The Spectroscopic Atomic and Molecular Databases at the Paris Observatory
Abstract
:1. Introduction
2. STARK-B
2.1. Description of STARK-B Database
2.2. Future and Conclusions
3. MOLAT and SESAM
3.1. MOLAT
3.1.1. CO
- The spectrum from the intersystem transitions of CO, involving a’ -X, e -X and d-X is reported in [18]. The corresponding transitions take place in the ∼ 1250–1650 Å window, where the so-called fourth positive system A-X transitions are also available but are often subject to large opacity effects in absorption astronomical spectra.
- The VUV spectrum between 911.2 and 1152.2 Å of CO and different isotopomers is also displayed, following [19]. These transitions involve 31 different electronic states and are sometimes subject to predissociation, resulting from the numerous possible couplings between nearby electronic states. These results are of paramount importance to computing photodissociation of CO under interstellar conditions and possible isotopic selective photodissociation effects.
3.1.2. H VUV Spectrum
3.2. SESAM
4. Interoperability
4.1. VAMDC Environment
4.2. Implementation on the Databases
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASCII | American Standard Code for Information Interchange |
FUSE | Far Ultraviolet Space Explorer |
GHRS | Goddard High Resolution Spectrograph |
HST | Hubble Space Telescope |
ITER | the Way in latin |
IUE | International Ultraviolet Explorer |
LERMA | Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique |
LURE | Laboratoire d’Utilisation du Rayonnement Electromagnétique |
MSE | Modified Semi- Empirical code |
NIF | National Ignition Facility |
SCP | Semi-Classical Perturbation code |
SESAM | SpEctroScopic Atomic and Molecular database |
VAMDC | Virtual Atomic and Molecular Data Center |
VUV | Vacuum Ultra Violet |
WEST | Tungsten (W) Environment in Steady-state Tokamak |
XML | Extensible Markup Language |
XSAMS | XML Schema for Atomic, Molecular and Solid Data |
Appendix A. STARK-B Service Queryable and Returnable Quantities
Returnables | Restrictables |
---|---|
EnvironmentTotalNumberDensity | EnvironmentTotalNumberDensity |
AtomStateTermLSL | InchiKey |
AtomSpeciesID | RadTransWavelength |
AtomStateTermJKS | EnvironmentTemperature |
NodeID | AtomSymbol |
AtomNuclearCharge | IonCharge |
RadTransBroadeningPressureLineshapeParameterUnit | |
AtomStateTermJKK | |
AtomSymbol | |
AtomStateTermLSS | |
AtomInchiKey | |
RadTransBroadeningPressure | |
RadTransWavelengthUnit | |
AtomStateRef | |
AtomStateParity | |
EnvironmentTotalNumberDensityUnit | |
EnvironmentTemperatureUnit | |
RadTransUpperStateRef | |
SourceURI | |
AtomStateTermLSMultiplicity | |
SourceName | |
SourceYear | |
AtomIonCharge | |
SourceCategory | |
RadTransShiftingEnv | |
EnvironmentSpeciesName | |
RadTransBroadeningPressureEnvironment | |
EnvironmentID | |
RadTransWavelength | |
ParticleSpeciesID | |
RadTransSpeciesRef | |
SourceAuthorName | |
AtomStateTermLabel | |
RadTransID | |
EnvironmentSpeciesRef | |
AtomStateTotalAngMom | |
RadTransBroadeningPressureLineshapeParameterComment | |
AtomMassNumber | |
SourceVolume | |
RadTransBroadeningPressureLineshapeParameter | |
RadTransRefs | |
RadTransShiftingParamName | |
SourceTitle | |
AtomInchi | |
RadTransShiftingParam | |
RadTransShiftingParamUnit | |
EnvironmentTemperature | |
SourceID | |
AtomStateTermJKJ | |
AtomStateID | |
ParticleName | |
RadTransBroadeningPressureLineshapeParameterName | |
AtomStateConfigurationLabel | |
RadTransBroadeningPressureLineshapeName | |
RadTransShiftingName | |
RadTransLowerStateRef |
Appendix B. SESAM Service Queryable and Returnable Quantities
Returnables | Restrictables |
---|---|
MoleculeQNSpinComponentLabel | InchiKey |
RadTransID | RadTransWavenumber |
SourceDOI | RadTransWavelength |
MoleculeQNr | RadTransProbabilityOscillatorStrength |
MoleculeStateID | MoleculeStoichiometricFormula |
MoleculeInchiKey | MoleculeChemicalName |
MoleculeQNv | StateEnergy |
RadTransWavelength | RadTransProbabilityA |
MoleculeOrdinaryStructuralFormula | |
MoleculeQNelecInv | |
RadTransWavelengthUnit | |
RadTransWavenumberMethod | |
MoleculeQnCase | |
RadTransUpperStateRef | |
MoleculeQNF | |
SourceID | |
MoleculeQNJ | |
MoleculeQNasSym | |
MoleculeQNN | |
MoleculeStoichiometricFormula | |
MoleculeQNS | |
RadTransWavenumberUnit | |
SourceCategory | |
MoleculeStateTotalStatisticalWeight | |
MoleculeQNLambda | |
RadTransProbabilityA | |
MoleculeInchi | |
MethodCategory | |
MethodID | |
RadTransSpeciesRef | |
SourceAuthorName | |
RadTransProbabilityOscillatorStrength | |
RadTransProbabilityAUnit | |
SourceVolume | |
RadTransRefs | |
MoleculeQNparity | |
RadTransWavenumber | |
MoleculeQNelecRefl | |
MoleculeStateEnergyOrigin | |
NodeID | |
MoleculeStateEnergyUnit | |
SourceYear | |
MoleculeQNKronigParity | |
MoleculeStateEnergy | |
SourceURI | |
MoleculeSpeciesID | |
RadTransWavenumberComment | |
MoleculeChemicalName | |
MoleculeQNF1 | |
MoleculeQNElecStateLabel | |
RadTransLowerStateRef |
References
- IAU XXII General Assembly -The Hague 1994. Available online: https://www.iau.org/static/publications/ga_newspapers/19940816.pdf (accessed on 14 July 2020).
- Sahal-Bréchot, S.; Dimitrijević, M.S.; Ben Nessib, N. Widths and shifts of isolated lines of neutral and ionized atoms perturbed by collisions with electrons and ions: An outline of the semiclassical perturbation (SCP) method and of the approximations used for the calculations. Atoms 2014, 2, 225–252. [Google Scholar] [CrossRef] [Green Version]
- Alexiou, S.; Dimitrijević, M.; Sahal-Bréchot, S.; Stambulchik, E.; Duan, B.; González, H.; Gigosos, M. The Second Workshop on Lineshape Code Comparison: Isolated Lines. Atoms 2014, 2, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Sahal-Bréchot, S.; Stambulchik, E.; Dimitrijević, M.S.; Alexiou, S.; Duan, B.; Bommier, V. The Third and Fourth Workshops on Spectral Line Shapes in Plasma Code Comparison: Isolated Lines. Atoms 2018, 6, 30–43. [Google Scholar]
- Elabidi, H.; Sahal-Bréchot, S.; Ben Nessib, N. Quantum Stark broadening of 3s-3p spectral lines in Li-like ions; Z-scaling and comparison with semi-classical perturbation theory. Eur. Phys. J. D 2009, 54, 51–64. [Google Scholar] [CrossRef]
- STARK-B. Available online: http://stark-b.obspm.fr (accessed on 15 April 2020).
- Milovanović, N.; Popović, L.Č.; Dimitrijević, M.S. BELDATA—The Database of Belgrade Astronomical Observatory. Balt. Astron. 2000, 9, 595–598. Available online: https://molat.obspm.fr/ (accessed on 8 July 2020). [CrossRef]
- SERBIAN VIRTUAL OBSERVATORY. Available online: http://servo.aob.rs// (accessed on 15 April 2020).
- Scientific Data Bases of the Paris Observatory. Available online: https://www.observatoiredeparis.psl.eu/-bases-de-donnees-scientifiques-.html?lang=en (accessed on 8 July 2020).
- MOLAT. Available online: https://molat.obspm.fr/ (accessed on 8 July 2020).
- VAMDC Consortium. Available online: http://www.vamdc.eu/ (accessed on 15 April 2020).
- VAMDC Portal. Available online: https://portal.vamdc.eu (accessed on 15 April 2020).
- Dimitrijević, M.S.; Konjević, N. Stark widths of doubly and triply-ionized atoms lines. J. Quant. Spectrosc. Radiat. Transf. 1980, 24, 451–549. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Kršljanin, V. Electron-impact shifts of ion lines: Modified semiempirical approach. Astron. Astrophys. 1986, 165, 269–274. [Google Scholar]
- Dimitrijević, M.S.; Popović, L.Č. Modified SemiEmpirical Method. J. Appl. Spectr. 2001, 68, 893–901. [Google Scholar] [CrossRef]
- Sahal-Bréchot, S.; Dimitrijević, M.S.; Ben Nessib, N. Comparison and comments on electron and ion impact profiles on spectral lines. Balt. Astron. 2011, 20, 523–530. [Google Scholar] [CrossRef] [Green Version]
- SESAM. Available online: https://sesam.obspm.fr/ (accessed on 14 July 2020).
- Eidelsberg, M.; Rostas, F. An Atlas of the Intersystem Transitions of CO. Astrophys. J. Suppl. 2003, 145, 89–109. [Google Scholar] [CrossRef]
- Eidelsberg, M.; Viala, Y.; Rostas, F.; Benayoun, J.J. Atlas of the absorption/dissociation spectra of CO and its isotopes between 91.2 nm and 115.2 nm. Astron. Astrophys. Suppl. Ser. 1991, 90, 231–282. [Google Scholar]
- Abgrall, H.; Launay, F.; Roueff, E.; Roncin, J.Y. Effect of rotational coupling on emission probabilities of Lyman and Werner band systems of the vacuum ultraviolet spectrum of H2. J. Chem. Phys. 1987, 87, 2036–2044. [Google Scholar] [CrossRef]
- Abgrall, H.; Roueff, E.; Liu, X.; Shemansky, D.E. The Emission Continuum of Electron-excited Molecular Hydrogen. Astrophys. J. 1997, 481, 557–566. [Google Scholar] [CrossRef]
- Rachford, B.L.; Snow, T.P.; Tumlinson, J.; Shull, J.M.; Roueff, E.; Andre, M.; Desert, J.M.; Ferlet, R.; Vidal-Madjar, A.; York, D.G. Far Ultraviolet Spectroscopic Explorer Observations of Molecular Hydrogen in Translucent Interstellar Clouds. II. The Line of Sight toward HD 110432. Astrophys. J. 2001, 555, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Ingleby, L.; Calvet, N.; Bergin, E.; Yerasi, A.; Espaillat, C.; Herczeg, G.; Roueff, E.; Abgrall, H.; Hernández, J.; Briceño, C.; et al. Far-Ultraviolet H2 Emission from Circumstellar Disks. Astrophys. J. Lett. 2009, 703, L137–L141. [Google Scholar] [CrossRef] [Green Version]
- Ingleby, L.; Calvet, N.; Bergin, E.; Herczeg, G.; Brown, A.; Alexander, R.; Edwards, S.; Espaillat, C.; France, K.; Gregory, S.G.; et al. Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission. Astrophys. J. 2011, 743, 105. [Google Scholar] [CrossRef]
- France, K.; Roueff, E.; Abgrall, H. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation. Astrophys. J. 2017, 844, 169. [Google Scholar] [CrossRef] [Green Version]
- Barthélemy, M.; Lamy, L.; Menager, H.; Schulik, M.; Bernard, D.; Abgrall, H.; Roueff, E.; Cessateur, G.; Prange, R.; Lilensten, J. Dayglow and auroral emissions of Uranus in H2 FUV bands. Icarus 2014, 239, 160–167. [Google Scholar] [CrossRef]
- Gustin, J.; Feldman, P.D.; Gérard, J.C.; Grodent, D.; Vidal-Madjar, A.; Ben Jaffel, L.; Desert, J.M.; Moos, H.W.; Sahnow, D.J.; Weaver, H.A.; et al. Jovian auroral spectroscopy with FUSE: Analysis of self-absorption and implications for electron precipitation. Icarus 2004, 171, 336–355. [Google Scholar] [CrossRef] [Green Version]
- Abgrall, H.; Roueff, E.; Launay, F.; Roncin, J.Y. The B’1Σu+ - X1Σg+ and D1Πu+ - X1Σg+ band systems of molecular hydrogen. Can. J. Phys. 1994, 72, 856. [Google Scholar] [CrossRef]
- Dabrowski, I. The Lyman and Werner bands of H2. Can. J. Phys. 1984, 62, 1639. [Google Scholar] [CrossRef]
- Wolniewicz, L.; Dressler, K. The B1, B’1, C1Πu, and D 1Πu states of the H2 molecule. Matrix elements of angular and radial nonadiabatic coupling and improved ab initio potential energy curves. J. Chem. 1988, 88, 3861–3870. [Google Scholar] [CrossRef]
- XSAMS. Available online: https://www-amdis.iaea.org/xsams/docu/xsams-0.1.1.pdf (accessed on 14 July 2020).
- Komasa, J.; Puchalski, M.; Czachorowski, P.; Łach, G.; Pachucki, K. Rovibrational energy levels of the hydrogen molecule through nonadiabatic perturbation theory. Phys. Rev. A 2019, 100, 032519. [Google Scholar] [CrossRef] [Green Version]
- Glass-Maujean, M.; Jungen, C.; Dickenson, G.D.; Ubachs, W.; de Oliveira, N.; Joyeux, D.; Nahon, L. VUV Fourier-Transform absorption study of the npπ1,v,N←X1,v” = 0,N” transitions in D2. J. Mol. Spectrosc. 2015, 315, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Niu, M.L.; Heays, A.N.; Jones, S.; Salumbides, E.J.; van Dishoeck, E.F.; De Oliveira, N.; Nahon, L.; Ubachs, W. VUV-synchrotron absorption studies of N2 and CO at 900 K. J. Mol. Spectrosc. 2015, 315, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Daprà, M.; Niu, M.L.; Salumbides, E.J.; Murphy, M.T.; Ubachs, W. Constraint on a Cosmological Variation in the Proton-to-electron Mass Ratio from Electronic CO Absorption. Astrophys. J. 2016, 826, 192. [Google Scholar] [CrossRef]
- Ubachs, W.; Salumbides, E.J.; Murphy, M.T.; Abgrall, H.; Roueff, E. H2/HD molecular data for analysis of quasar spectra in search of varying constants. Astron. Astrophys. 2019, 622, A127. [Google Scholar] [CrossRef] [Green Version]
- VAMDC XSAMS Standard Documentation. Available online: http://vamdc.eu/documents/standards/dataModel/vamdcxsams (accessed on 14 July 2020).
- VAMDC Node Software Documentation. Available online: http://www.vamdc.eu/documents/nodesoftware/intro.html (accessed on 14 July 2020).
- IVOA Registry 1.0. Available online: http://www.ivoa.net/documents/RegistryInterface/20091104/ (accessed on 14 July 2020).
- IUPAC INCHI Website. Available online: https://iupac.org/who-we-are/divisions/division-details/inchi/ (accessed on 14 July 2020).
1 | refer to the Abbreviations Section |
Molecule | Minimum Value | Maximum Value |
---|---|---|
H | 844.76 | 1844.57 |
HD | 747.33 | 1852.03 |
D | 745.15 | 1855.8 |
CO | 1173.16 | 1568.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roueff, E.; Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N.; Abgrall, H. The Spectroscopic Atomic and Molecular Databases at the Paris Observatory. Atoms 2020, 8, 36. https://doi.org/10.3390/atoms8030036
Roueff E, Sahal-Bréchot S, Dimitrijević MS, Moreau N, Abgrall H. The Spectroscopic Atomic and Molecular Databases at the Paris Observatory. Atoms. 2020; 8(3):36. https://doi.org/10.3390/atoms8030036
Chicago/Turabian StyleRoueff, Evelyne, Sylvie Sahal-Bréchot, Milan S. Dimitrijević, Nicolas Moreau, and Hervé Abgrall. 2020. "The Spectroscopic Atomic and Molecular Databases at the Paris Observatory" Atoms 8, no. 3: 36. https://doi.org/10.3390/atoms8030036
APA StyleRoueff, E., Sahal-Bréchot, S., Dimitrijević, M. S., Moreau, N., & Abgrall, H. (2020). The Spectroscopic Atomic and Molecular Databases at the Paris Observatory. Atoms, 8(3), 36. https://doi.org/10.3390/atoms8030036