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Abstract: We present a theoretical analysis of a charged-particle scattering by a Coulomb potential
in the presence of laser radiation. The effect of a laser field is studied using our recently
developed nonperturbative parabolic quasi-Sturmian approach for solving the system of coupled
Lippmann–Schwinger–Floquet equations in the Kramers–Henneberger frame. We calculate the ratio
of multiphoton differential cross sections to the Rutherford cross section in the case of a laser-assisted
electron-proton scattering process. Our results are compared with predictions of the Bunkin–Fedorov,
Kroll–Watson, and Coulomb–Volkov analytical approximations: marked discrepancies are found for
different net numbers of exchanged photons and different orientations of the laser-field polarization
vector. Our findings clearly demonstrate deficiencies of those well-known approximations for
describing laser-modified Rutherford scattering processes.
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1. Introduction

The Rutherford scattering, i.e., scattering of a charged particle in a Coulomb potential, is a
fundamental phenomenon in atomic physics that played a historical role in establishing the planetary
and, eventually, the Bohr model of the atom. This process is well understood in quantum mechanics:
a closed-form solution of the corresponding Schrödinger equation—the Coulomb scattering state—is
known exactly (see, e.g., the textbook [1]), and the angular differential cross section is given by the
famous Rutherford formula.

In contrast, the Rutherford scattering in the presence of a laser field is much less understood.
This largely owes to the fact that the Schrödinger equation for a charged particle moving in combined
Coulomb and laser fields does not have closed-form solutions. Within given approximations, valid in
certain conditions, analytical results can be obtained. Well known are the Bunkin–Fedorov approach [2],
the low-frequency approximation of Kroll and Watson [3], and the result based on the Coulomb–Volkov
function [4,5]. In the search for laser dressed atom effects, the Kroll–Watson approximation,
for example, resulted in being sufficient to explain the experimental data on laser-assisted elastic
electron scattering off neutral atoms (see, for instance, [6,7]). In a similar way, one might expect
that the main features of the laser-modified Rutherford scattering can also be described already by
means of one of these analytical descriptions and that more advanced methods, which are purely
numerical and free of approximations, bring about only minor corrections. In this work we show
that such an expectation is wrong: for a chosen set of physical parameters that could be envisaged
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in an experiment, the indicated approximations yield results which markedly differ from advanced
numerical calculations. For this purpose, we use our recently developed nonperturbative approach for
computing laser-modified Coulomb scattering states [8], which we already have successfully utilized in
the theoretical treatment of the laser-assisted (e, 2e) process of atomic hydrogen [9]. Our method makes
use of quasi-Sturmian (QS) basis functions [10] taken in parabolic coordinates to solve the system of
coupled Lippmann–Schwinger–Floquet equations in the Kramers–Henneberger representation [11].
Because of the adequate asymptotic behavior of the parabolic QS functions, from the obtained solution
one can easily extract the scattering amplitude for a given net number of exchanged photons.

The paper is organized as follows. In Section 2, we deliver a general formulation and outline the
basic features of our approach for calculating multiphoton cross sections of laser-modified Rutherford
scattering. The analytical results for the cross sections within the Bunkin–Fedorov, Kroll–Watson,
and Coulomb–Volkov approximations are also briefly recalled. In Section 3, we present and discuss
numerical calculations obtained with our nonperturbative QS approach in comparison with those
obtained using such customary approximations. The conclusions are drawn in Section 4. Atomic units
(a.u., h̄ = e = me = 1) are used throughout unless otherwise stated.

2. Theoretical Formulation

Without loss of generality, we will consider electron scattering in a Coulomb potential of a nucleus
in the presence of linearly polarized monochromatic laser radiation with the vector potential

A(t) = A0 cos ωt. (1)

The laser field of frequency ω is assumed to switch on adiabatically at t = −∞.
The electron dynamics are governed by the time-dependent Schrödinger equation

i
∂

∂t
Ψ(r, t) =

[
1
2

(
−i∇+

1
c

A(t)
)2

+ V(r)

]
Ψ(r, t), (2)

with the electron-nucleus Coulomb potential V(r) = −Z/r (the nucleus of charge Z > 0 is assumed
to be infinitely heavy as compared to the electron mass). In the accelerated, or space-translated,
Kramers–Henneberger frame [11], Equation (2) is transformed into

i
∂

∂t
ψ(r, t) =

(
−1

2
∆ + V[r + a(t)]

)
ψ(r, t), (3)

where

ψ(r, t) = exp

a(t) ·∇+
i

2c2

t∫
−∞

dt′A2(t′)

Ψ(r, t), (4)

and

a(t) =
1
c

t∫
−∞

dt′A(t′) = a0 sin ωt (5)

is the displacement vector of a classical electron, with a0 = A0/ωc called the quiver amplitude.
Within the Hermitian Floquet theory (see, e.g., [12]), one seeks the solution of Equation (3) in

the form

ψ(r, t) = e−iEt
∞

∑
`=−∞

e−i`ωtF`(E, r), (6)
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where E is a real quantity called the Floquet quasi-energy of the state. The harmonic components F`
satisfy an infinite set of time-independent equations:(

H` + Ṽ0(a0, r)− E
)

F`(E, r) + ∑
`′ 6=`

V`−`′(a0, r)F`′(E, r) = 0, ` = 0,±1,±2, . . . (7)

Here
H` = HC − `ω, HC = −1

2
∆− Z

r
, Ṽ0(a0, r) = V0(a0, r) +

Z
r

, (8)

and V` are the Fourier components of the space-translated Coulomb potential V[r + a(t)],

V`(a0, r) =
1
T

T∫
0

dt exp(i`ωt)V [r + a(t)] , (9)

where T = 2π/ω denotes the optical period.

2.1. The Parabolic QS Approach

Let us briefly outline our nonperturbative approach [8] that we employ to obtain differential cross
sections for the laser-modified electron-nucleus scattering. We express the Floquet components F` in
the form

F`(E, r) = F̃`(E, r) + δ`0ψ
(+)
C (r), (10)

where

ψ
(+)
C (r) =

e−
1
2 πβ

(2π)3/2 Γ(1 + iβ)eikr
1F1(−iβ, 1; i(kr− kr))

represents the electron state in the absence of a laser field, i.e., a Coulomb wave [1] describing
the incident electron of momentum k and characterized by the Sommerfeld parameter β = −Z/k.
The use of form (10) recasts the system of coupled Floquet equations (7) into a system of coupled
Lippmann–Schwinger–Floquet equations (see details in Ref. [8]). Further, introducing the parabolic
coordinates (ξ,η,φ) with the z axis directed along k,

x =
√

ξη cos φ, y =
√

ξη sin φ, z =
1
2
(ξ − η),

we employ for the components F̃` the expansion

F̃`(E, r) =
M

∑
m=−M

N−1

∑
n1,n2=0

C`
n1n2mQ(+)

n1n2m (k`; ξ, η, φ) . (11)

on the parabolic QS functions Q(+)
n1n2m subject to the appropriate boundary conditions as defined in

Ref. [10], and with momenta given by

k` =


√

2(E + `ω), E + `ω ≥ 0,

i
√
−2(E + `ω), E + `ω < 0.

(12)

Let β` = −Z/k` be the corresponding Sommerfeld parameter.
One representation of the QS functions is

Q(+)
n1n2m(k`; ξ, η, φ) =

eimφ

√
2π
P |m|n1n2(k`; ξ, η), (13)
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with the ‘radial’ part presented as

P |m|n1n2 (k`; ξ, η) =2(1 + ζ)

√
n1!n2!

(n1 + |m|)!(n2 + |m|)!

(
2b
√

ξη
)|m|

e−b(ξ+η)

×
1∫

0

ds (1− s)iβ`+|m| (1− ζs)−iβ`+|m| (1− s− ζs)n1+n2 exp
[

2b(ξ + η)
ζs

(1 + ζ)

]

× L|m|n1

(
2bξ

(1− s)(1− ζs)
(1− s− ζs)

)
L|m|n2

(
2bη

(1− s)(1− ζs)
(1− s− ζs)

)
, (14)

where L|m|n are the associated Laguerre polynomials with scale parameter b, and the parameter ζ is
defined by

ζ =
b + i k`

2

b− i k`
2

. (15)

This representation allows one to ensure the proper asymptotic behavior of expansion (11). Indeed,
the parabolic QS functions (13) behave asymptotically as

Q(+)
n1n2m(k`; ξ, η, φ) −→

r→∞

eimφ

√
2π
A|m|n1n2(θ)

exp {i [k`r− β` ln(2k`r)]}
r

, (16)

with

A|m|n1n2(θ) =
i
k

√
n1!n2!

(n1 + |m|)!(n2 + |m|)!
ζ−iβ` e−

πβ`
2

(
1
ζ
− ζ

)|m|+1 ( sin θ

2

)|m|
(−ζ)n1+n2

×
n1

∑
ν1=0

n2

∑
ν2=0

c(n1,|m|)
ν1 c(n2,|m|)

ν2 Γ(iβ` + |m|+ ν1 + ν2 + 1)(1− ζ−2)ν1+ν2 ,

×
(

cos
θ

2

)2ν1
(

sin
θ

2

)2ν2

, (17)

where the coefficients c(n,|m|)
ν are defined by [13]

c(n,|m|)
ν = (−1)ν (n + |m|)!

(n− ν)!(ν + |m|)!ν!
. (18)

From the asymptotic behavior of the Floquet components (10) one can derive the `-photon
angular differential cross sections, i.e., the cross sections corresponding to a net number ` of photons
(` = `a − `e, where `a(e) is the total number of absorbed (emitted) photons) exchanged between the
electron and laser field:

dσ`
dΩ

=
k`
k

∣∣∣∣∣δ`0 fC(θ) + 2π
M

∑
m=−M

eimφ
N−1

∑
n1,n2=0

C`
n1n2mA

|m|
n1n2(θ)

∣∣∣∣∣
2

. (19)

The Coulomb amplitude

fC(θ) = −
β

2k sin2 θ
2

e−iβ ln(sin2 θ
2 ) Γ(1 + iβ)

Γ(1− iβ)
(20)

provides the field-free Coulomb differential cross section, given by the Rutherford formula

dσC
dΩ

= | fC(θ)|2 =
Z2

16E2 sin4 θ
2

. (21)
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In what follows, we will study the ratio

R =
dσ`
dΩ
dσC
dΩ

, (22)

which conveniently quantifies the effect of the laser field on the Coulomb scattering process.

2.2. The Customary Analytical Approximations

It is well known that one obtains the exact cross section (21) for the field-free Coulomb scattering
already in the first Born approximation. By treating the Coulomb interaction in the first Born
approximation and using electron states in a laser field, which are given by Volkov functions [14],
one arrives at the well-known approach to the laser-assisted electron scattering which was originally
proposed by Bunkin and Fedorov [2] and later independently formulated by Kroll and Watson [3]
as the weak-potential approximation. The Bunkin–Fedorov approximation, valid when the potential is
weak compared to the laser strength and can be treated as a perturbation, yields for the quantity (22)
the following expression:

R =
k`
k
|J`(q`a0)|2

(
q
q`

)4
, (23)

where J` is a Bessel function of order `, q` = k − k`, k` is the final electron momentum,
and q = 2k sin(θ/2). It should be noted that one obtains the same expression when using the
low-frequency (or soft-photon) approximation of Kroll and Watson [3], even though this approach
treats the Coulomb interaction nonperturbatively (see Ref. [12] for details).

Another well-known analytical approximation that treats both the Coulomb and laser interactions
nonperturbatively is the use of a Coulomb–Volkov function [4,5]. It approximates the exact electron
state in combined Coulomb and laser fields by

ψ
(+)
CVF(r, t) =

e−
1
2 πβ

(2π)3/2 Γ(1 + iβ)e−i(Et−kr)
1F1(−iβ, 1; i[kr′(t)− kr′(t)]),

where r′(t) = r + a(t). Using its asymptotic form at r → ∞, we derive the ratio [12]

R = |J`(qa0)|2 , (24)

where q = k− kk̂`, with k̂` = k`/k`.
Expressions (23) and (24) coincide when ` = 0, but are different otherwise.

3. Results and Discussion

As indicated in the Introduction, we wish to show that the well-known analytical approximations
do not give a proper account of laser-modified Rutherford scattering. For this purpose we consider the
case of the laser-assisted electron-proton scattering process

e− + p + `ω → e− + p .

We calculate the ratio (22) within our nonperturbative QS approach and compare
with the predictions of the Bunkin–Fedorov/Kroll–Watson, and Coulomb–Volkov approximations
recalled above.

The laser field is taken with the polarization vector directed along the y axis (i.e., perpendicular to
the incident electron momentum k), a quiver amplitude a0 = 5 and a frequency ω = 0.05 = 1.36 eV,
values which are close to those in the laser-assisted (e, 2e) experiment of Höhr et al. [15,16]
(I = 4× 1012 W/cm2 and ω = 1.17 eV). The incident electron momentum is set to k = 0.93, which
represents a characteristic value of the ejected electron momentum in the experiment of Höhr et al.
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It can be seen that the corresponding electron energy E = k2/2 obeys the low-frequency regime
E� ω, for which the Kroll–Watson approximation is supposed to be valid. Though the corresponding
Sommerfeld parameter β = −1/k does not satisfy the formal condition |β| � 1 of the perturbative
regime in the case of Coulomb collisions (let us note that one obtains the Rutherford formula for
Coulomb scattering both in the exact treatment and in the Born approximation, i.e., in the lowest
order of perturbation theory), we point out once again that the Bunkin–Fedorov approach based
on the weak-potential approximation and the nonperturbative Kroll–Watson approach yield the
same analytical expression (23), irrespective of the values of the Sommerfeld and laser parameters.
One may question whether our choice of kinematical and laser parameters allows one to consider
the Coulomb–Volkov approximation. We recall that a Coulomb–Volkov function can be considered
as a reasonable interpolation between the well-known solutions of the Schrödinger equation in the
pure Coulomb field and in the pure laser field. However, in spite of wide applications, the range of
applicability (and thus their accuracy) of Coulomb–Volkov functions remains mostly undetermined;
our present analysis can help to shed some light on this issue.

In the numerical calculations using our QS approach, we set the Laguerre basis scale parameter to
b = 0.6. We take the ansatz (11) with the maximum projection of the angular momentum M = 7 and
restrict ourselves to N = 16 ‘radial’ parabolic basis functions along both axes ξ and η (this means a
basis size of 3840). A more detailed description of our numerical scheme, including its efficiency and
convergence, can be found in Ref. [8].

Figure 1 shows numerical values for `-photon differential cross sections normalized to the
field-free, Rutherford scattering cross section (21). For all inspected photon numbers we find marked
discrepancies, both in shape and in magnitude, between our numerical QS approach and the analytical
approximations. The latter, on the contrary, exhibit a rather close agreement with each other. This can
be readily explained by the fact that for small ` values the differences between the results (23) and
(24) are not significant. Note that due to |J`(x)|2 ≤ 1, the analytical approximations yield a ratio
R . 1, while in our QS approach the ratio can exceed unity by orders of magnitude, especially at
large scattering angles. The only common feature of the QS approach and analytical approximations
is found in the vicinity of the forward scattering direction when ` = 0, where the cross section ratio
is very close to unity. This feature owes to the dominating role of the long-range Coulomb potential
VC = −1/r at small scattering angles (with the cross section going to infinity as θ → 0), as compared
to the role of the ‘short-range’ part of the potential Ṽ0(a0, r).

The results presented in Figure 1 are for the case when the laser field lies in the scattering plane.
The difference between our nonperturbative QS approach and the analytical approximations becomes
even more pronounced if the laser field is perpendicular to the scattering plane, as illustrated by
the ratios shown in Figure 2. When ` = 0, the laser field has no effect on the scattering process
within the analytical approximations. On the contrary, the results using the QS approach exhibit a
substantial effect in the angular region θ & 90◦. Further, according to the selection rule discussed
in [17], the `-photon cross sections vanish in the considered geometry when ` is odd. We have verified
that this requirement is met with a very high accuracy in our QS calculations for ` = ±1. While the
analytical approximations (23) and (24) formally obey the selection rule, they predict vanishing values
(due to J`(0) = δ`0 [13]) not only for odd ` but for all ` 6= 0. As can be seen from the ` = ±2 QS results
in Figure 2, the cross sections for even ` are clearly nonzero.

Small ripples are observed in the QS curves in Figure 2, and to a lesser extent in Figure 1. We cannot
associate them with any simple physical explanation. In addition, they are not due to some numerical
instability and/or insufficient size of the QS basis. At the same time, even if they were related to the
representation of the Floquet components with a finite QS expansion, these ripples do not modify our
general observation of marked discrepancies between the QS approach and analytical approximations.
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Figure 1. The ratio of differential cross sections (22) for photon numbers ` = 0,±1,±2 when the laser
polarization vector is perpendicular to the incident electron momentum and lies in the scattering plane
(φ = π/2). The numerical results obtained using our quasi-Sturmian (QS) approach are compared with
those using the Bunkin–Fedorov and Kroll–Watson approximations (BF/KW) and the Coulomb–Volkov
function (CVF), Equations (23) and (24) respectively.
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Figure 2. The ratio of differential cross sections (22) for photon numbers ` = 0,±2 when
the laser polarization vector is perpendicular to the scattering plane (φ = 0). The numerical
results obtained using our QS approach are compared with those using the Bunkin–Fedorov and
Kroll–Watson approximations (BF/KW) and the Coulomb–Volkov function (CVF), Equations (23) and
(24) respectively.

4. Summary and Conclusions

We have presented a theoretical investigation of laser-modified Coulomb scattering. We have
employed our recently developed nonperturbative QS approach to solve numerically the system
of coupled Lippmann–Schwinger–Floquet equations in the Kramers–Henneberger frame. On this
basis we have calculated `-photon differential cross sections for a laser-assisted electron-proton
scattering process. We have compared the ratio of these cross sections to the field-free Rutherford cross
section with the results obtained within the Bunkin–Fedorov/Kroll–Watson and Coulomb–Volkov
approximations. Two orientations of the laser polarization vector have been studied: (i) when this
vector lies in the scattering plane and is perpendicular to the incident electron momentum and (ii) when
it is perpendicular to the scattering plane. In both geometries, we have found marked discrepancies
between our QS approach and the customary approximations both in terms of shape and in terms of
magnitude. Particularly strong disagreements have been observed when the laser field is perpendicular
to the scattering plane, in which case the approximate treatments predict no laser-field effect at all,
namely they predict the Rutherford cross section for ` = 0 and vanishing cross sections for all ` 6= 0.

The results of our study clearly demonstrate the deficiency of the customary approximations
in describing laser-modified Rutherford scattering processes. The only situation where their results
appear to be more or less reliable is the scattering in the vicinity of the forward direction when
` = 0. This is explained by the dominance of the field-free Coulomb scattering mechanism in
such a case. The effect of a laser field on the scattering dynamics grows with increasing scattering
angle and net number of exchanged photons. We thus expect larger inaccuracies of the analytical
approximations in such situations and, hence, a proper treatment of the laser field effect becomes
essential, in general, with increasing the laser-field strength. Note that in our analysis we inspected the
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absolute Sommerfeld-parameter value |β| ≈ 1 that is rather far off the perturbative regime (|β| � 1)
for Coulomb collisions. Larger inaccuracies of the analytical approximations are also anticipated for
larger |β|.

For an accurate theoretical treatment of laser-assisted Coulomb scattering processes, we thus
advocate the use of nonperturbative numerical approaches such as the one used here, or the
R-matrix-Floquet theory [18] and the close-coupling method [19–21]. It would be interesting, though, to
understand when the analytical approximations could still provide some acceptable results. To properly
answer this question, the laser-modified Rutherford scattering process should be further investigated,
exploring the multi-parameter space by systematically varying the field strength, the laser frequency,
the electron energy and the Coulomb charge. This is part of our current investigations. Along these
lines, in our study of the laser-assisted (e, 2e) process of atomic hydrogen [9], we have played with
both the field strength and the laser frequency (actually, maintaining the same Keldysh parameter)
and observed the varying effect on the differential cross sections.
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