00 | 1.155 + 01 | 5 | 14 | 8.823 − 01 | 8.658 − 01 |
3 | 18 | 3.613 − 01 | 3.387 − 01 | ||||
3 | 23 | 7.572 − 01 | 1.438 + 00 | ||||
3 | 24 | 4.080 − 01 | 2.401 − 01 | ||||
3 | 25 | 2.637 − 01 | 5.492 − 01 | ||||
4 | 5 | 4.290 + 00 | 4.087 + 00 | ||||
4 | 17 | 4.214 − 01 | 4.192 − 01 | ||||
4 | 23 | 1.147 − 03 | 1.255 − 03 | ||||
4 | 27 | 1.108 + 01 | 9.125 + 00 | ||||
5 | 16 | 1.040 + 00 | 1.498 + 00 | ||||
5 | 17 | 1.243 + 00 | 1.247 + 00 | ||||
5 | 18 | 2.251 + 00 | 7.509 − 01 | ||||
5 | 21 | 1.283 − 01 | 3.911 + 00 | ||||
5 | 24 | 2.047 − 01 | 3.525 + 00 | ||||
5 | 27 | 1.828 + 00 | 1.674 + 01 |
Index | Configuration | Level | CIV3 | GRASP2K | GRASP |
---|---|---|---|---|---|
1 | 2s2p | S | ....... | ........ | ........ |
2 | 2s2p3s | P | 4.760-05 | 4.462-05 | |
3 | 2s2p3s | P | 4.22-12 | 4.372-12 | 4.228-12 |
4 | 2s2p3s | P | 1.515-03 | 1.530-03 | |
5 | 2s2p3s | P | 3.10-12 | 3.131-12 | 2.977-12 |
6 | 2s2p3p | S | 5.11-10 | 5.186-10 | 5.161-10 |
7 | 2s2p3p | D | 3.15-10 | 3.124-10 | 3.044-10 |
8 | 2s2p3p | D | 2.84-10 | 2.879-10 | 2.805-10 |
9 | 2s2p3p | D | 3.17-10 | 2.905-10 | 2.816-10 |
10 | 2s2p3p | P | 3.27-10 | 2.340-10 | 2.276-10 |
11 | 2s2p3p | P | 2.88-10 | 3.216-10 | 3.104-10 |
12 | 2s2p3p | P | 2.17-10 | 2.184-10 | 2.131-10 |
13 | 2s2p3p | P | 2.42-10 | 2.451-10 | 2.383-10 |
14 | 2s2p3p | D | 2.67-10 | 2.627-10 | 2.559-10 |
15 | 2s2p3p | S | 6.74-11 | 6.868-11 | 5.725-11 |
16 | 2s2p3d | P | 1.29-10 | 1.311-10 | 1.287-10 |
17 | 2s2p3d | P | 3.23-11 | 3.459-11 | 3.549-11 |
18 | 2s2p3d | P | 1.31-10 | 1.334-10 | 1.303-10 |
19 | 2s2p3d | F | 1.29-10 | 1.312-10 | 1.278-10 |
20 | 2s2p3d | F | 1.20-10 | 1.226-10 | 1.190-10 |
21 | 2s2p3d | F | 1.15-10 | 1.176-10 | 1.142-10 |
22 | 2s2p3d | D | 1.18-10 | 1.207-10 | 1.166-10 |
23 | 2s2p3d | D | 1.20-12 | 1.227-12 | 1.357-12 |
24 | 2s2p3d | D | 1.15-10 | 1.170-10 | 1.131-10 |
25 | 2s2p3d | D | 1.16-10 | 1.190-10 | 1.151-10 |
26 | 2s2p3d | F | 1.21-10 | 1.234-10 | 1.194-10 |
27 | 2s2p3d | P | 1.47-13 | 1.436-13 | 1.331-13 |
I | J | GRASP | DFS | I | J | GRASP | DFS |
---|---|---|---|---|---|---|---|
1 | 3 | 0.1347 | 0.120 | 1 | 39 | 0.0245 | 0.020 |
1 | 9 | 0.0849 | 0.086 | 1 | 47 | 0.0011 | 0.016 |
1 | 14 | 0.0035 | 0.010 | 1 | 53 | 0.5028 | 0.443 |
1 | 23 | 1.7114 | 0.999 | 1 | 63 | 4.03-6 | 0.003 |
1 | 27 | 1.7560 | 2.278 | 1 | 71 | 0.3089 | 0.384 |
1 | 31 | 0.1016 | 0.060 | 1 | 79 | 0.0463 | 0.025 |
1 | 33 | 0.3082 | 0.304 | 1 | 81 | 0.1027 | 0.103 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggarwal, K.M. Energy Levels and Radiative Rates for Transitions in F-like Sc XIII and Ne-like Sc XII and Y XXX. Atoms 2018, 6, 25. https://doi.org/10.3390/atoms6020025
Aggarwal KM. Energy Levels and Radiative Rates for Transitions in F-like Sc XIII and Ne-like Sc XII and Y XXX. Atoms. 2018; 6(2):25. https://doi.org/10.3390/atoms6020025
Chicago/Turabian StyleAggarwal, Kanti M. 2018. "Energy Levels and Radiative Rates for Transitions in F-like Sc XIII and Ne-like Sc XII and Y XXX" Atoms 6, no. 2: 25. https://doi.org/10.3390/atoms6020025
APA StyleAggarwal, K. M. (2018). Energy Levels and Radiative Rates for Transitions in F-like Sc XIII and Ne-like Sc XII and Y XXX. Atoms, 6(2), 25. https://doi.org/10.3390/atoms6020025