Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-Matrix Method
Abstract
:1. Introduction
2. The R-Matrix Method
3. The QEC Interface
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Song, M.Y.; Yoon, J.S.; Cho, H.; Itikawa, Y.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J. Cross sections for electron collisions with methane. J. Phys. Chem. Ref. Data 2015, 44, 023101. [Google Scholar] [CrossRef]
- Song, M.Y.; Yoon, J.S.; Cho, H.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J. Cross sections for electron collisions with acetylene. J. Phys. Chem. Ref. Data 2017, 46, 013106. [Google Scholar] [CrossRef]
- Song, M.Y.; Yoon, J.S.; Cho, H.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Hamilton, J.R.; Tennyson, J. Cross sections for electron collisions with NF3. J. Phys. Chem. Ref. Data 2017, 46, 043104. [Google Scholar] [CrossRef]
- Song, M.Y.; Yoon, J.S.; Cho, H.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J. Electron collision cross sections with NO, N2O and NO2. J. Phys. Chem. Ref. Data 2019, in press. [Google Scholar]
- Winstead, C.; McKoy, V. Electron-molecule collisions in low-temperature plasmas—The role of theory. Adv. At. Mol. Phys. 2000, 43, 111–145. [Google Scholar]
- Bartschat, K.; Kushner, M.J. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology. Proc. Natl. Acad. Sci. USA 2016, 113, 7026–7034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, F.; Roldan, A.M.; Krupa, K.; McEachran, R.P.; White, R.D.; Marjanovic, S.; Petrovic, Z.L.; Brunger, M.J.; Machacek, J.R.; Buckman, S.J.; et al. Scattering data for modelling positron tracks in gaseous and liquid water. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 145001. [Google Scholar] [CrossRef]
- Hamilton, J.R.; Tennyson, J.; Huang, S.; Kushner, M.J. Calculated cross sections for electron collisions with NF3, NF2 and NF with applications to remote plasma sources. Plasma Sources Sci. Technol. 2017, 26, 065010. [Google Scholar] [CrossRef]
- Burke, P.G. R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes; Springer: New York, NY, USA, 2011. [Google Scholar]
- Gillan, C.J.; Tennyson, J.; Burke, P.G. The UK molecular R-matrix scattering package: A computational perspective. In Computational Methods for Electron-Molecule Collisions; Huo, W., Gianturco, F.A., Eds.; Plenum: New York, NY, USA, 1995; pp. 239–254. [Google Scholar]
- Gillan, C.J.; Tennyson, J.; McLaughlin, B.M.; Burke, P.G. Low energy electron impact excitation of the nitrogen molecule: optically forbidden transitions. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 1531–1547. [Google Scholar] [CrossRef]
- Carr, J.M.; Galiatsatos, P.G.; Gorfinkiel, J.D.; Harvey, A.G.; Lysaght, M.A.; Madden, D.; Mašín, Z.; Plummer, M.; Tennyson, J. The UKRmol program suite. Eur. Phys. J. D 2012, 66, 58. [Google Scholar] [CrossRef]
- Benda, J.; Mašín, Z.; Gorfinkiel, J.D.; Harvey, A.G.; Tennyson, J. UKRmol+: A suite for modelling of electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method. Comput. Phys. Commun. 2019, in press. [Google Scholar]
- Tennyson, J. Electron-molecule collision calculations using the R-matrix method. Phys. Rep. 2010, 491, 29–76. [Google Scholar] [CrossRef]
- Tennyson, J. R-matrix calculation of Rydberg states of CO. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 6185–6201. [Google Scholar] [CrossRef]
- Halmová, G.; Gorfinkiel, J.D.; Tennyson, J. Low and intermediate energy electron collisions with the molecular anion. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 155201. [Google Scholar] [CrossRef]
- Little, D.A.; Tennyson, J. Singlet and triplet ab initio Rydberg states of N2. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 145102. [Google Scholar] [CrossRef]
- Tennyson, J.; Brown, D.B.; Munro, J.J.; Rozum, I.; Varambhia, H.N.; Vinci, N. Quantemol-N: An expert system for performing electron molecule collision calculations using the R-matrix method. J. Phys. Conf. Ser. 2007, 86, 012001. [Google Scholar] [CrossRef]
- Sanna, N.; Gianturco, F.A. Differential cross sections for electron/positron scattering for polyatomic molecules. Comput. Phys. Commun. 1998, 114, 142–167. [Google Scholar] [CrossRef]
- Kim, Y.K.; Rudd, M.E. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A 1994, 50, 3945. [Google Scholar] [CrossRef]
- Munro, J.J.; Harrison, S.; Tennyson, J.; Fujimoto, M.M. A dissociative electron attachment cross-section estimator. J. Phys. Conf. Ser. 2012, 388, 012013. [Google Scholar] [CrossRef]
- Kim, Y.K. Scaling of plane-wave Born cross sections for electron-impact excitation of neutral atoms. Phys. Rev. A 2001, 64, 032713. [Google Scholar] [CrossRef]
- Calogero, F. Variable Phase Approach to Potential Scattering; Academic: New York, NY, USA, 1954. [Google Scholar]
- Jain, A. Elastic scattering of electrons and positrons by CH4 at 25–800 eV. J. Chem. Phys. 1983, 78, 6579–6583. [Google Scholar] [CrossRef]
- Jain, A.; Baluja, K.L. Total (elastic plus inelastic) cross sections for electron scattering from diatomic and polyatomic molecules at 10–5000 eV: H2, Li2, HF, CH4, N2, CO, C2H2, HCN, O2, HCl, H2S, PH3, SiH4, and CO2. Phys. Rev. A 1992, 45, 202–218. [Google Scholar] [CrossRef] [PubMed]
- Brigg, W.J.; Harvey, A.G.; Dzarasova, A.; Mohr, S.; Brambila, D.S.; Morales, F.; Smirnova, O.; Tennyson, J. Calculated photoionization cross sections using Quantemol-N. Jpn. J. Appl. Phys. 2015, 54, 06GA02. [Google Scholar] [CrossRef] [Green Version]
- Mašín, Z.; Benda, J.; Gorfinkiel, J.D. GBTOlib: A library for evaluation of molecular integrals in the basis of multicentric Gaussian and single-centre B-spline orbitals. In preparation.
- Faure, A.; Gorfinkiel, J.D.; Morgan, L.A.; Tennyson, J. GTOBAS for fitting Gaussian Type Orbitals to Bessel and Coulomb functions. Comput. Phys. Commun. 2002, 144, 224–241. [Google Scholar] [CrossRef]
- Bachau, H.; Cormier, E.; Decleva, P.; Hansen, J.E.; Martin, F. Applications of B-splines in atomic and molecular physics. Rep. Prog. Phys. 2001, 64, 1815–1943. [Google Scholar] [CrossRef]
- Darby-Lewis, D.; Mašín, Z.; Tennyson, J. R-Matrix Calculations of electron-impact electronic excitation of BeH. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 175201. [Google Scholar] [CrossRef]
- Loupas, A.; Gorfinkiel, J.D. Shape and core-excited resonances in electron scattering from alanine. J. Chem. Phys. 2019, 150, 064307. [Google Scholar] [CrossRef]
- Al-Refaie, A.F.; Tennyson, J. A parallel algorithm for Hamiltonian matrix construction in electron-molecule collision calculations: MPI-SCATCI. Comput. Phys. Commun. 2017, 214, 216–224. [Google Scholar] [CrossRef]
- Schaftenaar, G.; Noordik, J.H. Molden: A pre- and post-processing program for molecular and electronic structures. J. Comput.-Aided Mol. Des. 2000, 14, 123–134. [Google Scholar] [CrossRef]
- Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. Molpro: A general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2012, 2, 242–253. [Google Scholar] [CrossRef]
- Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; et al. MOLPRO, Version 2019.2, a Package of ab Initio Programs. 2019. Available online: https://www.molpro.net (accessed on 14 October 2019).
- Gorfinkiel, J.D.; Tennyson, J. Electron- collisions at intermediate energies. J. Phys. B At. Mol. Opt. Phys. 2004, 37, L343–L350. [Google Scholar] [CrossRef]
- Gorfinkiel, J.D.; Tennyson, J. Electron impact ionisation of small molecules at intermediate energies: The R-matrix with pseudostates method. J. Phys. B At. Mol. Opt. Phys. 2005, 38, 1607–1622. [Google Scholar] [CrossRef]
- Jones, M.; Tennyson, J. On the use of pseudostates to calculate molecular polarizabilities. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 045101. [Google Scholar] [CrossRef]
- Zhang, R.; Galiatsatos, P.G.; Tennyson, J. Positron collisions with acetylene calculated using the R-matrix with pseudo-states method. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 195203. [Google Scholar] [CrossRef]
- Morgan, L.A. A generalized R-matrix propagation program for solving coupled 2nd-order differential-equations. Comput. Phys. Commun. 1984, 31, 419–422. [Google Scholar] [CrossRef]
- Gailitis, M. New forms of asymptotic expansions for wavefunctions of charged-particle scattering. J. Phys. B At. Mol. Opt. Phys. 1976, 9, 843. [Google Scholar] [CrossRef]
- Noble, C.J.; Nesbet, R.K. CFASYM, a program for the calculation of the asymptotic solutions of the coupled equations of electron collision-theory. Comput. Phys. Commun. 1984, 33, 399. [Google Scholar] [CrossRef]
- Tennyson, J.; Noble, C.J. RESON: For the automatic detection and fitting of Breit-Wigner resonances. Comput. Phys. Commun. 1984, 33, 421–424. [Google Scholar] [CrossRef]
- Norcross, D.W.; Padial, N.T. The Multipole-Extracted Adiabatic-Nuclei Approximation for Electron-Molecule collisions. Phys. Rev. A 1982, 25, 226–338. [Google Scholar] [CrossRef]
- Baluja, K.L.; Mason, N.J.; Morgan, L.A.; Tennyson, J. Electron scattering from ClO using the R-matrix method. J. Phys. B At. Mol. Opt. Phys. 2000, 33, L677–L684. [Google Scholar] [CrossRef]
- Hamilton, J.R.; Faure, A.; Tennyson, J. Electron-impact excitation of diatomic hydride cations: HeH+, CH+, ArH+. Mon. Not. R. Astron. Soc. 2016, 455, 3281–3287. [Google Scholar] [CrossRef]
- Brigg, W.J.; Tennyson, J.; Plummer, M. R-Matrix calculations of low-energy electron collisions with Methane. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 185203. [Google Scholar] [CrossRef]
- Fonseca dos Santos, S.; Douguet, N.; Kokoouline, V.; Orel, A.E. Scattering matrix approach to the dissociative recombination of HCO+ and N2H+. J. Chem. Phys. 2014, 140, 164308. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooper, B.; Tudorovskaya, M.; Mohr, S.; O’Hare, A.; Hanicinec, M.; Dzarasova, A.; Gorfinkiel, J.D.; Benda, J.; Mašín, Z.; Al-Refaie, A.F.; et al. Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-Matrix Method. Atoms 2019, 7, 97. https://doi.org/10.3390/atoms7040097
Cooper B, Tudorovskaya M, Mohr S, O’Hare A, Hanicinec M, Dzarasova A, Gorfinkiel JD, Benda J, Mašín Z, Al-Refaie AF, et al. Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-Matrix Method. Atoms. 2019; 7(4):97. https://doi.org/10.3390/atoms7040097
Chicago/Turabian StyleCooper, Bridgette, Maria Tudorovskaya, Sebastian Mohr, Aran O’Hare, Martin Hanicinec, Anna Dzarasova, Jimena D. Gorfinkiel, Jakub Benda, Zdeněk Mašín, Ahmed F. Al-Refaie, and et al. 2019. "Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-Matrix Method" Atoms 7, no. 4: 97. https://doi.org/10.3390/atoms7040097
APA StyleCooper, B., Tudorovskaya, M., Mohr, S., O’Hare, A., Hanicinec, M., Dzarasova, A., Gorfinkiel, J. D., Benda, J., Mašín, Z., Al-Refaie, A. F., Knowles, P. J., & Tennyson, J. (2019). Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-Matrix Method. Atoms, 7(4), 97. https://doi.org/10.3390/atoms7040097