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Abstract

:

The question of stability of a given quantum system made up of charged particles is of fundamental interest in atomic, molecular, and nuclear physics. In this work, the stability for the negatively charged positronium (Ps)-like ions or the three-body system (Ze+,e−,e−) with Yukawa potentials is studied using correlated exponential wavefunctions based on the Ritz variational method. We obtained the critical screening parameter μC as a function of the continuously varied nuclear charge Z, the critical nuclear charge ZC as a function of the screening parameter μ, and the ionization energies in terms of the screening parameter μ and Z. The critical nuclear charge for the bare Coulomb system (Ze+,e−,e−) obtained using 700-term correlated exponential wavefunctions is in accord with the reported results. The ionization energy, μC, and ZC for the Yukawa system (Ze+,e−,e−) exhibit interesting behaviors. The present study describes the possible nonexistence of Borromean binding as well as Efimov states. The possible existence of quasi-bound resonances states for the negatively charged screened Ps-like ions is briefly discussed.
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1. Introduction


Despite the fact that the stability of few-body Coulomb systems is an old topic of research [1,2,3,4,5,6] and several review articles on this problem are available in the literature [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], this problem is still a fascinating topic of research and is of fundamental interest in several areas of physics such as atomic, molecular, and nuclear physics [8,9,10,11,12,13,14,15]. This paper deals with an investigation on the stability of three-body Coulomb systems, made up of two electrons and a particle of charge Z having the mass of a positron, with continuously varying Z and interacting with Yukawa potentials [16] or the Debye potentials [17]. We define such three-body system as (Ze+,e−,e−). For Z = 1, the system is known as the positronium (Ps) negative ion. So, the system (Ze+,e−,e−) can also be considered as the negative Ps ionic systems for continuously varying Z with values less than or equals to 1.Mills first reported observation for this positronic system in the laboratory [18]. Theoretical studies and experimental activities for the Ps negative ion have been summarized in the recent articles [19,20,21,22,23,24,25]. Due to importance of the study of stability for various physical systems, e.g., positronic atoms, antimatter compounds, and charged excitons in semiconductors [7], and due to the importance of the stability of few-charge Coulomb systems with the influence of external environments [26,27,28,29,30,31], it is relevant to search for the stability of the negatively charged Ps ionic systems with or without influence of external environments.



The main interest of this work aims to the precise determination of the critical nuclear charge ZC and the critical screening parameter μC for the bare Coulomb system (Ze+,e−,e−) and the Yukawa systems (Ze+,e−,e−). The critical charge ZC denotes a cut-off for which the system under study does not support any bound state for Z<ZC, but supports at least one bound state for Z≥ZC. The critical parameter μC also indicates cut-off points those are responsible for the determination of bound states, quasi-bound states [32], or Borromean states [33,34,35]. Suppose the critical screening μC admits two values μL (the lower critical screening parameter) and μU (the upper critical screening parameter) for a given Z, the proposed three-body Yukawa system supports bound states for μL≤μ≤μU, subject to the condition that its two-body subsystem (Ze+,e−) (or the Ps like system) is stable for μL≤μ≤μU. Such a system represents the quasi-bound states (i.e., the energy levels lying above the respective two-body subsystem for μ≤μL) subject to the criteria that the system (Ze+,e−) is bound for μ≤μL, and also represents the Borromean states for μ≥μU if the system (Ze+,e−) is unstable for μ≥μU. It is to be noted that the quasi-bound states indicate the existence of shape resonances [31].



For the bare Coulomb case, the critical nuclear charge for the two-electron (Z,e−,e−) ions has been studied recently using the variational method [10,11,15] and the Lagrange Mesh method [12], among these calculations, the best variational result for ZC has been reported so far by Estienne et al. [10]. Kais and Shi [1] obtained the value ZC for the (Ze+,e−,e−) ion using the finite-size scaling method for quantum systems based on the variational method. Here we estimate ZC for the (Ze+,e−,e−) ions using correlated exponential wavefunctions. Moini [11] reported the value of ZC for the (Ze+,e−,e−) ions using the Hylleraas-type basis functions. Our prediction is in good agreement with the value reported by Kais and Shi [1]. Except the results of Kais et al. [1] and Moini [11], to the best of our knowledge, there are no other results available in the literature for the values of ZC for the (Ze+,e−,e−) ions.



The stability of few-body systems with Yukawa potentials or Debye potentials are also of great interest due to its extreme importance in determining several features in atomic, nuclear, and molecular physics, such as the Borromean states, Efimov effects, quasi-bound states, critical screening parameter, critical nuclear charge, etc. It is important to mention here that, despite the same mathematical form, the Yukawa potentials are of interest to the nuclear physicists and the Debye potentials are of interest to the plasma physicists. Recently, Montgomery et al. [14] and Sen et al. [13] studied the critical stability for one- and two-electron Yukawa systems with varying nuclear charge. We also presented the critical nuclear charge and critical screening parameter for the (Z,e−,e−) ions with Yukawa potentials and varying Z [15]. Ho studied the doubly excited resonance states for the (Ze+,e−,e−) ions with screened Coulomb potentials and varying Z [30]. In this study, we also present the critical nuclear charge as a function of Z, the critical nuclear charge as a function of screening parameter, the ionization energy in terms of screening parameter, and Z for the Yukawa system (Ze+,e−,e−) with varying Z using the correlated exponential wavefunctions based on Ritz variational principle. The convergence and stability of the present calculations are examined respectively with increasing number of terms in the wavefunctions and with different choices for nonlinear variational parameters in the wavefunctions. Atomic units (a.u.) are used throughout.




2. Calculations


One needs to solve the Schrödinger equation to obtain the ground state energy E(Z,μ) variationally for the proposed Yukawa atoms. The Hamiltonian H(Z,μ) and wavefunction Ψ for the Yukawa system (Ze+,e−,e−) can be written as


H(Z,μ)Ψ(μ)=E(Z,μ)Ψ(μ)



(1)






H(Z,μ)=−12∇12−12∇22−12∇32−Z[exp(−μr31)r31+exp(−μr32)r32]+exp(−μr21)r21



(2)






Ψ(μ)=(1+O^12)∑i=1NPPi(μ)exp(−αir31−βir32−γir21)



(3)







The Hamiltonian H(Z,μ) and wavefunction Ψ for a one-electron (Ze+,e−) ion are as follows


H(Z,μ)=−∇2−Zexp(−μr)r



(4)






Ψ(μ)=∑i=1NQQi(μ) ri−1exp(−δr)



(5)







The parameter μ (units of a0−1) is known as the Yukawa parameter or the Debye parameter which has to be set zero for the bare Coulomb systems. δ, αi, βi, and γi are the nonlinear variational parameters. We select the parameters αi, βi, and γi by means of the following pseudorandom relations presented in matrix notation


[αiβiγi]T=[⟨⟨k2/2⟩⟩A⟨⟨k3/2⟩⟩B⟨⟨k5/2⟩⟩C]T 



(6)




where k=i(i+1) and δ, A, B, and C are chosen randomly by the trial and error method. The notation ⟨⟨x⟩⟩ denotes the fractional part of a real number x. Pi(μ) and Qi(μ) are linear coefficients. and NQ indicates the number of terms in wavefunctions (3) and (5), respectively. O^12 is the permutation operator for the two identical particles 1 and 2 representing the electrons. We calculate the upper bound to the true energy based on the Ritz variational principle.




3. Results and Discussion


The ground state energies E(Z,0) for Z≥ZC obtained from this calculation for the bare Coulomb systems (Ze+,e−,e−) and (Ze+,e−) are presented in Table 1. Table 1 also presents the systematic shift in energy eigenvalues with decreasing Z up to the neighborhood of ZC. The ground state energy for Z=1, that is, for the positronium negative ion is taken from our earlier work [36]. The critical nuclear charge obtained from this calculation is ZC = 0.921802443 which is in good agreement with the results ZC = 0.92180245 reported by Kais and Shi [1], and is in agreement up to 5 decimal places with the results ZC = 0.92180704 reported by Moini [11]. There are no other results in the literature to compare our prediction for the ground state energies for the bare Coulomb system (Ze+,e−,e−) and (Ze+,e−). However, the ground state energies presented in Table 1 are convergent and stable up to quoted digits.



The ground state energies E(Z,μ) for the Yukawa systems (Ze+,e−,e−) and (Ze+,e−) for different values of Z and μ are presented in Table S1 of Supplementary Materials. The ionization energies (IEs) for different values Z as functions of the screening parameters are presented in Figure 1 and Figure 2. It is evident from the Figure 1 and Figure 2 (and also from Table S1) that the μ dependence of IEs is non-monotonic. With increasing μ, the IE for each Z starts to increase from zero at a lower critical μ (=μC=μL) up to a maximum value at μ=μmax and then begins to decrease until again approaching zero at an upper critical μ (=μC=μU). As mentioned in Section 1, here the critical μC assumes two values, one is the lower critical screening parameter μL and other one is upper critical screening parameter μU. The μmax in terms of Z is displayed in Table 2. The μmax increases up to a point between Z=0.70 and Z=0.66, then starts to decrease with decreasing Z. The upper and lower critical values are presented in Figure 3 and Table 1. The upper and lower critical screening parameters meet at a point around Z=0.14. This Z value is the maximum value below which the Yukawa atoms or the Debye atoms do not support any bound state for any given screening strength and is denoted here as the final critical charge ZFC.



The phenomenon appears in Figure 1 and Figure 2 can be explained from the fact that the binding of an atomic system results from the competition of the Z-dependent attractive potential and Z-independent electron-electron repulsive potential. For the case when the nuclear charge is larger than the critical nuclear charge, the bare Coulomb system is bound as the force due to the attractive potential is stronger than that of the repulsive potential. However, when Z decreases below the critical charge, the three-particle bare Coulomb system becomes unbound as Z affects only the attractive part, and the force due to the repulsive potential hence overtakes the attractive contribution. In the screening environments, the strength of the interaction potential between any given pair of charged particles is to be reduced due to the screening effect. The stability of such screened system or the Yukawa/Debye system depends on the competition between the screened attractive potential and the screened repulsive potential. Though the bare Coulomb system is unbound at certain Z<ZC, the Yukawa system is bound for the values of μ in μL≤μ≤μU. For example, the bare Coulomb system for Z=0.9 is unbound, but when the screening effect is increased to μ≥μL = 0.0313, the system becomes bound again. This situation suggests that the screening has a stronger effect on the repulsive part than on the attractive part of the potential. As a result, the force due to the screened attractive potential overtakes that of the screened repulsive potential, and the Yukawa system becomes bound with increasing ionization energy as μ increases. When μ is increased further up to the value the screening parameter around μ=0.17 (for the case Z=0.9), the ionization energy starts to decrease with increasing screening parameter as both the attractive and repulsive potentials are reduced moderately, leading to the decrease of the overall ionization energy. When μ is increased further to the values of screening parameter larger than 0.532, the upper critical, the screening effect is so strong that the three-particle system becomes unbound again, as demonstrated in Figure 1 and Figure 2. When Z decreases further, the lower critical screening parameter increases gradually up to the value Z around 0.58 and then begins to decrease until Z approaches ZFC. The upper critical screening parameter decreases with decreasing Z until Z approaches ZFC. Such phenomena are presented in Figure 3 and such features appear due to the dominant nature of screening effects on attractive potentials, repulsive potential, or overall potentials. The detailed explanation can be well-understood from our previous article [15].



The critical charge ZC for a given μ is also determined using a polynomial fitting based on the technique prescribed in our recent work [15] and presented here in brief. First, we draw the horizontal lines for μ (say 0.1, 0.4, 0.5, etc.) in Figure 3. We estimate the critical Z from the intersections between these horizontal lines and the two critical μC curves. For μ = 0.4 and 0.5, the place of intersection is denoted as ZC1 for a given μ. The horizontal lines corresponding to Z = 0.1 or 0.15 would intersect the two curves at three places, and we named them as (from left to right) ZC1, ZC2, and ZC3. The horizontal line at Z = 0.05 crosses the line for critical μL curve at ZC3. The values of ZC1, ZC2, and ZC3 extracted from the 5th degree polynomial fitting of the values of upper and lower critical screening parameters are listed in Table 1 and depicted in Figure 4. From Figure 4, we can determine what are the values of critical Z for a given μ. For the values of μ belong to the interval [0.0, 0.14], the system is bound for Z>ZC3. For the values of μ ranging from 0.07815 to 0.20865, the system is bound when Z>ZC3 or ZC1<Z<ZC2. For 0.25≤μ≤0.532, the proposed three-body system remains bound for Z>ZC1.



One may show interest in the possible phenomena occurred due to the Efimov [37,38] physics (see the review in Reference [35] for details) while studying the bound states for two-body and three-body systems interacting with Yukawa potentials. In this work, it is pertinent to discuss Borromean biding as it is a known fact that the Efimov effect, since its discovery, impinges on several phenomena such as induced long-range interactions, discrete scale invariance, and Borromean binding. As stated earlier in Section 1, basic idea of the three-body Borromean binding states that the three-body Yukawa system can be defined as Borromean when it supports bound states for a fixed range of screening parameters (called the Borromean window) while none of their two-body subsystems are bound in such a range of screening parameter. From the Table S1 (Supplementary Materials), it is clear that the upper critical screening parameter for each Z is similar to the critical screening of the respective two-body subsystem and so from this study, we can only find the range for the Borromean binding [33,34] close to the upper critical screening parameter of the three-body Yukawa system under study. However, the present calculations show that the Borromean window, if it existed for certain Z, would be too narrow and very close to μU. Table S1 also shows there is no Borromean binding for the region associated with μL. In other words,μ≤μL, the two-body Yukawa system, supports a bound state while the three-body Yukawa system may support a quasi-bound state, and such a feature does not fall into the Borromean binding criteria. However, as introduced in Section 1, from the quasi-bound states, one can determine the shape resonances for the screened positronium negative ionic systems using approaches like the complex-coordinate rotation method [39].



It is also of interest to realize the mass effects on the critical screening. To do so, we compared our results of the critical screening parameters for the negatively charged Ps-like (the system under present study) and the negatively charged H-like ions [15] in Figure 5. Figure 5 indicates that the critical screening parameters decrease to lower values for the decrease of nuclear mass from infinitely heavy to the mass of a positron. However, such a shift to lower values becomes slow with decreasing nuclear charge Z.



Finally, we would like to mention here that the positively charged particle in the present work had values less than unity. As quarks have fractional charges [40], the present work may have relevance in quark-gluon plasma, notwithstanding that under the experimental conditions nowadays, it is unlikely that the present findings would soon be observed in laboratories. We should also mention that fractional charges have been observed in condensed-matter related experiments [41,42,43], and such fractional charges play an important role in developments on fractional quantum Hall effects [44,45].




4. Conclusions


In this work, we have investigated the stability for three-body Yukawa system (Ze+, e−, e−) using correlated exponential wavefunctions based on the Ritz variational method. We have presented the ionization energies in terms of the screening parameter μ and Z, the critical screening parameter μC as a function of the continuously varied nuclear charge Z, and the critical nuclear charge ZC as a function of the screening parameter μ. The critical nuclear charge for the bare Coulomb system (Ze+, e−, e−) obtained using 700-term correlated exponential basis functions is in good agreement with the reported results of Kais and Shi [1]. For the proposed systems, this paper suggests the possible nonexistence of Borromean binding, as well as Efimov states. The possible existence of quasi-bound resonances is also briefly discussed. We hope our findings will be a useful reference for future studies on this topic.








Supplementary Materials


The following are available online at https://www.mdpi.com/2218-2004/7/2/53/s1, for representative data for the ground state energies of the one- and two-electron Yukawa systems.





Author Contributions


All the authors contributed equally.




Funding


This research received no external funding.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Kais, S.; Shi, Q. Quantum criticality and stability of three-body Coulomb systems. Phys. Rev. A 2000, 62, 060502. [Google Scholar] [CrossRef]

	



Stillinger, F.H. Ground-state energy of two-electron atoms. J. Chem. Phys. 1966, 45, 3623. [Google Scholar] [CrossRef]

	



Stillinger, F.H.; Stillinger, D.K. Nonlinear variational study of perturbation theory for atoms and ions. Phys. Rev. A 1974, 10, 1109. [Google Scholar] [CrossRef]

	



Reinhardt, W.P. Dilatation analyticity and the radius of convergence of the 1/Z perturbation expansion: Comment on a conjecture of Stillinger. Phys. Rev. A 1977, 15, 802. [Google Scholar] [CrossRef]

	



Baker, J.D.; Freund, D.E.; Hill, R.N.; Morgan, J.D. Radius of convergence and analytic behavior of the 1/Z expansion. Phys. Rev. A 1990, 41, 1247. [Google Scholar] [CrossRef]

	



Ivanov, I.A. References Radius of convergence of the 1/Z expansion for the ground state of a two-electron atom. Phys. Rev. A 1995, 51, 1080. [Google Scholar] [CrossRef] [PubMed]

	



Armour, E.A.G.; Richard, J.-M.; Varga, K. Stability of few-charge systems in quantum mechanics. Phys. Rep. 2005, 413, 1–90. [Google Scholar] [CrossRef]

	



Zamastil, J.; Cizek, J.; Skala, L.; Simanek, M. Convergence study of the 1/Z expansion for the energy levels of two-electron atoms. Phys. Rev. A 2010, 81, 032118. [Google Scholar] [CrossRef]

	



Guevara, N.L.; Turbiner, A.V. Heliumlike and lithiumlike ionic sequences: Critical charges. Phys. Rev. A 2011, 84, 064501. [Google Scholar] [CrossRef]

	



Estienne, C.S.; Busuttil, M.; Moini, A.; Drake, G.W.F. Critical nuclear charge for two-electron atoms. Phys. Rev. Lett. 2014, 112, 173001. [Google Scholar] [CrossRef] [PubMed]

	



Moini, A. Critical Nuclear Charge of Quantum Mechanical Three-Body Problem. Electronic Master’s Thesis, University of Windsor, Windsor, ON, Canada, 2014. [Google Scholar]

	



Pilón, H.O.; Turbiner, A.V. Nuclear critical charge for two-electron ion in Lagrange mesh method. Phys. Lett. A 2015, 379, 688. [Google Scholar] [CrossRef]

	



Sen, K.D.; Katriel, J.; Montgomery, H.E., Jr. A comparative study of two-electron systems with screened Coulomb potentials. Ann. Phys. 2018, 397, 192. [Google Scholar] [CrossRef]

	



Montgomery, H.E., Jr.; Sen, K.D.; Katriel, J. Critical screening on one- and two-electron Yukawa atoms. Phys. Rev. A 2018, 97, 022503. [Google Scholar] [CrossRef]

	



Kar, S.; Wang, Y.-S.; Ho, Y.K. Critical stability for the two-electron ions with Yukawa potentials and Varying Z. Phys. Rev. A 2019, 99, 042514. [Google Scholar] [CrossRef]

	



Yukawa, H. On the interaction of elementary particles. Proc. Phys. Math. Soc. Jpn. 1935, 17, 48–57. [Google Scholar]

	



Debye, P.; Hückel, E. The theory of electrolytes. I. Lowering of freezing point and related phenomena. Phys. Z. 1923, 24, 185–206. [Google Scholar]

	



Mills, A.P., Jr. Observation of the positronium negative ion. Phys. Rev. Lett. 1981, 46, 717. [Google Scholar] [CrossRef]

	



Ho, Y.K. Atomic resonances involving positrons. Nucl. Instr. Meth. Phys. Res. B 2008, 266, 516. [Google Scholar] [CrossRef]

	



Nagashima, Y. Experiments on positronium negative ions. Phys. Rept. 2014, 545, 95. [Google Scholar] [CrossRef]

	



Kar, S.; Ho, Y.K. Excitons and the positronium negative ion: Comparison in spectroscopic properties. In Excitons; Pyshkin, S.L., Ed.; INTECH: London, UK, 2018; Chapter 5; pp. 69–90. [Google Scholar]

	



Kar, S.; Ho, Y.K. Two-photon double-electron D-wave resonant excitation in the positronium negative ion. Euro. Phys. J. D 2018, 72, 193. [Google Scholar] [CrossRef]

	



Michishio, K.; Kanai, T.; Kuma, S.; Azuma, T.; Wada, K.; Mochizuki, I.; Hyodo, T.; Yagishita, A.; Nagashima, Y. Observation of a shape resonance of the positronium negative ion. Nat. Commun. 2016, 7, 11060. [Google Scholar] [CrossRef]

	



Cassidy, D.B. Experimental progress in positronium laser physics. Eur. Phys. J. D 2018, 72, 53. [Google Scholar] [CrossRef]

	



Kar, S.; Wang, Y.-S.; Wang, Y.; Ho, Y.K. Polarizability of negatively charged helium-like ions interacting with Coulomb and screened Coulomb potentials. Int. J. Quantum Chem. 2018, 118, e25515. [Google Scholar] [CrossRef]

	



Sil, A.N.; Canuto, S.; Mukherjee, P.K. Spectroscopy of Confined Atomic Systems: Effect of Plasma. Adv. Quantum. Chem. 2009, 58, 115. [Google Scholar]

	



Kar, S.; Ho, Y.K. Effect of screened Coulomb potentials on the resonance states of two-electron highly stripped atoms using the stabilization method. J. Phys. B 2009, 42, 044007. [Google Scholar] [CrossRef]

	



Janev, R.K.; Zhang, S.; Wang, J. Review of quantum collision dynamics in Debye plasmas. Matter Radiat. Extrem. 2016, 1, 23. [Google Scholar] [CrossRef]

	



Kar, S.; Wang, Y.S.; Jiang, Z.; Wang, Y.; Ho, Y.K. Potential-screening on atomic wavelengths. Chin. J. Phys. 2018, 56, 3085. [Google Scholar] [CrossRef]

	



Ho, Y.K. The Combined Screened Coulomb and Varying Charge Effects on Doubly Excited Resonance States in the Positronium Negative Ion. JPS Conf. Proc. 2017, 18, 011027. [Google Scholar]

	



Katriel, J.; Montgomery, H.E., Jr.; Sen, K.D. Hund’s rule in the (1s2s )1,3S states of the two-electron Debye atom. Phys. Plasmas 2018, 25, 092111. [Google Scholar] [CrossRef]

	



Dubau, J.; Ivanov, I.A. Numerical calculation of the complex energy of the 1s2 resonance of a two-electron atom with nuclear charge below the threshold value. J. Phys. B 1998, 31, 3335–3344. [Google Scholar] [CrossRef]

	



Kar, S.; Ho, Y.K. Borromean windows for H2+ with screened Coulomb potentials. Phys. Rev. A 2012, 506, 282. [Google Scholar] [CrossRef]

	



Dutta, S.; Saha, J.K.; Bhattacharyya, S.; Mukherjee, P.K.; Mukherjee, T.K. Exotic systems under screened Coulomb interactions: A study on Borromean windows. Phys. Scr. 2014, 89, 015401. [Google Scholar] [CrossRef]

	



Naidon, P.; Endo, S. Efimov physics: A review. Rep. Prog. Phys. 2017, 80, 056001. [Google Scholar] [CrossRef]

	



Kar, S.; Ho, Y.K. Positron annihilation in the dense-plasma-embedded Ps−. Chem. Phys. Lett. 2006, 424, 403. [Google Scholar] [CrossRef]

	



Efimov, V. Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 1970, 33, 563. [Google Scholar] [CrossRef]

	



Efimov, V. Weakly-bound states of three-resonantly interacting particles. Sov. J. Nucl. Phys. 1970, 12, 589. [Google Scholar]

	



Ho, Y.K. The method of complex coordinate rotation and its applications to atomic collision processes. Phys. Rep. 1983, 99, 1. [Google Scholar] [CrossRef]

	



Mann, R. An Introduction to Particle Physics and the Standard Model; CRC Press: Boca Raton, FL, USA, 2009; 614p. [Google Scholar]

	



De-Picciotto, R.; Reznikov, M.; Heiblum, M.; Umansky, V. Direct observation of a fractional charge. Nature 1997, 389, 182. [Google Scholar] [CrossRef]

	



Saminadayar, L.; Glattli, D.C.; Jin, Y.; Eitenne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 1997, 79, 2526. [Google Scholar] [CrossRef]

	



Martin, J.; Ilani, S.; Verdene, B.; Smet, J.; Umansky, V.; Mahalu, D.; Schuh, D.; Abstreiter, G.; Yacoby, A. Localization of fractionally charged quasi-particles. Science 2004, 305, 980. [Google Scholar] [CrossRef]

	



Laughlin, R.B. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 1983, 50, 1395. [Google Scholar] [CrossRef]

	



Tsui, D.C.; Stormer, H.L.; Gossard, A.C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 1983, 48, 1559. [Google Scholar] [CrossRef]








[image: Atoms 07 00053 g001 550]





Figure 1. The ground state first ionization energies (IEs) (in atomic units) for six different values of Z in-between 0.70 and 0.90 in 0.04 spacing. 
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Figure 2. The ground state first ionization energies (IEs) (in atomic units) for eight different values of Z in-between 0.38 and 0.66 in 0.04 spacing. 
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Figure 3. The critical screening parameter versus the nuclear charge for the negatively charged Ps-like ions. 
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Figure 4. The critical nuclear charge for the negatively charged Ps-like ions as a function of the screening parameter. 
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Figure 5. Comparison of critical screening parameters for the negatively charged Ps-like ions and H-like ions in terms of the critical nuclear charge. 
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Table 1. The ground state energies E(Z,0) for (Ze+,e−,e−) using 700-term exponential basis functions for selected values of Z along with the available data and threshold energy. a Reference [36].
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	Z
	(Ze+,e−,e−)
	(Ze+,e−)





	1.0
	−0.2620050702325 a
	−0.2500000000000



	0.98
	−0.248636029841
	−0.2401000000000



	0.95
	−0.229443708915
	−0.2256250000000



	0.93
	−0.21726201089
	−0.2162250000000



	0.921803
	−0.21243026065
	−0.2124301927023



	0.92180250
	−0.21242996923
	−0.2124299622516



	0.92180245
	−0.21242994009
	−0.2124299392065



	0.921802445
	−0.21242993719
	−0.2124299369020



	0.921802444
	−0.21242993659
	−0.2124299364411



	0.921802443
	−0.21242993600
	−0.2124299359802



	0.9218024426
	−0.21242993576
	−0.2124299357958



	0.9218024425
	−0.21242993571
	−0.2124299357497



	0.9218024424
	−0.21242993565
	−0.2124299357037



	0.921802442
	−0.21242993543
	−0.2124299355193



	0.92180244
	−0.21242993424
	−0.2124299345975
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Table 2. The critical screening parameters for the negatively charged positronium (Ps)-like ions in terms of the nuclear charge. The values of μmax, the highest peaks of ionization energies (IEs) (also see Figure 1 and Figure 2) as functions with respect to μ for different Z. The three values ZC1, ZC2, and ZC3 of the critical nuclear charge ZC in terms of μ for the Yukawa system (Ze+,e−,e−) obtained from the fitting of the values of μL and μU with a 5th degree polynomial.
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Z

	
Critical Screening Parameter, μC(Z)

	
Maximum Peak of IEs, μmax(Z)

	
μ

	
Critical Nuclear Charge, ZC(μ)




	
Lower μL

	
Upper μU

	
μmax

	
ZC3

	
ZC2

	
ZC1






	
0.14

	
0.078

	
0.078

	
0.078

	
0.00

	
0.921802443

	

	




	
0.18

	
0.096

	
0.103

	
0.10

	
0.05

	
0.88479

	

	




	
0.22

	
0.113

	
0.128

	
0.12

	
0.07798

	
0.86032

	
0.14001

	




	
0.26

	
0.129

	
0.151

	
0.14

	
0.07815

	
0.86016

	
0.14040

	
0.14001




	
0.30

	
0.145

	
0.174

	
0.16

	
0.10

	
0.83862

	
0.18970

	
0.17500




	
0.34

	
0.161

	
0.198

	
0.18

	
0.12

	
0.81638

	
0.23648

	
0.20790




	
0.38

	
0.174

	
0.222

	
0.20

	
0.15

	
0.77627

	
0.31192

	
0.25823




	
0.42

	
0.186

	
0.246

	
0.22

	
0.16

	
0.76018

	
0.33942

	
0.27515




	
0.46

	
0.195

	
0.27

	
0.24

	
0.17

	
0.74198

	
0.36885

	
0.29264




	
0.50

	
0.202

	
0.294

	
0.25

	
0.18

	
0.72076

	
0.40109

	
0.30905




	
0.54

	
0.207

	
0.318

	
0.27

	
0.19

	
0.69466

	
0.44036

	
0.32601




	
0.58

	
0.208

	
0.342

	
0.28

	
0.20

	
0.65864

	
0.48474

	
0.34294




	
0.62

	
0.206

	
0.366

	
0.29

	
0.205

	
0.63067

	
0.51803

	
0.35140




	
0.66

	
0.199

	
0.39

	
0.30

	
0.20865

	
0.57632

	
0.57632

	
0.35757




	
0.70

	
0.190

	
0.414

	
0.30

	
0.25

	

	

	
0.42707




	
0.74

	
0.172

	
0.438

	
0.29

	
0.30

	

	

	
0.51025




	
0.78

	
0.147

	
0.461

	
0.28

	
0.35

	

	

	
0.59307




	
0.82

	
0.116

	
0.485

	
0.26

	
0.40

	

	

	
0.67642




	
0.86

	
0.078

	
0.508

	
0.22

	
0.45

	

	

	
0.76090




	
0.90

	
0.0313

	
0.532

	
0.17

	
0.50

	

	

	
0.84609




	

	

	

	

	
0.53198

	

	

	
0.89999
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media/file4.png
1.8x10™ -
1.6x10™ -
1.4x10™ -
1.2x10™ -
S 1.0x10™ -
s 5 _
" 8.0x10 )
6.0x10° -
4.0x10” -

0.15 0.20 025  0.30 0.35 0.40
u(a,)





nav.xhtml


  atoms-07-00053


  
    		
      atoms-07-00053
    


  




  





media/file2.png
00 T s e o e ————— ————————
—a—Z7=0.90

0.0025 -

0.0020 -

5 0.0015 -

u.)

IE (a

0.0010 -

0.0005 -

0.0000 - . .
0.0 0.1 0.2 0.3 04 0.5 0.6

n(a,')






media/file5.jpg
0.0 +———— T —T T T T
01 02 03 04 05 06 07 0.8 09 1.0

Z





media/file3.jpg
1.8x10"
1.6x10°
1.4x10*
1.2x10*
3 1.0x10*
o 8.0x10°]
~ 6.0x10°
4.0x10°

2.0x10°
0.0

0.15 0.20 0.25 0.30 0.35 0.40





media/file1.jpg
0.0030

0.0025

0.0020

u.)

3 0.0015 -

IE (a.

0.0010

0.0005

0.0000

0.0

0.2 0.3 0.4 0.5

0.6





media/file7.jpg
0.9
0.8
0.7
0.6
£ 0.5
0.4
0.3
0.2

0.1

ZC3

ZCZ

—a—
ZC1

0.0

0.4 0.5






media/file10.png
He

1.1

2 | 2 |
A:(Zeﬂe‘,e‘)

1.0 |—=— p A

099 |——p, A B:(Z,e‘,e‘)
0.8-_ ——p : B

0'7'_ —v— B

0.6 -

0.5-

04 -

0.3- | //

0.2

0.1 _o=F \
0.0 -

Z

N N B R R RN N RENNL RN RN RN RN RN
01 02 03 04 05 06 0.7 08 09 1.0






media/file9.jpg
0.0

T USRS T T T
01 02 03 04 05 06 07 08 09 1.0
Z





media/file0.png





media/file8.png
0.9-
0.8 -
0.7 -
0.6 -

o 0.5-
0.4-
0.3-
0.2-
0.1-

—7
——7

S 4

C3

C2

C1

0.0

0.1

0.2

0.3
u(a)

04

0.5






media/file6.png
O
=.

0.6

0.5

0.4-
0.3 -
0.2 -
0.1 -

0.0

N BN B DENNL R RN EENNL I RN RN RN L B
01 02 03 04 05 06 07 08 09 1.0
Z





