Resonant Charge-Transfer in Grazing Collisions of H− with Vicinal Nanosurfaces on Cu(111), Au(100) and Pd(111) Substrates: A Comparative Study
Abstract
:1. Introduction
2. Description of the Method
2.1. Surface Model in Vicinal Direction
2.2. Wave Packet Propagation
2.3. Ion Trajectories
2.4. Simulations
3. Results and Discussions
3.1. Ion Survival
3.2. Effects of Dispersion Energetics of Substrates
3.3. Wave Packet Density Dynamics
3.4. Superlattice States from Lateral Confinement
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RCT | Resonant charge transfer |
KP | Kronig-Penney |
BZ | Biersack-Ziegler |
BSL | Broken straight line |
C.B. | Conduction band |
References
- Pratt, S.J.; Jenkins, S.J. Beyond the surface atlas: A roadmap and gazetteer for surface symmetry and structure. Surf. Sci. Rep. 2007, 62, 373. [Google Scholar]
- Tegenkamp, C. Vicinal surfaces for functional nanostructures. J. Phys. Condens. Matter 2009, 21, 013002. [Google Scholar] [CrossRef]
- Schiller, F.; Ruiz-Osés, M.; Cordón, J.; Ortega, J.E. Scattering of Surface States at Step Edges in Nanostripe Arrays. Phys. Rev. Lett. 2005, 95, 066805. [Google Scholar] [CrossRef] [Green Version]
- Didiot, C.; Pons, S.; Kierren, B.; Fagot-Revurat, Y.; Malterre, D. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures. Nat. Nanotechnol. 2007, 2, 617. [Google Scholar] [CrossRef]
- Suzuki, K.; Kanisawa, K.; Janer, C.; Perraud, S.; Takashina, K.; Fujisawa, T.; Hirayama, Y. Spatial imaging of two-dimensional electronic states in semiconductor quantum wells. Phys. Rev. Lett. 2007, 98, 136802. [Google Scholar] [CrossRef]
- Bolz, A.; Meyer, C.; Heyn, C.; Hansen, W.; Morgenstern, M.; Wiesendanger, R. Wave-function mapping of InAs quantum dots by scanning tunneling spectroscopy. Phys. Rev. Lett. 2007, 98, 196804. [Google Scholar]
- Mugarza, A.; Ortega, J.E. Electronic sta tes at vicinal surfaces. J. Phys. Condens. Matter 2003, 15, S3281. [Google Scholar] [CrossRef]
- Mugarza, A.; Mascaraque, A.; Pérez-Dieste, V.; Repain, V.; Rousset, S.; García de Abajo, F.J.; Ortega, J.E. Electronic Confinement in Surface States on a Stepped Gold Surface Revealed by Angle-Resolved Photoemission. Phys. Rev. Lett. 2001, 87, 107601. [Google Scholar] [CrossRef]
- Ortega, J.E.; Speller, S.; Bachmann, A.R.; Mascaraque, A.; Michel, E.G.; Narmann, A.; Mugarza, A.; Rubio, A.; Himpsel, F.J. Electronic wave function at vicinal surfaces: Switch from terrace to step modulation. Phys. Rev. Lett. 2000, 84, 6110. [Google Scholar] [CrossRef]
- Baumberger, F.; Greber, T.; Osterwalder, J. Fermi surfaces of the two-dimensional surface states on vicinal Cu(111). Phys. Rev. B 2001, 64, 195411. [Google Scholar] [CrossRef]
- Baumberger, F.; Greber, T.; Osterwalder, J. Step-induced one-dimensional surface state on Cu(332). Phys. Rev. B 2000, 62, 15431. [Google Scholar] [CrossRef]
- Lei, J.; Sun, H.; Yu, K.W.; Louie, S.G.; Cohen, M.L. Image potential states on periodically corrugated metal surfaces. Phys. Rev. B 2001, 63, 045408. [Google Scholar] [CrossRef]
- Shaw, J.; Monismith, D.; Zhang, Y.; Doerr, D.; Chakraborty, H.S. Ion Survival in grazing collisions of H− with vicinal nanosurfaces as a probe for subband electronic structures. Phys. Rev. A 2018, 98, 052705. [Google Scholar] [CrossRef]
- Rabalais, J.W. Principles and Applications of Ion Scattering Spectrometry: Surface Chemical and Structural Analysis; Wiley-Interscience: Hoboken, NJ, USA, 2003. [Google Scholar]
- Stout, K.J.; Blunt, L. Three-Dimensional Surface Topography; Penton Press: London, UK, 2000. [Google Scholar]
- Korkin, A.; Labanowski, J.; Gusev, E.; Luryi, S. (Eds.) Nanotechnology for Electronic Materials and Devices; Springer: New York, NY, USA, 2007. [Google Scholar]
- Campbell, S.A. The Science and Engineering of Microelectronic Fabrication; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Canario, A.R.; Sanchez, E.A.; Bandurin, Y.; Esaulov, V.A. Growth of Ag nanostructures on TiO2(110). Surf. Sci. Lett. 2003, 547, L887. [Google Scholar] [CrossRef]
- Bahrim, B.; Makarenko, B.; Rabalais, J.W. Band gap effect on H− ion survival near Cu surfaces. Surf. Sci. 2005, 594, 62. [Google Scholar] [CrossRef]
- Yang, Y.; Yarmoff, J.A. Charge exchange in Li scattering in Si surfaces. Phys. Rev. Lett. 2002, 89, 196102. [Google Scholar] [CrossRef]
- Hecht, T.; Winter, H.; Borisov, A.G.; Gauyacq, J.P.; Kazansky, A.K. Role of the 2D surface state continuum and projected band gap in charge transfer in front of Cu(111) surface. Phys. Rev. Lett. 2000, 84, 2517. [Google Scholar] [CrossRef]
- Guillemot, L.; Esaulov, V.A. Interaction time dependence of electron tunneling processes between an atom and a surface. Phys. Rev. Lett. 1999, 82, 4552. [Google Scholar] [CrossRef]
- Sanchez, E.; Guillemot, L.; Esaulov, V.A. Electron transfer in the interaction of Flourine and Hydrogen with Pd(100). Phys. Rev. Lett. 1999, 83, 428. [Google Scholar] [CrossRef]
- Gainullin, I.K.; Sonkin, M.A. Three-dimensional effects in resonant charge transfer between atomic particles and nanosystems. Phys. Rev. A 2015, 92, 022710. [Google Scholar] [CrossRef]
- Hakala, T.; Puska, M.J.; Borisov, A.G.; Silkin, V.M.; Zabala, N.; Chulkov, E.V. Excited states of Na nanoislands on the Cu(111) surface. Phys. Rev. B 2007, 75, 165419. [Google Scholar] [CrossRef] [Green Version]
- Obreshkov, B.; Thumm, U. Neutralization of H− near vicinal metal surfaces. Phys. Rev. A 2006, 74, 012901. [Google Scholar] [CrossRef]
- Chakraborty, H.S.; Niederhausen, T.; Thumm, U. Resonant neutralization of H− near Cu surfaces: Effects of the surface symmetry and ion trajectory. Phys. Rev. A 2004, 70, 052903. [Google Scholar] [CrossRef]
- Chakraborty, H.S.; Niederhausen, T.; Thumm, U. Effects of the surface Miller index on the resonant neutralization of hydrogen anions near Ag surfaces. Phys. Rev. A 2004, 69, 052901. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, H.S.; Niederhausen, T.; Thumm, U. On the effect of image states on resonant neutralization of hydrogen anions near metal surfaces. Nucl. Instrum. Methods B 2005, 241, 43. [Google Scholar] [CrossRef]
- Schmitz, A.; Shaw, J.; Chakraborty, H.S.; Thumm, U. Band-gap-confinement and image-state-recapture effects in the survival of anions scattered from metal surfaces. Phys. Rev. A 2010, 81, 042901. [Google Scholar] [CrossRef]
- Swamy, K.; Bertel, E.; Vilfan, I. Step interaction and relaxation at steps: Pt(110). Surf. Sci. 1999, 425, 369. [Google Scholar] [CrossRef]
- Chulkov, E.V.; Silkin, V.M.; Echenique, P.M. Image potential states of metal surfaces: Binding energies and wave functions. Surf. Sci. 1999, 437, 330. [Google Scholar] [CrossRef]
- Chulkov, E.V.; Silkin, V.M.; Echenique, P.M. Image potential states on lithium, copper and silver surface. Surf. Sci. 1997, 391, L1217. [Google Scholar] [CrossRef]
- Ermoshin, V.A.; Kazansky, A.K. Wave packet study of H− decay in front of a metal surface. Phys. Lett. A 1996, 218, 99. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Biersack, J.P.; Ziegler, J.F. Refined universal potentials in atomic collisions. Nucl. Instrum. Methods 1982, 194, 93. [Google Scholar] [CrossRef]
- Borisov, A.G.; Teillet-Billy, D.; Gauyacq, J.P.; Winter, H.; Dierkes, G. Resonant charge transfer in grazing scattering of alkali-metal ions from an Al(111) surface. Phys. Rev. B 1996, 54, 17166. [Google Scholar] [CrossRef]
- Mueller, F.M.; Freemant, A.J.; Dimmock, J.O.; Furdyna, A.M. Electronic structure of palladium. Phys. Rev. B 1970, 1, 4617. [Google Scholar] [CrossRef]
- Winter, H. Charge transfer in grazing ion-surface scattering. Commts. At. Mol. Phys. 1970, 26, 287. [Google Scholar]
- Osma, J.; Sarria, I.; Chulkov, E.V.; Pitarke, J.M.; Echenique, P.M. Role of the intrinsic surface state in the decay of image states at a metal surface. Phys. Rev. B 1999, 59, 10591. [Google Scholar] [CrossRef]
- Gao, S.; Langreth, D.C. Image state mediated electron transfer at surfaces. Surf. Sci. Lett. 1998, 398, L314. [Google Scholar] [CrossRef]
- Chulkov, E.V.; Sarria, I.; Silkin, V.M.; Pitarke, J.M.; Echenique, P.M. Lifetimes of Image-Potential States On Copper Surfaces. Phys. Rev. Lett. 1998, 80, 4947. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaw, J.; Monismith, D.; Zhang, Y.; Doerr, D.; Chakraborty, H.S. Resonant Charge-Transfer in Grazing Collisions of H− with Vicinal Nanosurfaces on Cu(111), Au(100) and Pd(111) Substrates: A Comparative Study. Atoms 2019, 7, 89. https://doi.org/10.3390/atoms7030089
Shaw J, Monismith D, Zhang Y, Doerr D, Chakraborty HS. Resonant Charge-Transfer in Grazing Collisions of H− with Vicinal Nanosurfaces on Cu(111), Au(100) and Pd(111) Substrates: A Comparative Study. Atoms. 2019; 7(3):89. https://doi.org/10.3390/atoms7030089
Chicago/Turabian StyleShaw, John, David Monismith, Yixiao Zhang, Danielle Doerr, and Himadri S. Chakraborty. 2019. "Resonant Charge-Transfer in Grazing Collisions of H− with Vicinal Nanosurfaces on Cu(111), Au(100) and Pd(111) Substrates: A Comparative Study" Atoms 7, no. 3: 89. https://doi.org/10.3390/atoms7030089
APA StyleShaw, J., Monismith, D., Zhang, Y., Doerr, D., & Chakraborty, H. S. (2019). Resonant Charge-Transfer in Grazing Collisions of H− with Vicinal Nanosurfaces on Cu(111), Au(100) and Pd(111) Substrates: A Comparative Study. Atoms, 7(3), 89. https://doi.org/10.3390/atoms7030089