The ExoMol Atlas of Molecular Opacities
Abstract
:1. Introduction
2. Methodology
3. Results
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sharp, C.M.; Burrows, A. Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres. Astrophys. J. Suppl. 2007, 168, 140. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN 2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Schreier, F.; Staedt, S.; Hedelt, P.; Godolt, M. Transmission Spectroscopy with the ACE-FTS Infrared Spectral Atlas of Earth: A Model Validation and Feasibility Study. Mol. Astrophys. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barber, R.J.; Dothe, H.; Gamache, R.R.; Goldman, A.; Perevalov, V.I.; Tashkun, S.A.; Tennyson, J. HITEMP, the High-Temperature Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2139–2150. [Google Scholar] [CrossRef]
- Polyansky, O.L.; Kyuberis, A.A.; Zobov, N.F.; Tennyson, J.; Yurchenko, S.N.; Lodi, L. ExoMol molecular line lists XXX: A complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 2018, in press. [Google Scholar]
- Tashkun, S.A.; Perevalov, V.I. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1403–1410. [Google Scholar] [CrossRef]
- Huang, X.; Schwenke, D.W.; Freedman, R.S.; Lee, T.J. Ames-2016 Line Lists for 13 Isotopologues of CO2: Updates, Consistency, and Remaining Issues. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 224–241. [Google Scholar] [CrossRef]
- Li, G.; Gordon, I.E.; Rothman, L.S.; Tan, Y.; Hu, S.M.; Kassi, S.; Campargue, A.; Medvedev, E.S. Rovibrational line lists for nine isotopologues of the CO molecule in the X 1Σ+ ground electronic state. Astrophys. J. Suppl. 2015, 216, 15. [Google Scholar] [CrossRef]
- Wong, A.; Yurchenko, S.N.; Bernath, P.; Mueller, H.S.P.; McConkey, S.; Tennyson, J. ExoMol Line List XXI: Nitric Oxide (NO). Mon. Not. R. Astron. Soc. 2017, 470, 882–897. [Google Scholar] [CrossRef]
- Brooke, J.S.A.; Bernath, P.F.; Western, C.M.; Sneden, C.; Afşar, M.; Li, G.; Gordon, I.E. Line strengths of rovibrational and rotational transitions in the ground state of {OH}. J. Quant. Spectrosc. Radiat. Transf. 2016, 138, 142–157. [Google Scholar] [CrossRef]
- Jørgensen, U.G.; Larsson, M.; Iwamae, A.; Yu, B. Line intensities for CH and their application to stellar atmospheres. Astron. Astrophys. 1996, 315, 204. [Google Scholar]
- Plez, B. A new TiO line list. Astron. Astrophys. 1998, 337, 495–500. [Google Scholar]
- Weck, P.F.; Schweitzer, A.; Stancil, P.C.; Hauschildt, P.H.; Kirby, K. The molecular line opacity of MgH in cool stellar atmospheres. Astrophys. J. 2003, 582, 1059–1065. [Google Scholar] [CrossRef]
- Bernath, P.F. Molecular astronomy of cool stars and sub-stellar objects. Int. Rev. Phys. Chem. 2009, 28, 681–709. [Google Scholar] [CrossRef]
- Tennyson, J.; Yurchenko, S.N. ExoMol: Molecular line lists for exoplanet and other atmospheres. Mon. Not. R. Astron. Soc. 2012, 425, 21–33. [Google Scholar] [CrossRef]
- Rey, M.; Nikitin, A.V.; Babikov, Y.L.; Tyuterev, V.G. TheoReTS—An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces. J. Mol. Spectrosc. 2016, 327, 138–158. [Google Scholar] [CrossRef]
- Tinetti, G.; Vidal-Madjar, A.; Liang, M.C.; Beaulieu, J.P.; Yung, Y.; Carey, S.; Barber, R.J.; Tennyson, J.; Ribas, I.; Allard, N.; et al. Water vapour in the atmosphere of a transiting extrasolar planet. Nature 2007, 448, 169–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinetti, G.; Encrenaz, T.; Coustenis, A. Spectroscopy of planetary atmospheres in our Galaxy. Astron. Astrophys. Rev. 2013, 21, 1–65. [Google Scholar] [CrossRef]
- Tennyson, J. Accurate variational calculations for line lists to model the vibration rotation spectra of hot astrophysical atmospheres. WIREs Comput. Mol. Sci. 2012, 2, 698–715. [Google Scholar] [CrossRef]
- Tennyson, J.; Yurchenko, S.N. Laboratory spectra of hot molecules: Data needs for hot super-Earth exoplanets. Mol. Astrophys. 2017, 8, 1–18. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Lodi, L.; Tennyson, J.; Stolyarov, A.V. Duo: A general program for calculating spectra of diatomic molecules. Comput. Phys. Commun. 2016, 202, 262–275. [Google Scholar] [CrossRef]
- Tennyson, J.; Kostin, M.A.; Barletta, P.; Harris, G.J.; Polyansky, O.L.; Ramanlal, J.; Zobov, N.F. DVR3D: A program suite for the calculation of rotation–vibration spectra of triatomic molecules. Comput. Phys. Commun. 2004, 163, 85–116. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Thiel, W.; Jensen, P. Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules. J. Mol. Spectrosc. 2007, 245, 126–140. [Google Scholar] [CrossRef]
- Tennyson, J.; Yurchenko, S.N. The ExoMol project: Software for computing molecular line lists. Int. J. Quantum Chem. 2017, 117, 92–103. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Tennyson, J.; Bailey, J.; Hollis, M.D.J.; Tinetti, G. Spectrum of hot methane in astronomical objects using a comprehensive computed line list. Proc. Natl. Acad. Sci. USA 2014, 111, 9379–9383. [Google Scholar] [CrossRef] [PubMed]
- Hoeijmakers, H.J.; de Kok, R.J.; Snellen, I.A.G.; Brogi, M.; Birkby, J.L.; Schwarz, H. A search for TiO in the optical high-resolution transmission spectrum of HD 209458b: Hindrance due to inaccuracies in the line database. Astron. Astrophys. 2015, 575, A20. [Google Scholar] [CrossRef]
- Partridge, H.; Schwenke, D.W. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data. J. Chem. Phys. 1997, 106, 4618–4639. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Barber, R.J.; Tennyson, J.; Thiel, W.; Jensen, P. Towards efficient refinement of molecular potential energy surfaces: Ammonia as a case study. J. Mol. Spectrosc. 2011, 268, 123–129. [Google Scholar] [CrossRef]
- Tennyson, J.; Hill, C.; Yurchenko, S.N. Data structures for ExoMol: Molecular line lists for exoplanet and other atmospheres. AIP Conf. Proc. 2013, 1545, 186–195. [Google Scholar]
- Barber, R.J.; Strange, J.K.; Hill, C.; Polyansky, O.L.; Mellau, G.C.; Yurchenko, S.N.; Tennyson, J. ExoMol line lists—III. An improved hot rotation–vibration line list for HCN and HNC. Mon. Not. R. Astron. Soc. 2014, 437, 1828–1835. [Google Scholar] [CrossRef]
- Furtenbacher, T.; Császár, A.G.; Tennyson, J. MARVEL: Measured active rotational-vibrational energy levels. J. Mol. Spectrosc. 2007, 245, 115–125. [Google Scholar] [CrossRef]
- Furtenbacher, T.; Császár, A.G. MARVEL: Measured active rotational-vibrational energy levels. II. Algorithmic improvements. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 929–935. [Google Scholar] [CrossRef]
- Császár, A.G.; Czakó, G.; Furtenbacher, T.; Mátyus, E. An active database approach to complete rotational–vibrational spectra of small molecules. Annu. Rep. Comput. Chem. 2007, 3, 155–176. [Google Scholar]
- Tennyson, J.; Bernath, P.F.; Brown, L.R.; Campargue, A.; Császár, A.G.; Daumont, L.; Gamache, R.R.; Hodges, J.T.; Naumenko, O.V.; Polyansky, O.L.; et al. A Database of Water Transitions from Experiment and Theory (IUPAC Technical Report). Pure Appl. Chem. 2014, 86, 71–83. [Google Scholar] [CrossRef]
- Tennyson, J.; Bernath, P.F.; Brown, L.R.; Campargue, A.; Carleer, M.R.; Császár, A.G.; Gamache, R.R.; Hodges, J.T.; Jenouvrier, A.; Naumenko, O.V.; et al. IUPAC critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part I. Energy Levels and Transition Wavenumbers for H217O and H218O. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 573–596. [Google Scholar] [CrossRef]
- Tennyson, J.; Bernath, P.F.; Brown, L.R.; Campargue, A.; Carleer, M.R.; Császár, A.G.; Daumont, L.; Gamache, R.R.; Hodges, J.T.; Naumenko, O.V.; et al. IUPAC critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Levels and Transition Wavenumbers for HD16O, HD17O, and HD18O. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2160–2184. [Google Scholar] [CrossRef]
- Tennyson, J.; Bernath, P.F.; Brown, L.R.; Campargue, A.; Carleer, M.R.; Császár, A.G.; Daumont, L.; Gamache, R.R.; Hodges, J.T.; Naumenko, O.V.; et al. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part III. Energy levels and transition wavenumbers for H216O. J. Quant. Spectrosc. Radiat. Transf. 2013, 117, 29–80. [Google Scholar] [CrossRef]
- Tennyson, J.; Bernath, P.F.; Brown, L.R.; Campargue, A.; Császár, A.G.; Daumont, L.; Gamache, R.R.; Hodges, J.T.; Naumenko, O.V.; Polyansky, O.L.; et al. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D216O, D217O and D218O. J. Quant. Spectrosc. Radiat. Transf. 2014, 142, 93–108. [Google Scholar] [CrossRef]
- Furtenbacher, T.; Szidarovszky, T.; Mátyus, E.; Fábri, C.; Császár, A.G. Analysis of the Rotational–Vibrational States of the Molecular Ion H. J. Chem. Theory Comput. 2013, 9, 5471–5478. [Google Scholar] [CrossRef] [PubMed]
- Furtenbacher, T.; Szidarovszky, T.; Fábri, C.; Császár, A.G. MARVEL analysis of the rotational–vibrational states of the molecular ions H2D+ and D2H+. Phys. Chem. Chem. Phys. 2013, 15, 10181–10193. [Google Scholar] [CrossRef] [PubMed]
- Al Derzi, A.R.; Furtenbacher, T.; Yurchenko, S.N.; Tennyson, J.; Császár, A.G. MARVEL analysis of the measured high-resolution spectra of 14NH3. J. Quant. Spectrosc. Radiat. Transf. 2015, 161, 117–130. [Google Scholar] [CrossRef]
- Furtenbacher, T.; Szabó, I.; Császár, A.G.; Bernath, P.F.; Yurchenko, S.N.; Tennyson, J. Experimental Energy Levels and Partition Function of the 12C2 Molecule. Astrophys. J. Suppl. 2016, 224, 44. [Google Scholar] [CrossRef]
- McKemmish, L.K.; Masseron, T.; Sheppard, S.; Sandeman, E.; Schofield, Z.; Furtenbacher, T.; Császár, A.G.; Tennyson, J.; Sousa-Silva, C. MARVEL analysis of the measured high-resolution spectra of 48Ti16O. Astrophys. J. Suppl. 2017, 228, 15. [Google Scholar] [CrossRef]
- Chubb, K.L.; Joseph, M.; Franklin, J.; Choudhury, N.; Furtenbacher, T.; Császár, A.G.; Gaspard, G.; Oguoko, P.; Kelly, A.; Yurchenko, S.N.; et al. MARVEL analysis of the measured high-resolution spectra of C2H2. J. Quant. Spectrosc. Radiat. Transf. 2018, 204, 42–55. [Google Scholar] [CrossRef]
- Tóbiás, R.; Furtenbacher, T.; Császár, A.G.; Naumenko, O.V.; Tennyson, J.; Flaud, J.M.; Kumard, P.; Poirier, B. Critical Evaluation of Measured Rotational-Vibrational Transitions ofFour Sulphur Isotopologues of S16O2. J. Quant. Spectrosc. Radiat. Transf. 2018, 208, 152–163. [Google Scholar] [CrossRef]
- Chubb, K.L.; Naumenko, O.V.; Keely, S.; Bartolotto, S.; MacDonald, S.; Mukhtar, M.; Grachov, A.; White, J.; Coleman, E.; Hu, S.M.; et al. MARVEL analysis of the measured high-resolution rovibrational spectra of H2S. J. Quant. Spectrosc. Radiat. Transf. 2018. submitted. [Google Scholar]
- McKemmish, L.K.; Goodhew, K.; Sheppard, S.; Bennet, A.; Martin, A.; Singh, A.; Sturgeon, C.; Godden, R.; Furtenbacher, T.; Császár, A.G.; et al. MARVEL analysis of the measured high-resolution spectra of 90Zr16O. Astrophys. J. Suppl. 2018. to be submitted. [Google Scholar]
- Yurchenko, S.N.; Al-Refaie, A.F.; Tennyson, J. ExoCross: A general program for generating spectra from molecular line lists. Astron. Astrophys. 2018. [Google Scholar] [CrossRef]
- Hill, C.; Yurchenko, S.N.; Tennyson, J. Temperature-dependent molecular absorption cross sections for exoplanets and other atmospheres. Icarus 2013, 226, 1673–1677. [Google Scholar] [CrossRef]
- Tennyson, J.; Yurchenko, S.N.; Al-Refaie, A.F.; Barton, E.J.; Chubb, K.L.; Coles, P.A.; Diamantopoulou, S.; Gorman, M.N.; Hill, C.; Lam, A.Z.; et al. The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres. J. Mol. Spectrosc. 2016, 327, 73–94. [Google Scholar] [CrossRef]
- Yadin, B.; Vaness, T.; Conti, P.; Hill, C.; Yurchenko, S.N.; Tennyson, J. ExoMol Molecular linelists: I The rovibrational spectrum of BeH, MgH and CaH the X 2Σ+ state. Mon. Not. R. Astron. Soc. 2012, 425, 34–43. [Google Scholar] [CrossRef]
- Barton, E.J.; Yurchenko, S.N.; Tennyson, J. ExoMol Molecular linelists—II. The ro-vibrational spectrum of SiO. Mon. Not. R. Astron. Soc. 2013, 434, 1469–1475. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Tennyson, J. ExoMol line lists IV: The rotation–vibration spectrum of methane up to 1500 K. Mon. Not. R. Astron. Soc. 2014, 440, 1649–1661. [Google Scholar] [CrossRef]
- Barton, E.J.; Chiu, C.; Golpayegani, S.; Yurchenko, S.N.; Tennyson, J.; Frohman, D.J.; Bernath, P.F. ExoMol Molecular linelists—V. The ro-vibrational spectra of NaCl and KCl. Mon. Not. R. Astron. Soc. 2014, 442, 1821–1829. [Google Scholar] [CrossRef]
- Yorke, L.; Yurchenko, S.N.; Lodi, L.; Tennyson, J. ExoMol line lists VI: A high temperature line list for Phosphorus Nitride. Mon. Not. R. Astron. Soc. 2014, 445, 1383–1391. [Google Scholar] [CrossRef]
- Sousa-Silva, C.; Al-Refaie, A.F.; Tennyson, J.; Yurchenko, S.N. ExoMol line lists—VII. The rotation–vibration spectrum of phosphine up to 1500 K. Mon. Not. R. Astron. Soc. 2015, 446, 2337–2347. [Google Scholar] [CrossRef]
- Al-Refaie, A.F.; Yurchenko, S.N.; Yachmenev, A.; Tennyson, J. ExoMol line lists—VIII: A variationally computed line list for hot formaldehyde. Mon. Not. R. Astron. Soc. 2015, 448, 1704–1714. [Google Scholar] [CrossRef]
- Patrascu, A.T.; Tennyson, J.; Yurchenko, S.N. ExoMol molecular linelists: VII: The spectrum of AlO. Mon. Not. R. Astron. Soc. 2015, 449, 3613–3619. [Google Scholar] [CrossRef]
- Rivlin, T.; Lodi, L.; Yurchenko, S.N.; Tennyson, J.; Le Roy, R.J. ExoMol line lists X: The spectrum of sodium hydride. Mon. Not. R. Astron. Soc. 2015, 451, 5153–5157. [Google Scholar] [CrossRef]
- Pavlyuchko, A.I.; Yurchenko, S.N.; Tennyson, J. ExoMol line lists XI: A Hot Line List for nitric acid. Mon. Not. R. Astron. Soc. 2015, 452, 1702–1706. [Google Scholar] [CrossRef]
- Paulose, G.; Barton, E.J.; Yurchenko, S.N.; Tennyson, J. ExoMol Molecular linelists—XII. Line lists for eight isotopologues of CS. Mon. Not. R. Astron. Soc. 2015, 454, 1931–1939. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Blissett, A.; Asari, U.; Vasilios, M.; Hill, C.; Tennyson, J. ExoMol Molecular linelists—XIII. The spectrum of CaO. Mon. Not. R. Astron. Soc. 2016, 456, 4524–4532. [Google Scholar] [CrossRef]
- Underwood, D.S.; Tennyson, J.; Yurchenko, S.N.; Huang, X.; Schwenke, D.W.; Lee, T.J.; Clausen, S.; Fateev, A. ExoMol line lists XIV: A line list for hot SO2. Mon. Not. R. Astron. Soc. 2016, 459, 3890–3899. [Google Scholar] [CrossRef]
- Al-Refaie, A.F.; Polyansky, O.L.; Ovsyannikov, I.R.; Tennyson, J.; Yurchenko, S.N. ExoMol line lists XV: A hot line-list for hydrogen peroxide. Mon. Not. R. Astron. Soc. 2016, 461, 1012–1022. [Google Scholar] [CrossRef]
- Azzam, A.A.A.; Yurchenko, S.N.; Tennyson, J.; Naumenko, O.V. ExoMol line lists XVI: A Hot Line List for H2S. Mon. Not. R. Astron. Soc. 2016, 460, 4063–4074. [Google Scholar] [CrossRef]
- Underwood, D.S.; Tennyson, J.; Yurchenko, S.N.; Clausen, S.; Fateev, A. ExoMol line lists XVII: A line list for hot SO3. Mon. Not. R. Astron. Soc. 2016, 462, 4300–4313. [Google Scholar] [CrossRef]
- McKemmish, L.K.; Yurchenko, S.N.; Tennyson, J. ExoMol Molecular linelists—XVIII. The spectrum of Vanadium Oxide. Mon. Not. R. Astron. Soc. 2016, 463, 771–793. [Google Scholar] [CrossRef]
- Polyansky, O.L.; Kyuberis, A.A.; Lodi, L.; Tennyson, J.; Ovsyannikov, R.I.; Zobov, N. ExoMol molecular line lists XIX: High accuracy computed line lists for H217O and H218O. Mon. Not. R. Astron. Soc. 2017, 466, 1363–1371. [Google Scholar] [CrossRef]
- Mizus, I.I.; Alijah, A.; Zobov, N.F.; Kyuberis, A.A.; Yurchenko, S.N.; Tennyson, J.; Polyansky, O.L. ExoMol molecular line lists XX: A comprehensive line list for H. Mon. Not. R. Astron. Soc. 2017, 468, 1717–1725. [Google Scholar] [CrossRef]
- Owens, A.; Yurchenko, S.N.; Yachmenev, A.; Thiel, W.; Tennyson, J. ExoMol molecular line lists XXII. The rotation–vibration spectrum of silane up to 1200 K. Mon. Not. R. Astron. Soc. 2017, 471, 5025–5032. [Google Scholar] [CrossRef]
- Prajapat, L.; Jagoda, P.; Lodi, L.; Gorman, M.N.; Yurchenko, S.N.; Tennyson, J. ExoMol molecular line lists XXIII. Spectra of PO and PS. Mon. Not. R. Astron. Soc. 2017, 472, 3648–3658. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Sinden, F.; Lodi, L.; Hill, C.; Gorman, M.N.; Tennyson, J. ExoMol Molecular linelists—XXIV: A new hot line list for silicon monohydride, SiH. Mon. Not. R. Astron. Soc. 2018, 473, 5324–5333. [Google Scholar] [CrossRef]
- Upadhyay, A.; Conway, E.K.; Tennyson, J.; Yurchenko, S.N. ExoMol Molecular linelists—XXV: A hot line list for silicon sulphide, SiS. Mon. Not. R. Astron. Soc. 2018. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Bond, W.; Gorman, M.N.; Lodi, L.; McKemmish, L.K.; Nunn, W.; Shah, R.; Tennyson, J. ExoMol Molecular linelists—XXVI: Spectra of SH and NS. Mon. Not. R. Astron. Soc. 2018. [Google Scholar] [CrossRef]
- Mant, B.P.; Yachmenev, A.; Tennyson, J.; Yurchenko, S.N. ExoMol molecular line lists—XXVII: Spectra of C2H4. Mon. Not. R. Astron. Soc. 2018, in press. [Google Scholar]
- Yurchenko, S.N.; Williams, H.; Leyland, P.C.; Lodi, L.; Tennyson, J. ExoMol line lists XXVIII: The rovibronic spectrum of AlH. Mon. Not. R. Astron. Soc. 2018, in press. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Szabo, I.; Pyatenko, E.; Tennyson, J. ExoMol Molecular line lists XXXI: The spectrum of C2. Mon. Not. R. Astron. Soc. 2018, in press. [Google Scholar] [CrossRef]
- Li, H.Y.; Patrascu, A.; Tennyson, J.; Yurchenko, S.N. ExoMol molecular line lists XXXII: The rovibronic spectrum of MgO. Mon. Not. R. Astron. Soc. 2018. to be submitted. [Google Scholar]
- Yurchenko, S.N.; Barber, R.J.; Tennyson, J. A variationally computed hot line list for NH3. Mon. Not. R. Astron. Soc. 2011, 413, 1828–1834. [Google Scholar] [CrossRef]
- Coppola, C.M.; Lodi, L.; Tennyson, J. Radiative cooling functions for primordial molecules. Mon. Not. R. Astron. Soc. 2011, 415, 487–493. [Google Scholar] [CrossRef]
- Lodi, L.; Yurchenko, S.N.; Tennyson, J. The calculated rovibronic spectrum of scandium hydride, ScH. Mol. Phys. 2015, 113, 1559–1575. [Google Scholar] [CrossRef]
- Brooke, J.S.A.; Bernath, P.F.; Western, C.M.; van Hemert, M.C.; Groenenboom, G.C. Line strengths of rovibrational and rotational transitions within the X 3Σ− ground state of NH. J. Chem. Phys. 2014, 141, 054310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masseron, T.; Plez, B.; Van Eck, S.; Colin, R.; Daoutidis, I.; Godefroid, M.; Coheur, P.F.; Bernath, P.; Jorissen, A.; Christlieb, N. CH in stellar atmospheres: An extensive linelist. Astron. Astrophys. 2014, 571, A47. [Google Scholar] [CrossRef]
- Brooke, J.S.A.; Ram, R.S.; Western, C.M.; Li, G.; Schwenke, D.W.; Bernath, P.F. Einstein A Coefficients and Oscillator Strengths for the A2Π–X2Σ+ (Red) and B2Σ+–X2Σ+ (Violet) Systems and Rovibrational Transitions in the X2Σ+ State of CN. Astrophys. J. Suppl. 2014, 210, 23. [Google Scholar] [CrossRef]
- Ram, R.S.; Brooke, J.S.A.; Western, C.M.; Bernath, P.F. Einstein A-values and oscillator strengths of the A 2Π–X 2Σ+ system of CP. J. Quant. Spectrosc. Radiat. Transf. 2014, 138, 107–115. [Google Scholar] [CrossRef]
- Li, G.; Gordon, I.E.; Hajigeorgiou, P.G.; Coxon, J.A.; Rothman, L.S. Reference spectroscopic data for hydrogen halides, Part II: The line lists. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 284–295. [Google Scholar] [CrossRef]
- Wende, S.; Reiners, A.; Seifahrt, A.; Bernath, P.F. CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf. Astron. Astrophys. 2010, 523, A58. [Google Scholar] [CrossRef]
- Burrows, A.; Dulick, M.; Bauschlicher, C.W.; Bernath, P.F.; Ram, R.S.; Sharp, C.M.; Milsom, J.A. Spectroscopic constants, abundances, and opacities of the TiH molecule. Astrophys. J. 2005, 624, 988–1002. [Google Scholar] [CrossRef]
- Schwenke, D.W. Opacity of TiO from a coupled electronic state calculation parametrized by ab initio and experimental data. Faraday Discuss. 1998, 109, 321–334. [Google Scholar] [CrossRef]
- Lyulin, O.M.; Perevalov, V.I. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank. J. Quant. Spectrosc. Radiat. Transf. 2017, 201, 94–103. [Google Scholar] [CrossRef]
- Burrows, A.; Ram, R.S.; Bernath, P.; Sharp, C.M.; Milsom, J.A. New CrH opacities for the study of L and brown dwarf atmospheres. Astrophys. J. 2002, 577, 986–992. [Google Scholar] [CrossRef]
- Owens, A.; Yachmenev, A.; Küpper, J.; Yurchenko, S.N.; Thiele, W. The rotation–vibration spectrum of methyl fluoride from first principles. Phys. Chem. Chem. Phys. 2018, in press. [Google Scholar]
- Voronin, B.A.; Tennyson, J.; Tolchenov, R.N.; Lugovskoy, A.A.; Yurchenko, S.N. A high accuracy computed line list for the HDO molecule. Mon. Not. R. Astron. Soc. 2010, 402, 492–496. [Google Scholar] [CrossRef]
- Allard, F.; Hauschildt, P.H.; Miller, S.; Tennyson, J. The influence of H2O line blanketing on the spectra of cool dwarf stars. Astrophys. J. 1994, 426, L39–L41. [Google Scholar] [CrossRef]
- Tinetti, G.; Tennyson, J.; Griffiths, C.A.; Waldmann, I. Water in Exoplanets. Philos. Trans. R. Soc. Lond. A 2012, 370, 2749–2764. [Google Scholar] [CrossRef] [PubMed]
- Barber, R.J.; Tennyson, J.; Harris, G.J.; Tolchenov, R.N. A high accuracy computed water line list. Mon. Not. R. Astron. Soc. 2006, 368, 1087–1094. [Google Scholar] [CrossRef]
- Allard, F. The BT-Settl Model Atmospheres for Stars, Brown Dwarfs and Planets. In IAU Symposium; Booth, M., Matthews, B.C., Graham, J.R., Eds.; International Astronomical Union: Pairs, France, 2014; Volume 299, pp. 271–272. [Google Scholar]
- Rutkowski, L.; Foltynowicz, A.; Johansson, A.C.; Khodabakhsh, A.; Schmidt, F.M.; Kyuberis, A.A.; Zobov, N.F.; Polyansky, O.L.; Yurchenko, S.N.; Tennyson, J. An experimental water line list at 1950 K in the 6250–6670 cm−1 region. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 213–219. [Google Scholar] [CrossRef]
- Campargue, A.; Mikhailenko, S.N.; Vasilchenko, S.; Reynaud, C.; Beguier, S.; Cermak, P.; Mondelain, D.; Kassi, S.; Romanini, D. The absorption spectrum of water vapor in the 2.2 μm transparency window: High sensitivity measurements and spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 189, 407–416. [Google Scholar] [CrossRef]
- Rey, M.; Nikitin, A.V.; Tyuterev, V.G. Theoreticak hot methane line list up T=2000 K for astrophysical applications. Astrophys. J. 2014, 789, 2. [Google Scholar] [CrossRef]
- Rey, M.; Nikitin, A.V.; Tyuterev, V.G. Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications. Astrophys. J. 2017, 847, 105. [Google Scholar] [CrossRef]
- Hargreaves, R.J.; Beale, C.A.; Michaux, L.; Irfan, M.; Bernath, P.F. Hot methane line lists for exoplanet and brown dwarf atmospheres. Astrophys. J. 2012, 757, 46. [Google Scholar] [CrossRef]
- Hargreaves, R.J.; Bernath, P.F.; Bailey, J.; Dulick, M. Empirical Line Lists and Absorption Cross Sections for Methane at High Temperatures. Astrophys. J. 2015, 813, 12. [Google Scholar] [CrossRef]
- Canty, J.I.; Lucas, P.W.; Tennyson, J.; Yurchenko, S.N.; Leggett, S.K.; Tinney, C.G.; Jones, H.R.A.; Burningham, B.; Pinfield, D.J.; Smart, R.L. Methane and Ammonia in the near-infrared spectra of late T dwarfs. Mon. Not. R. Astron. Soc. 2015, 450, 454–480. [Google Scholar] [CrossRef]
- Yurchenko, S.N.; Amundsen, D.S.; Tennyson, J.; Waldmann, I.P. A hybrid line list for CH4 and hot methane continuum. Astron. Astrophys. 2017, 605, A95. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Orton, G.S.; Teanby, N.A.; Irwin, P.G.J. Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus 2009, 202, 543–564. [Google Scholar] [CrossRef]
- Yurchenko, S.N. A theoretical room-temperature line list for 15NH3. J. Quant. Spectrosc. Radiat. Transf. 2015, 152, 28–36. [Google Scholar] [CrossRef]
- Rey, M.; Delahaye, T.; Nikitin, A.V.; Tyuterev, V.G. First theoretical global line lists of ethylene (12 C2H4 ) spectra for the temperature range 50,700 K in the far-infrared for quantification of absorption and emission in planetary atmospheres. Astron. Astrophys. 2016, 594, A47. [Google Scholar] [CrossRef]
- Al-Refaie, A.F.; Ovsyannikov, R.I.; Polyansky, O.L.; Yurchenko, S.N.; Tennyson, J. A variationally calculated room temperature line-list for H2O2. J. Mol. Spectrosc. 2015, 318, 84–90. [Google Scholar] [CrossRef]
- Harris, G.J.; Polyansky, O.L.; Tennyson, J. Opacity data for HCN and HNC from a new ab initio linelist. Astrophys. J. 2002, 578, 657–663. [Google Scholar] [CrossRef]
- Harris, G.J.; Tennyson, J.; Kaminsky, B.M.; Pavlenko, Y.V.; Jones, H.R.A. Improved HCN/HNC linelist, model atmospheres synthetic spectra for WZ Cas. Mon. Not. R. Astron. Soc. 2006, 367, 400–406. [Google Scholar] [CrossRef]
- Mellau, G.C. Highly excited rovibrational states of HNC. J. Mol. Spectrosc. 2011, 269, 77–85. [Google Scholar] [CrossRef]
- Mellau, G.C. Complete experimental rovibrational eigenenergies of HCN up to 6880 cm−1 above the ground state. J. Chem. Phys. 2011, 134, 234303. [Google Scholar] [CrossRef] [PubMed]
- Mellau, G.C. Rovibrational eigenenergy structure of the [H,C,N] molecular system. J. Chem. Phys. 2011, 134, 194302. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.J.; Larner, F.C.; Tennyson, J.; Kaminsky, B.M.; Pavlenko, Y.V.; Jones, H.R.A. A H13CN/HN13C linelist, model atmospheres and synthetic spectra for carbon stars. Mon. Not. R. Astron. Soc. 2008, 390, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Tsiaras, A.; Rocchetto, M.; Waldmann, I.P.; Tinetti, G.; Varley, R.; Morello, G.; Barton, E.J.; Yurchenko, S.N.; Tennyson, J. Detection of an atmosphere around the super-Earth 55 Cancri e. Astrophys. J. 2016, 820, 99. [Google Scholar] [CrossRef]
- Eriksson, K.; Gustafsson, B.; Jørgensen, U.G.; Nordlund, A. Effects of HCN molecules in carbon star atmospheres. Astron. Astrophys. 1984, 132, 37–44. [Google Scholar]
- Barber, R.J.; Harris, G.J.; Tennyson, J. Temperature dependent partition functions and equilibrium constant for HCN and HNC. J. Chem. Phys. 2002, 117, 11239–11243. [Google Scholar] [CrossRef]
- Kaltenegger, L.; Henning, W.G.; Sasselov, D.D. Detecting volcanism on extrasolar planets. Astron. J. 2010, 140, 1370. [Google Scholar] [CrossRef]
- Hu, R.; Seager, S.; Bains, W. Photochemistry in terrestrial exoplanet atmospheres. II. H2S and SO2 photochemistry in anoxic atmospheres. Astrophys. J. 2013, 769, 6. [Google Scholar] [CrossRef]
- Whitehill, A.R.; Xie, C.; Hu, X.; Xie, D.; Guo, H.; Ono, S. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early earth’s atmosphere. Proc. Natl. Acad. Sci. USA 2013, 110, 17697–17702. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.S.; Pavlov, A.A.; Mischna, M.A. Fate of SO2 in the ancient Martian atmosphere: Implications for transient greenhouse warming. J. Geophys. Res. 2009, 114, E11011. [Google Scholar] [CrossRef]
- Huang, X.; Gamache, R.R.; Freedman, R.S.; Schwenke, D.W.; Lee, T.J. Reliable infrared line lists for 13 CO2 isotopologues up to E =18,000 cm−1 and 1500 K, with line shape parameters. J. Quant. Spectrosc. Radiat. Transf. 2014, 147, 134–144. [Google Scholar]
- Błęcka, M.I.; De Mazière, M. Detection of nitric acid and nitric oxides in the terrestrial atmosphere in the middle-infrared spectral region. Ann. Geophys. 1997, 14, 1103–1110. [Google Scholar] [CrossRef]
- Cooper, M.; Martin, R.V.; Sauvage, B.; Boone, C.D.; Walker, K.A.; Bernath, P.F.; McLinden, C.A.; Degenstein, D.A.; Volz-Thomas, A.; Wespes, C. Evaluation of ACE-FTS and OSIRIS Satellite retrievals of ozone and nitric acid in the tropical upper troposphere: Application to ozone production efficiency. J. Geophys. Res. 2011, 116, D12306. [Google Scholar] [CrossRef]
- Seager, S.; Bains, W.; Hu, R. A Biomass-based Model to Estimate the Plausibility of Exoplanet Biosignature Gases. Astrophys. J. 2013, 775, 104. [Google Scholar] [CrossRef]
- Brown, L.R.; Crisp, J.A.; Crisp, D.; Naumenko, O.V.; Smirnov, M.A.; Sinitsa, L.N.; Perrin, A. The Absorption Spectrum of H2S Between 2150 and 4260 cm−1: Analysis of the Positions and Intensities in the First (2ν2, ν1, and ν3) and Second (3ν2, ν1/ν2, and ν2/ν3) Triad Regions. J. Mol. Spectrosc. 1998, 188, 148–174. [Google Scholar] [CrossRef] [PubMed]
- Somerville, W.B. Interstellar radio spectrum lines. Rep. Prog. Phys. 1977, 40, 483–565. [Google Scholar]
- Lovas, F.J.; Johnson, D.R.; Snyder, L.E. Recommended rest frequencies for observed interstellar molecular transitions. Astrophys. J. Suppl. 1979, 41, 451–480. [Google Scholar] [CrossRef]
- Tomkin, J.; Lambert, D.L. Isotopic adbundances of magnesium 5 G-dwarfs and K-dwarfs. Astrophys. J. 1980, 235, 925–938. [Google Scholar] [CrossRef]
- McWilliam, A.; Lambert, D.L. Isotopic magnesium abundances in stars. Mon. Not. R. Astron. Soc. 1988, 230, 573–585. [Google Scholar] [CrossRef]
- Gay, P.L.; Lambert, D.L. The isotopic abundances of magnesium in stars. Astrophys. J. 2000, 533, 260–270. [Google Scholar] [CrossRef]
- Yong, D.; Lambert, D.L.; Ivans, I.I. Magnesium isotopic abundance ratios in cool stars. Astrophys. J. 2003, 599, 1357–1371. [Google Scholar] [CrossRef]
- Hinkle, K.H.; Wallace, L.; Ram, R.S.; Bernath, P.F.; Sneden, C.; Lucatello, S. The magnesium isotopologues of MgH in the A 2Π – X 2Σ+ system. Astrophys. J. Suppl. 2013, 207, 26. [Google Scholar] [CrossRef]
- GharibNezhad, E.; Shayesteh, A.; Bernath, P.F. Einstein A coefficients for rovibronic lines of the A 2Π→ X 2Σ+ and B’ 2Σ+→ X 2Σ+ transitions of MgH. Mon. Not. R. Astron. Soc. 2013, 432, 2043–2047. [Google Scholar] [CrossRef]
- Henderson, R.D.E.; Shayesteh, A.; Tao, J.; Haugen, C.C.; Bernath, P.F.; Le Roy, R.J. Accurate Analytic Potential and Born-Oppenheimer Breakdown Functions for MgH and MgD from a Direct-Potential-Fit Data Analysis. J. Phys. Chem. A 2013, 117, 13373–13387. [Google Scholar] [CrossRef] [PubMed]
- Reiners, A.; Homeier, D.; Hauschildt, P.H.; Allard, F. A high resolution spectral atlas of brown dwarfs. Astron. Astrophys. 2007, 473, 245–255. [Google Scholar] [CrossRef]
- Darby-Lewis, D.; Tennyson, J.; Lawson, K.D.; Yurchenko, S.N.; Stamp, M.F.; Shaw, A.; Brezinsek, S.; JET Contributor. Synthetic spectra of BeH, BeD and BeT for emission modelling in JET plasmas. J. Phys. B At. Mol. Opt. Phys. 2018. submitted. [Google Scholar]
- Shanmugavel, R.; Bagare, S.P.; Rajamanickam, N.; Balachandra Kumar, K. Identification of Beryllium Hydride Isotopomer Lines in Sunspot Umbral Spectra. Serb. Astron. J. 2008, 176, 51–58. [Google Scholar] [CrossRef]
- Duxbury, G.; Stamp, M.F.; Summers, H.P. Observations and modelling of diatomic molecular spectra from JET. Plasma Phys. Control. Fusion 1998, 40, 361–370. [Google Scholar] [CrossRef]
- Wallace, L.; Hinkle, K.; Livingston, W. An Atlas of Sunspot Umbral Spectra in the Visible from 15,000 to 25,000 cm−1 (3920 to 6664 Å); Technical Report Tech. Rep. 00-001; National Solar Observatory: Tucson, AZ, USA, 2000. [Google Scholar]
- Kaminski, T.; Wong, K.T.; Schmidt, M.R.; Mueller, H.S.P.; Gottlieb, C.A.; Cherchneff, I.; Menten, K.M.; Keller, D.; Bruenken, S.; Winters, J.M.; et al. An observational study of dust nucleation in Mira (o Ceti) I. Variable features of AlO and other Al- bearing species. Astron. Astrophys. 2016, 592, A42. [Google Scholar] [CrossRef]
- Li, G.; Gordon, I.E.; Bernath, P.F.; Rothman, L.S. Direct fit of experimental ro-vibrational intensities to the dipole moment function: Application to {HCl}. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1543–1550. [Google Scholar] [CrossRef]
- Tenenbaum, E.D.; Woolf, N.J.; Ziurys, L.M. Identification of phosphorus monoxide (X 2Π) in VY Canis Majoris: Detection of the first P-O bond in space. Astrophys. J. 2007, 666, L29–L32. [Google Scholar] [CrossRef]
- De Beck, E.; Kaminski, T.; Patel, N.A.; Young, K.H.; Gottlieb, C.A.; Menten, K.M.; Decin, L. PO and PN in the wind of the oxygen-rich AGB star IK Tauri. Astron. Astrophys. 2013, 558, 9. [Google Scholar] [CrossRef]
- Rivilla, V.M.; Fontani, F.; Beltrán, M.T.; Vasyunin, A.; Caselli, P.; Martín-Pintado, J.; Cesaroni, R. The First Detections of the Key Prebiotic Molecule PO in Star-forming Regions. Astrophys. J. 2016, 826, 161. [Google Scholar] [CrossRef]
- Lefloch, B.; Vastel, C.; Viti, S.; Jimenez-Serra, I.; Codella, C.; Podio, L.; Ceccarelli, C.; Mendoza, E.; Lepine, J.R.D.; Bachiller, R. Phosphorus-bearing molecules in solar-type star-forming regions: First PO detection. Mon. Not. R. Astron. Soc. 2016, 462, 3937. [Google Scholar] [CrossRef]
- Jones, H.R.A.; Pavlenko, Y.; Viti, S.; Barber, R.J.; Yakovina, L.; Pinfold, D.; Tennyson, J. Carbon monoxide in low-mass dwarf stars. Mon. Not. R. Astron. Soc. 2005, 358, 105–112. [Google Scholar] [CrossRef]
- De Kok, R.J.; Brogi, M.; Snellen, I.A.G.; Birkby, J.; Albrecht, S.; de Mooij, E.J.W. Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189,733b. Astron. Astrophys. 2013, 554, A82. [Google Scholar] [CrossRef]
- Brogi, M.; de Kok, R.J.; Birkby, J.L.; Schwarz, H.; Snellen, I.A.G. Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179,949 b. Astron. Astrophys. 2014, 565, A124. [Google Scholar] [CrossRef]
- Tennyson, J. Vibration-rotation transition intensities from first principles. J. Mol. Spectrosc. 2014, 298, 1–6. [Google Scholar] [CrossRef]
- Danielak, J.; Domin, U.; Kepa, R.; Rytel, M.; Zachwieja, M. Reinvestigation of the emission gamma band system (A 2Σ+ – X 2Π) of the NO molecule. J. Mol. Spectrosc. 1997, 181, 394–402. [Google Scholar] [CrossRef]
- Pavlenko, Y.V. A “lithium test” and modeling of lithium lines in late-type M dwarfs: Teide1. Astron. Rep. 1997, 41, 537–542. [Google Scholar]
- Bittner, D.M.; Bernath, P.F. Line Lists for LiF and LiCl in the X 1Σ+ Ground State. Astrophys. J. Suppl. 2018, 235, 8. [Google Scholar] [CrossRef]
- McKemmish, L.K.; Yurchenko, S.N.; Tennyson, J. Ab initio calculations to support accurate modelling of the rovibronic spectroscopy calculations of vanadium monoxide (VO). Mol. Phys. 2016, 114, 3232–3248. [Google Scholar] [CrossRef]
- Tennyson, J.; Lodi, L.; McKemmish, L.K.; Yurchenko, S.N. The ab initio calculation of spectra of open shell diatomic molecules. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 102001. [Google Scholar] [CrossRef]
- Cushing, M.C.; Rayner, J.T.; Davis, S.P.; Vacca, W.D. FeH absorption in the near-infrared spectra of late M and L dwarfs. Astrophys. J. 2003, 582, 1066–1072. [Google Scholar] [CrossRef]
- Hargreaves, R.J.; Hinkle, K.H.; Bauschlicher, C.W., Jr.; Wende, S.; Seifahrt, A.; Bernath, P.F. High-resolution 1.6 μm spectra of FeH in M and L dwarfs. Astron. J. 2010, 140, 919–924. [Google Scholar] [CrossRef]
- Wallace, L.; Hinkle, K. Detection of the 1.6 μm E 4Π–A 4Π FeH system in sunspot and cool star spectra. Astrophys. J. 2001, 559, 424–427. [Google Scholar] [CrossRef]
- Ramos, A.A.; Bueno, J.T.; Collados, M. Detection of polarization from the E 4Π–A 4Π system of FeH in sunspot spectra. Astrophys. J. 2004, 603, L125–L128. [Google Scholar] [CrossRef]
- Harrison, J.J.; Brown, J.M. Measurement of the magnetic properies of FeH in its X 4Δ and F 4Δ states from sunspot spectra. Astrophys. J. 2008, 686, 1426–1431. [Google Scholar] [CrossRef]
- DeYonker, N.J.; Allen, W.D. Taming the low-lying electronic states of FeH. J. Chem. Phys. 2012, 137, 234303. [Google Scholar] [CrossRef] [PubMed]
- Dulick, M.; Bauschlicher, C.W.; Burrows, A.; Sharp, C.M.; Ram, R.S.; Bernath, P. Line intensities and molecular opacities of the FeH F 4Δ–X 4Δ transition. Astrophys. J. 2003, 594, 651–663. [Google Scholar] [CrossRef]
- Rajpurohit, A.S.; Reyle, C.; Allard, F.; Homeier, D.; Schultheis, M.; Bessell, M.S.; Robin, A.C. The effective temperature scale of M dwarfs. Astron. Astrophys. 2013, 556, A15. [Google Scholar] [CrossRef]
- Ardila, D.R.; Van Dyk, S.D.; Makowiecki, W.; Stauffer, J.; Song, I.; Rho, J.; Fajardo-Acosta, S.; Hoard, D.W.; Wachter, S. The Spitzer atlas of stellar spectra (SASS). Astrophys. J. Suppl. 2010, 191, 301–339. [Google Scholar] [CrossRef]
- Campbell, J.M.; Klapstein, D.; Dulick, M.; Bernath, P.F. Infrared-absorption and emission-spectra of SiO. Astrophys. J. Suppl. 1995, 101, 237–254. [Google Scholar] [CrossRef]
- Wallace, L.; Hinkle, K. Medium-resolution stellar spectra in the L band from 2400 to 3000 cm−1 (3.3 to 4.2 microns). Astron. J. 2002, 124, 3393–3399. [Google Scholar] [CrossRef]
- Joshi, G.C.; Punetha, L.M.; Pande, M.C. (A–X) system of SiO in sunspots. Sol. Phys. 1979, 62, 77–82. [Google Scholar] [CrossRef]
- Bauschlicher, C.W., Jr. The low-lying electronic states of SiO. Chem. Phys. Lett. 2016, 658, 76–79. [Google Scholar] [CrossRef]
- Kurucz, R.L. Including all the lines. Can. J. Phys. 2011, 89, 417–428. [Google Scholar] [CrossRef]
- Bai, X.; Motto-Ros, V.; Lei, W.; Zheng, L.; Yu, J. Experimental determination of the temperature range of AlO molecular emission in laser-induced aluminum plasma in air. Spectra Chim. Acta B 2014, 99, 193–200. [Google Scholar] [CrossRef]
- Surmick, D.M.; Parigger, C.G. Aluminum Monoxide Emission Measurements in a Laser-Induced Plasma. Appl. Spectrosc. 2014, 68, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Parigger, C.G.; Hornkohl, J.O. Computation of AlO B 2Σ+→ X 2Σ+ emission spectra. Spectra Chim. Acta A 2011, 81, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, J.D.; Kelly, D.M.; Rieke, G.H.; Liebert, J.; Allard, F.; Wehrse, R. M dwarf spectra from 0.6 to 1.5 micron-A spectral sequence, model atmosphere fitting, and the temperature scale. Astrophys. J. 1993, 402, 643–654. [Google Scholar] [CrossRef]
- McGovern, M.R.; Kirkpatrick, J.D.; McLean, I.S.; Burgasser, A.J.; Prato, L.; Lowrance, P.J. Identifying Young Brown Dwarfs Using Gravity-Sensitive Spectral Features. Astrophys. J. 2004, 600, 1020. [Google Scholar] [CrossRef]
- Kirkpatrick, J.D.; Barman, T.S.; Burgasser, A.J.; McGovern, M.R.; McLean, I.S.; Tinney, C.G.; Lowrance, P.J. Discovery of a Very Young Field L Dwarf, 2MASS J01415823–4633574. Astrophys. J. 2006, 639, 1120. [Google Scholar] [CrossRef]
- Peterson, D.E.; Megeath, S.T.; Luhman, K.L.; Pipher, J.L.; Stauffer, J.R.; Barrado y Navascués, D.; Wilson, J.C.; Skrutskie, M.F.; Nelson, M.J.; Smith, J.D. New Young Brown Dwarfs in the Orion Molecular Cloud 2/3 Region. Astrophys. J. 2008, 685, 313. [Google Scholar] [CrossRef]
- Desert, J.M.; Vidal-Madjar, A.; des Etangs, A.L.; Sing, D.; Ehrenreich, D.; Hebrard, G.; Ferlet, R. TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458b. Astron. Astrophys. 2008, 492, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Allard, F.; Hauschildt, P.H.; Schwenke, D. TiO and H2O absorption lines in cool stellar atmospheres. Astrophys. J. 2000, 540, 1005–1015. [Google Scholar] [CrossRef]
- Sedaghati, E.; Boffin, H.M.J.; MacDonald, R.J.; Gandhi, S.; Madhusudhan, N.; Gibson, N.P.; Oshagh, M.; Claret, A.; Rauer, H. Detection of titanium oxide in the atmosphere of a hot Jupiter. Nature 2017, 549, 238. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, S.K.; Kawahara, H.; Masuda, K.; Hirano, T.; Kotani, T.; Tajitsu, A. High-resolution Spectroscopic Detection of TiO and a Stratosphere in the Day-side of WASP-33b. Astrophys. J. 2017, 154, 221. [Google Scholar] [CrossRef]
- Tsiaras, A.; Waldmann, I.P.; Zingales, T.; Rocchetto, M.; Morello, G.; Damiano, M.; Karpouzas, K.; Tinetti, G.; McKemmish, L.K.; Tennyson, J.; et al. A Population Study of Gaseous Exoplanets. Astron. J. 2018, 155, 156. [Google Scholar] [CrossRef]
- Ryabchikova, T.; Piskunov, N.; Kurucz, R.L.; Stempels, H.C.; Heiter, U.; Pakhomov, Y.; Barklem, P.S. A major upgrade of the VALD database. Phys. Scr. 2015, 90, 054005. [Google Scholar] [CrossRef]
- McKemmish, L.K.; Masseron, T.; Yurchenko, S.N.; Tennyson, J. ExoMol Molecular linelists—XXXIV. The spectrum of Titanium Oxide. Mon. Not. R. Astron. Soc. 2018. to be submitted. [Google Scholar]
- Wollaston, W.H. A Method of Examining Refractive and Dispersive Powers, by Prismatic Reflection. Philos. Trans. R. Soc. Lond. 1802, 92, 365–380. [Google Scholar] [CrossRef]
- Swan, W. On the Prismatic Spectra of the Flames of Compounds of Carbon and Hydrogen. Trans. R. Soc. Edinb. 1857, 21, 411. [Google Scholar] [CrossRef]
- Brooke, J.S.; Bernath, P.F.; Schmidt, T.W.; Bacskay, G.B. Line strengths and updated molecular constants for the C2 Swan system. J. Quant. Spectrosc. Radiat. Transf. 2013, 124, 11–20. [Google Scholar] [CrossRef]
- Pavanello, M.; Adamowicz, L.; Alijah, A.; Zobov, N.F.; Mizus, I.I.; Polyansky, O.L.; Tennyson, J.; Szidarovszky, T.; Császár, A.G.; Berg, M.; et al. Precision measurements and computations of transition energies in rotationally cold triatomic hydrogen ions up to the mid-visible spectral range. Phys. Rev. Lett. 2012, 108, 023002. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Tennyson, J. Calculated rotational and ro-vibrational transitions in the spectrum of H. Astrophys. J. 1988, 335, 486–490. [Google Scholar] [CrossRef]
- Miller, S.; Achilleos, N.; Ballester, G.E.; Geballe, T.R.; Joseph, R.D.; Prange, R.; Rego, D.; Stallard, T.; Tennyson, J.; Trafton, L.M.; et al. The role of H in planetary atmospheres. Philos. Trans. R. Soc. Lond. A 2000, 358, 2485–2502. [Google Scholar] [CrossRef]
- Shkolnik, E.; Gaidos, E.; Moskovitz, N. No Detectable H Emission from the Atmospheres of Hot Jupiters. Astrophys. J. 2006, 132, 1267. [Google Scholar]
- Koskinen, T.T.; Aylward, A.D.; Miller, S. A stability limit for the atmospheres of giant extrasolar planets. Nature 2007, 450, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Stallard, T.; Melin, H.; Tennyson, J. H cooling in planetary atmospheres. Faraday Discuss. 2010, 147, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Stallard, T.; Tennyson, J.; Melin, H. Cooling by H emission. J. Phys. Chem. A 2013, 117, 9770–9777. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, P.; Ruiz, M.T.; Leggett, S.K. The chemical evolution of cool white dwarfs and the age of the local galactic disk. Astrophys. J. Suppl. 1997, 108, 339–387. [Google Scholar] [CrossRef]
- Neale, L.; Tennyson, J. A high temperature partition function for H. Astrophys. J. 1995, 454, L169–L173. [Google Scholar] [CrossRef]
- Sochi, T.; Tennyson, J. A computed line list for the H2D+ molecular ion. Mon. Not. R. Astron. Soc. 2010, 405, 2345–2350. [Google Scholar] [CrossRef]
- Herman, M.; Campargue, A.; El Idrissi, M.I.; Vander Auwera, J. Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2 and 13C2H2). J. Phys. Chem. Ref. Data 2003, 32, 921–1361. [Google Scholar] [CrossRef]
- Herman, M. The acetylene ground state saga. Mol. Phys. 2007, 105, 2217–2241. [Google Scholar] [CrossRef]
- Jørgensen, U.G.; Almlöf, J.; Siegbahn, P.E.M. Complete active space self-consistent field calculations of the vibrational band strengths for C3. Astrophys. J. 1989, 343, 554. [Google Scholar] [CrossRef]
- Gorman, M.; Yurchenko, S.N.; Tennyson, J. ExoMol Molecular linelists—XXXIII. The spectrum of Chromium Hydride. Mon. Not. R. Astron. Soc. 2018. to be submitted. [Google Scholar]
- Gorman, M.; Yurchenko, S.N.; Tennyson, J. ExoMol Molecular linelists—XXXV. The spectrum of manganese hydride. Mon. Not. R. Astron. Soc. 2018. to be submitted. [Google Scholar]
- Faure, A.; Wiesenfeld, L.; Tennyson, J.; Drouin, B.J. Pressure broadening of water and carbon monoxide transitions by molecular hydrogen at high temperatures. J. Quant. Spectrosc. Radiat. Transf. 2013, 116, 79–86. [Google Scholar] [CrossRef]
- Renaud, C.L.; Cleghorn, K.; Hartmann, L.; Vispoel, B.; Gamache, R.R. Line shape parameters for the H2O–H2 collision system for application to exoplanet and planetary atmospheres. Icarus 2018, 306, 275–284. [Google Scholar] [CrossRef]
- Barton, E.J.; Hill, C.; Czurylo, M.; Li, H.Y.; Hyslop, A.; Yurchenko, S.N.; Tennyson, J. The ExoMol diet of line-by-line pressure-broadening parameters. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 490–495. [Google Scholar] [CrossRef]
Molecule | Reference(s) | |||
---|---|---|---|---|
HO | 9 | 182,156 | 18,486 | [35,36,37,38] |
H | 3 | 1410 | 911 | [39,40] |
NH | 1 | 28,530 | 4961 | [41] |
C | 1 | 23,343 | 5699 | [42] |
TiO | 1 | 48,590 | 10,564 | [43] |
HCCH | 1 | 37,813 | 11,213 | [44] |
SO | 3 | 40,269 | 15,130 | [45] |
HS | 1 | 39,267 | 7651 | [46] |
ZrO | 1 | 21,195 | 8329 | [47] |
Paper | Molecule | DSName | Reference | ||||
---|---|---|---|---|---|---|---|
I | BeH | 1 | 2000 | 1 | 16,400 | Yadin | [51] |
I | MgH | 3 | 2000 | 1 | 10,354 | Yadin | [51] |
I | CaH | 1 | 2000 | 1 | 15,278 | Yadin | [51] |
II | SiO | 5 | 9000 | 1 | 254,675 | EJBT | [52] |
III | HCN/HNC | 1 | 4000 | 1 | 399,000,000 | Harris | [30] |
IV | CH | 1 | 1500 | 1 | 9,819,605,160 | YT10to10 | [53] |
V | NaCl | 2 | 3000 | 1 | 702,271 | Barton | [54] |
V | KCl | 4 | 3000 | 1 | 1,326,765 | Barton | [54] |
VI | PN | 2 | 5000 | 1 | 142,512 | YYLT | [55] |
VII | PH | 1 | 1500 | 1 | 16,803,703,395 | SAlTY | [56] |
VIII | HCO | 1 | 1500 | 1 | 10,000,000,000 | AYTY | [57] |
IX | AlO | 4 | 8000 | 3 | 4,945,580 | ATP | [58] |
X | NaH | 2 | 7000 | 2 | 79,898 | Rivlin | [59] |
XI | HNO | 1 | 500 | 1 | 6,722,136,109 | AlJS | [60] |
XII | CS | 8 | 3000 | 1 | 548,312 | JnK | [61] |
XIII | CaO | 1 | 5000 | 5 | 21,279,299 | VBATHY | [62] |
XIV | SO | 1 | 2000 | 1 | 1,300,000,000 | ExoAmes | [63] |
XV | HO | 1 | 1250 | 1 | 20,000,000,000 | APTY | [64] |
XIV | HS | 1 | 2000 | 1 | 115,530,3730 | AYT2 | [65] |
XV | SO | 1 | 800 | 1 | 21,000,000,000 | UYT2 | [66] |
XVI | VO | 1 | 2000 | 13 | 277,131,624 | VOMYT | [67] |
XIX | HO | 2 | 3000 | 1 | 519,461,789 | HotWat78 | [68] |
XX | H | 1 | 3000 | 1 | 11,500,000,000 | MiZATeP | [69] |
XXI | NO | 6 | 5000 | 2 | 2,281,042 | NOName | [9] |
XXII | SiH | 1 | 1200 | 1 | 62,690,449,078 | OY2T | [70] |
XXIII | PO | 1 | 5000 | 1 | 2,096,289 | POPS | [71] |
XXIII | PS | 1 | 5000 | 3 | 30,394,544 | POPS | [71] |
XXIV | SiH | 4 | 5000 | 3 | 1,724,841 | SiGHTLY | [72] |
XXV | SiS | 12 | 5000 | 1 | 91,715 | UCTY | [73] |
XXVI | HS | 6 | 5000 | 1 | 219,463 | SNaSH | [74] |
XXVI | NS | 6 | 5000 | 1 | 3,479,067 | SNaSH | [74] |
XXVII | CH | 1 | 700 | 1 | 49,841,085,051 | MaYTY | [75] |
XXVIII | AlH | 3 | 5000 | 3 | 40,000 | AlHambra | [76] |
XXIX | CHCl | 2 | 1200 | 1 | 166,279,593,333 | OYT | [75] |
XXX | HO | 1 | 5000 | 1 | 1,500,000,000 | Pokazatel | [5] |
XXXI | C | 3 | 5000 | 8 | 6,080,920 | 8State | [77] |
XXXII | MgO | 3 | 5000 | 4 | 22,579,054 | LiPTY | [78] |
Molecule | DSName | Reference | Methodology | |||||
---|---|---|---|---|---|---|---|---|
Line Positions | Intensities | |||||||
NH | 2 | 1500 | 1 | 1,138,323,351 | BYTe | [79] | empirical | ab initio |
LiH | 1 | 12,000 | 1 | 18,982 | CLT | [80] | ab initio | ab initio |
ScH | 1 | 5000 | 6 | 1,152,827 | LYT | [81] | tuned ab initio | ab initio |
NH | 1 | 1 | 10,414 | 14BrBeWe | [82] | empirical | ab initio | |
CH | 2 | 6000 | 4 | 54,086 | 14MaPlVa | [83] | empirical | ab initio |
CO | 9 | 9000 | 1 | 752,976 | 15LiGoRo | [8] | empirical | emp./ab initio |
OH | 1 | 6000 | 1 | 45,000 | 16BrBeWe | [10] | empirical | ab initio |
CN | 1 | 1 | 195,120 | 14BrRaWe | [84] | empirical | ab initio | |
CP | 1 | 1 | 28,735 | 14RaBrWe | [85] | empirical | ab initio | |
HCl | 1 | 1 | 2588 | 11LiGoBe | [86] | empirical | ab initio | |
FeH | 1 | 2 | 93,040 | 10WEReSe | [87] | empirical | ab initio | |
TiH | 1 | 3 | 181,080 | 05BuDuBa | [88] | empirical | ab initio | |
CO | 13 | 1000 | 1 | 149,587,373 | Ames-2016 | [7] | empirical | ab initio |
TiO | 1 | 13 | 45,000,000 | Schwenke | [89] | tuned ab initio | ab initio | |
CH | 1 | 1000 | 1 | 33,890,981 | ASD-1000 | [90] | effect. Hamilt. | effect. dipole |
CrH | 1 | 2 | 13,824 | 02BuRaBe | [91] | empirical | ab initio | |
CHF | 1 | 400 | 1 | 1,391,882,159 | OYKYT | [92] | ab initio | ab initio |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tennyson, J.; Yurchenko, S.N. The ExoMol Atlas of Molecular Opacities. Atoms 2018, 6, 26. https://doi.org/10.3390/atoms6020026
Tennyson J, Yurchenko SN. The ExoMol Atlas of Molecular Opacities. Atoms. 2018; 6(2):26. https://doi.org/10.3390/atoms6020026
Chicago/Turabian StyleTennyson, Jonathan, and Sergei N. Yurchenko. 2018. "The ExoMol Atlas of Molecular Opacities" Atoms 6, no. 2: 26. https://doi.org/10.3390/atoms6020026
APA StyleTennyson, J., & Yurchenko, S. N. (2018). The ExoMol Atlas of Molecular Opacities. Atoms, 6(2), 26. https://doi.org/10.3390/atoms6020026