Atomic Databases: Four of a Kind
Abstract
:1. Introduction
2. Atomic Database for Nebular Modeling
- The development of an atomic database must address the needs of prospective users;
- The publication of the database has to be timely;
- The compilation must become standard reference.
3. TIPTOPbase
4. OPserver
5. AtomPy
6. Discussion
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADS | Astrophysics Data System |
API | Application Programming Interface |
DBMS | Database Management System |
CeCalCULA | Centro de Cálculo Científico Universidad de Los Andes |
CDS | Centre de Données astronomiques de Strasbourg |
CPU | Central Processing Unit |
FITS | Flexible Image Transport System |
IAU | International Astronomical Union |
ICT | Information and Communications Technologies |
IDL | Interactive Data Language, a product of Harris Geospatial Solutions |
IP | Iron Project |
NBS | National Bureau of Standards |
NIST | National Institute of Standards and Technology |
OP | Opacity Project |
OPAL | Opacities at Livermore |
OSC | Ohio Supercomputer Center |
OSU | Ohio State University |
REST | Representational State Transfer |
SDSS | Sloan Digital Sky Survey |
SGI | Silicon Graphics Inc. |
SOAP | Simple Object Access Protocol |
UCL | University College London |
VAMDC | Virtual Atomic and Molecular Data Center |
XSAMS | XML Schema for Atomic, Molecular and Solid Data |
References
- Hey, T.; Tansley, S.; Tolle, K. The Fourth Paradigm: Data-Intensive Scientific Discovery; Microsoft Research: Redmont, WA, USA, 2009. [Google Scholar]
- Bell, G.; Hey, T.; Szalay, A. Beyond the Data Deluge. Science 2009, 323, 1297–1298. [Google Scholar] [CrossRef]
- Garstang, R.H. Transition Probabilities for Forbidden Lines. In Planetary Nebulae; Osterbrock, D.E., O’dell, C.R., Eds.; IAU Symposium; Reidel: Dordrecht, The Netherlands, 1968; Volume 34, p. 143. [Google Scholar]
- Czyzak, S.J.; Krueger, T.K. Forbidden transition probabilities for some P, S, CI and A ions. Mon. Not. R. Astron. Soc. 1963, 126, 177. [Google Scholar] [CrossRef] [Green Version]
- Malville, J.M.; Berger, R.A. Transition probabilities in highly ionized p2 and p4 configurations. Planet. Space Sci. 1965, 13, 1131–1136. [Google Scholar] [CrossRef]
- Laughlin, C.; Victor, G.A. Multiplet Splittings and 1S0-3P1 Intercombination-Line Oscillator Strengths in Be i and Mg i. Astrophys. J. 1974, 192, 551–556. [Google Scholar] [CrossRef]
- Osterbrock, D.E. Astrophysics of Gaseous Nebulae; Freeman: San Francisco, CA, USA, 1974. [Google Scholar]
- Eissner, W.; Jones, M.; Nussbaumer, H. Techniques for the calculation of atomic structures and radiative data including relativistic corrections. Comput. Phys. Commun. 1974, 8, 270–306. [Google Scholar] [CrossRef]
- Hibbert, A. CIV3—A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths. Comput. Phys. Commun. 1975, 9, 141–172. [Google Scholar] [CrossRef]
- Grant, I.P.; McKenzie, B.J.; Norrington, P.H.; Mayers, D.F.; Pyper, N.C. An atomic multiconfigurational Dirac-Fock package. Comput. Phys. Commun. 1980, 21, 207–231. [Google Scholar] [CrossRef]
- Burke, P.G.; Hibbert, A.; Robb, W.D. Electron scattering by complex atoms. J. Phys. B At. Mol. Phys. 1971, 4, 153–161. [Google Scholar] [CrossRef]
- Smith, E.R.; Henry, R.J. Noniterative Integral-Equation Approach to Scattering Problems. Phys. Rev. A 1973, 7, 1585–1590. [Google Scholar] [CrossRef] [Green Version]
- Seaton, M.J. Close coupling. Comput. Phys. Commun. 1973, 6, 247–256. [Google Scholar] [CrossRef]
- Seaton, M.J. Computer programs for the calculation of electron-atom collision cross sections. II. A numerical method for solving the coupled integro-differential equations. J. Phys. B At. Mol. Phys. 1974, 7, 1817–1840. [Google Scholar] [CrossRef]
- Mendoza, C. Recent advances in atomic calculations and experiments of interest in the study of planetary nebulae. In Planetary Nebulae; Aller, L.H., Ed.; IAU Symposium; Reidel: Dordrecht, The Netherlands, 1983; Volume 103, pp. 143–172. [Google Scholar]
- Aller, L.H. Physics of Thermal Gaseous Nebulae; Reidel: Dordrecht, The Netherlands, 1984. [Google Scholar] [CrossRef]
- Mendoza, C. Atomic Databases. In Atomic Data Needs for X-ray Astronomy; Bautista, M.A., Kallman, T.R., Pradhan, A.K., Eds.; National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 2000; p. 167. [Google Scholar]
- Pradhan, A.K.; Gallagher, J.W. Atomic data for electron-impact excitation of ions. In Atomic Data Workshop: Low Energy Collision Theory Techniques for Atomic Excititation and Radiative Data; Eissner, W.B., Ed.; Daresbury Laboratory: Daresbury, Warrington, UK, 1986; DL/SCI/R24; p. 13. [Google Scholar]
- Pradhan, A. Atomic Data for the Analysis of Emission Lines. In The Analysis of Emission Lines: A Meeting in Honor of the 70th Birthdays of D. E. Osterbrock & M. J. Seaton; Williams, R., Livio, M., Eds.; Cambridge University Press: New York, NY, USA, 1995; p. 8. [Google Scholar]
- Badnell, N.R.; Bautista, M.A.; Berrington, K.A.; Burke, V.M.; Butler, K.; Galavís, M.E.; Graziani, M.; Griffin, D.C.; Lennon, D.J.; Mendoza, C.; et al. Iron Project: Atomic data for IR lines. In Planetary Nebulae in our Galaxy and Beyond; Barlow, M.J., Méndez, R.H., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 234, pp. 211–218. [Google Scholar] [CrossRef] [Green Version]
- Dere, K.P.; Landi, E.; Mason, H.E.; Monsignori Fossi, B.C.; Young, P.R. CHIANTI—An atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 1997, 125, 149–173. [Google Scholar] [CrossRef] [Green Version]
- Dere, K.P.; Del Zanna, G.; Young, P.R.; Landi, E.; Sutherland, R.S. CHIANTI—An Atomic Database for Emission Lines. XV. Version 9, Improvements for the X-ray Satellite Lines. Astrophys. J. Suppl. Ser. 2019, 241, 22. [Google Scholar] [CrossRef] [Green Version]
- Simon, N.R. A plea for reexamining heavy element opacities in stars. Astrophys. J. 1982, 260, L87–L90. [Google Scholar] [CrossRef]
- Mendoza, C. Computation of Atomic Astrophysical Opacities. Atoms 2018, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Seaton, M.J.; Zeippen, C.J.; Tully, J.A.; Pradhan, A.K.; Mendoza, C.; Hibbert, A.; Berrington, K.A. The Opacity Project—Computation of Atomic Data. Rev. Mex. Astron. Astrofis. 1992, 23, 19. [Google Scholar]
- Lynas-Gray, A.E.; Seaton, M.J.; Storey, P.J. Atomic data for opacity calculations: XXII. Computations for 2472790 multiplet gf-values in Fe VIII to Fe XIII. J. Phys. B At. Mol. Phys. 1995, 28, 2817–2827. [Google Scholar] [CrossRef]
- Seaton, M.J. The Opacity Project; Institute of Physics Publishing: Bristol, UK, 1995. [Google Scholar]
- Cunto, W.; Mendoza, C. The Opacity Project—The Topbase Atomic Database. Rev. Mex. Astron. Astrofis. 1992, 23, 107. [Google Scholar]
- Cunto, W.; Mendoza, C.; Ochsenbein, F.; Zeippen, C.J. TOPbase at the CDS. Astron. Astrophys. 1993, 275, L5–L8. [Google Scholar]
- Dubernet, M.L.; Boudon, V.; Culhane, J.L.; Dimitrijevic, M.S.; Fazliev, A.Z.; Joblin, C.; Kupka, F.; Leto, G.; Le Sidaner, P.; Loboda, P.A.; et al. Virtual atomic and molecular data centre. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2151–2159. [Google Scholar] [CrossRef] [Green Version]
- Dubernet, M.L.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bartschat, K.; Boudon, V.; Braams, B.J.; Chung, H.K.; Daniel, F.; Delahaye, F.; et al. The virtual atomic and molecular data centre (VAMDC) consortium. J. Phys. B At. Mol. Phys. 2016, 49, 074003. [Google Scholar] [CrossRef]
- Hummer, D.G.; Berrington, K.A.; Eissner, W.; Pradhan, A.K.; Saraph, H.E.; Tully, J.A. Atomic data from the IRON project. I. Goals and methods. Astron. Astrophys. 1993, 279, 298–309. [Google Scholar]
- Mendoza, C.; Seaton, M.J.; Buerger, P.; Bellorín, A.; Meléndez, M.; González, J.; Rodríguez, L.S.; Delahaye, F.; Palacios, E.; Pradhan, A.K.; et al. OPserver: Interactive online computations of opacities and radiative accelerations. Mon. Not. R. Astron. Soc. 2007, 378, 1031–1035. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, C.; Boswell, J.S.; Ajoku, D.C.; Bautista, M.A. AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications. Atoms 2014, 2, 123–156. [Google Scholar] [CrossRef] [Green Version]
- Wiese, W.L.; Smith, M.W.; Glennon, B.M. Atomic Transition Probabilities. Vol. I: Hydrogen through Neon. A Critical Data Compilation; US Goverment Printing Office: Washington, DC, USA, 1966.
- Wiese, W.L.; Smith, M.W.; Miles, B.M. Atomic Transition Probabilities. Vol. II: Sodium through Calcium. A Critical Data Compilation; US Goverment Printing Office: Washington, DC, USA, 1969.
- Smith, M.W.; Wiese, W.L. Atomic Transition Probabilities for Forbidden Lines of the Iron Group Elements: (A Critical Data Compilation for Selected Lines). J. Phys. Chem. Ref. Data 1973, 2, 85–120. [Google Scholar] [CrossRef]
- Wiese, W.L.; Fuhr, J.R. Atomic transition probabilities for scandium and titanium (A critical data compilation of allowed lines). J. Phys. Chem. Ref. Data 1975, 4, 263–352. [Google Scholar] [CrossRef]
- Martin, G.A.; Wiese, W.L. Tables of critically evaluated oscillator strengths for the lithium isoelectronic sequence. J. Phys. Chem. Ref. Data 1976, 5, 537–570. [Google Scholar] [CrossRef] [Green Version]
- Younger, S.M.; Fuhr, J.R.; Martin, G.A.; Wiese, W.L. Atomic transition probabilities for vanadium, chromium, and manganese (a critical data compilation of allowed lines). J. Phys. Chem. Ref. Data 1978, 7, 495–629. [Google Scholar] [CrossRef] [Green Version]
- Konjević, N.; Dimitrijević, M.S.; Wiese, W.L. Experimental Stark Widths and Shifts for Spectral Lines of Neutral Atoms (A Critical Review of Selected Data for the Period 1976 to 1982). J. Phys. Chem. Ref. Data 1984, 13, 619–647. [Google Scholar] [CrossRef] [Green Version]
- Wiese, W.L. Progress and challenges in the determination of atomic transition probabilities. Phys. Scr. 1987, 35, 846–850. [Google Scholar] [CrossRef]
- Phaneuf, R.A.; Defrance, P.; Griffin, D.C.; Hahn, Y.; Pindzola, M.S.; Roszman, L.; Wiese, W.L. Review of Spectroscopic and Electron-Impact Collision Data Base for Cq+ and Oq+ Ions. Phys. Scr. 1989, 28, 5–7. [Google Scholar] [CrossRef]
- Wiese, W.L. The Spectroscopic Data Base for Carbon and Oxygen. Phys. Scr. 1989, 28, 10–11. [Google Scholar] [CrossRef]
- Wiese, W.L.; Fuhr, J.R. On the Accuracy of Atomic Transition Probabilities. In Accuracy of Element Abundances from Stellar Atmospheres; Wehrse, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1990; Volume 356, pp. 7–18. [Google Scholar] [CrossRef]
- Wiese, W.L.; Konjevic, N. A new critical review of experimental Stark widths and shifts. In AIP Conference Proceedings; Frommhold, L., Keto, J.W., Eds.; American Institute of Physics: University Park City, MD, USA, 1990; Volume 216, pp. 63–64. [Google Scholar] [CrossRef]
- Wiese, W.L.; Fuhr, J.R.; Martin, W.C.; Musgrove, A.; Sugar, J. Spectroscopic data tables for highly ionized atoms. Z. Phys. D 1991, 21, S147–S148. [Google Scholar] [CrossRef]
- Wiese, W.L.; Fuhr, J.R.; Kelleher, D.E.; Martin, W.C.; Musgrove, A.; Sugar, J. Critically Evaluated Data for Atomic Spectra. In Astrophysical Applications of Powerful New Databases; Adelman, S.J., Wiese, W.L., Eds.; ASP Conf. Ser.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1995; Volume 78, p. 105. [Google Scholar]
- Wiese, W.L. The critical assessment of atomic oscillator strengths. Phys. Scr. 1996, 65, 188–191. [Google Scholar] [CrossRef]
- Wiese, W.L.; Fuhr, J.R.; Deters, T.M. Atomic Transition Probabilities of Carbon, Nitrogen, and Oxygen: A Critical Data Compilation; AIP Press: Melville, NY, USA, 1996. [Google Scholar]
- Wiese, W.L. A new reference data table for carbon, nitrogen and oxygen spectra. Spectrochim. Acta 1996, 51, 775–777. [Google Scholar] [CrossRef]
- Wiese, W.L.; Kelleher, D.E. The critical assessment of atomic transition probabilities. In AIP Conference Proceedings; Mohr, P.J., Wiese, W.L., Eds.; American Institute of Physics: University Park City, MD, USA, 1998; Volume 434, pp. 105–118. [Google Scholar] [CrossRef]
- Wiese, W.L. Critically assessed tables of atomic spectroscopy data. In Tellar Evolution, Stellar Explosions, and Galactic Chemical Evolution, Proceedings of the Second Oak Ridge Symposium on Atomic and Nuclear Astrophysics, Oak Ridge, Tennessee, 2–6 December 1997; Mezzacappa, A., Ed.; CRC Press: Boca Raton, FL, USA, 1998; p. 59. [Google Scholar]
- Kelleher, D.E.; Wiese, W.L.; Fuhr, J.R.; Podobedova, L.I. Critical Evaluation and Compilation of Atomic Transition Probability Data Relevant to Space Astronomy; Laboratory Space Science Workshop, Harvard-Smithosonian Center for Astrophysics: Cambridge, MA, USA, 1998; p. 97. [Google Scholar]
- Konjevic, N.; Lesage, A.; Fuhr, J.R.; Wiese, W.L. A new critical review of experimental Stark widths and shifts. In AIP Conference Proceedings; Seidel, J., Ed.; American Institute of Physics: University Park City, MD, USA, 2001; Volume 11, pp. 126–128. [Google Scholar] [CrossRef]
- Klose, J.Z.; Fuhr, J.R.; Wiese, W.L. Critically Evaluated Atomic Transition Probabilities for Ba I and Ba II. J. Phys. Chem. Ref. Data 2002, 31, 217–230. [Google Scholar] [CrossRef]
- Konjević, N.; Lesage, A.; Fuhr, J.R.; Wiese, W.L. Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of Selected Data for the Period 1989 Through 2000). J. Phys. Chem. Ref. Data 2002, 31, 819–927. [Google Scholar] [CrossRef]
- Podobedova, L.I.; Musgrove, A.; Kelleher, D.E.; Reader, J.; Wiese, W.L. Atomic Spectral Tables for the Chandra X-ray Observatory. Part I S VIII-S XIV. J. Phys. Chem. Ref. Data 2003, 32, 1367. [Google Scholar] [CrossRef]
- Podobedova, L.I.; Kelleher, D.E.; Reader, J.; Wiese, W.L. Atomic Spectral Tables for the Chandra X-ray Observatory. Part II. Si VI-Si XII. J. Phys. Chem. Ref. Data 2004, 33, 471. [Google Scholar] [CrossRef]
- Podobedova, L.I.; Kelleher, D.E.; Reader, J.; Wiese, W.L. Atomic Spectral Tables for the Chandra X-ray Observatory. Part III. Mg v-Mg x. J. Phys. Chem. Ref. Data 2004, 33, 495. [Google Scholar] [CrossRef] [Green Version]
- Podobedova, L.I.; Fuhr, J.R.; Reader, J.; Wiese, W.L. Atomic Spectral Tables for the Chandra X-ray Observatory. Part IV. Ne v-Ne VIII. J. Phys. Chem. Ref. Data 2004, 33, 525. [Google Scholar] [CrossRef]
- Fuhr, J.R.; Wiese, W.L. A Critical Compilation of Atomic Transition Probabilities for Neutral and Singly Ionized Iron. J. Phys. Chem. Ref. Data 2006, 35, 1669–1809. [Google Scholar] [CrossRef] [Green Version]
- Wiese, W.L.; Fuhr, J.R. Improved Critical Compilations of Selected Atomic Transition Probabilities for Neutral and Singly Ionized Carbon and Nitrogen. J. Phys. Chem. Ref. Data 2007, 36, 1287–1345. [Google Scholar] [CrossRef] [Green Version]
- Podobedova, L.I.; Kelleher, D.E.; Wiese, W.L. Critically Evaluated Atomic Transition Probabilities for Sulfur S I-S XV. J. Phys. Chem. Ref. Data 2009, 38, 171–439. [Google Scholar] [CrossRef]
- Wiese, W.L.; Fuhr, J.R. Accurate Atomic Transition Probabilities for Hydrogen, Helium, and Lithium. J. Phys. Chem. Ref. Data 2009, 38, 565–720. [Google Scholar] [CrossRef] [Green Version]
- Ferland, G.J.; Chatzikos, M.; Guzmán, F.; Lykins, M.L.; van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Badnell, N.R.; Keenan, F.P.; Porter, R.L.; et al. The 2017 Release Cloudy. Rev. Mex. Astron. Astrofis. 2017, 53, 385–438. [Google Scholar]
1. | |
2. | |
3. | |
4. | |
5. | |
6. | |
7. | |
8. | |
9. | |
10. | |
11. | |
12. | |
13. | |
14. | |
15. | |
16. | |
17. | |
18. | |
19. | |
20. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, C. Atomic Databases: Four of a Kind. Atoms 2020, 8, 30. https://doi.org/10.3390/atoms8020030
Mendoza C. Atomic Databases: Four of a Kind. Atoms. 2020; 8(2):30. https://doi.org/10.3390/atoms8020030
Chicago/Turabian StyleMendoza, Claudio. 2020. "Atomic Databases: Four of a Kind" Atoms 8, no. 2: 30. https://doi.org/10.3390/atoms8020030
APA StyleMendoza, C. (2020). Atomic Databases: Four of a Kind. Atoms, 8(2), 30. https://doi.org/10.3390/atoms8020030