Photoionization of Astrophysically Relevant Atomic Ions at PIPE
Abstract
:1. Introduction
2. Experimental Technique
3. L-Shell Ionization of Low-Charged Iron Ions
4. K-Shell Ionization of Light Ions
4.1. K-Shell Photoionization of Ne
4.2. K-Shell Photoionization of Carbon Ions: C, C, C
4.3. K-Shell Ionization of Silicon Ions
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pain, J.C.; Gilleron, F.; Comet, M. Detailed opacity calculations for astrophysical applications. Atoms 2017, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Kato, D.; Gaigalas, G.; Kawaguchi, K. Systematic Opacity Calculations for Kilonovae. Mon. Not. R. Astron. Soc. 2020, 496, 1369. [Google Scholar] [CrossRef]
- Paerels, F.B.S.; Kahn, S.M. High-resolution X-ray spectroscopy with Chandra and XMM-Newton. Annu. Rev. Astron. Astrophys. 2003, 41, 291–342. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef] [Green Version]
- Ferland, G.J. Quantitative spectroscopy of astronomical plasmas. Annu. Rev. Astron. Astrophys. 2003, 41, 517–554. [Google Scholar] [CrossRef]
- Kallman, T.R.; Palmeri, P. Atomic data for X-ray astrophysics. Rev. Mod. Phys. 2007, 79, 79–133. [Google Scholar] [CrossRef] [Green Version]
- Savin, D.W.; Brickhouse, N.S.; Cowan, J.J.; Drake, R.P.; Federman, S.R.; Ferland, G.J.; Frank, A.; Gudipati, M.S.; Haxton, W.C.; Herbst, E.; et al. The impact of recent advances in laboratory astrophysics on our understanding of the Cosmos. Rep. Prog. Phys. 2012, 75, 036901. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.K.; Brickhouse, N.S. Atomic Data Needs for Understanding X-ray Astrophysical Plasmas. Adv. Atomic Mol. Opt. Phys. 2014, 63, 271–321. [Google Scholar] [CrossRef]
- Lynas-Gray, A.E.; Basu, S.; Bautista, M.A.; Colgan, J.; Mendoza, C.; Tennyson, J.; Trampedach, R.; Turck-Chièze, S. Current State of Astrophysical Opacities: A White Paper. In Proceedings of the Second Workshop on Astrophysical Opacities, Kalamazoo, MI, USA, 1–4 August 2017; Volume 515, p. 115. [Google Scholar]
- Smith, R.; Hahn, M.; Raymond, J.; Kallman, T.; Ballance, C.P.; Polito, V.; Zanna, G.D.; Gu, L.; Hell, N.; Cumbee, R.; et al. Roadmap on cosmic EUV and X-ray spectroscopy. J. Phys. B 2020, 53, 092001. [Google Scholar] [CrossRef] [Green Version]
- Kramida, A.; Ralchenko, Y.; Reader, J.; Team, N.A. NIST Atomic Spectra Database; Version 5.7.1, Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. Available online: http://physics.nist.gov/asd (accessed on 1 July 2020).
- Kennedy, E.T.; Costello, J.T.; Mosnier, J.P.; van Kampen, P. VUV/EUV ionising radiation and atoms and ions: Dual laser plasma investigations. Radiat. Phys. Chem. 2004, 70, 291–321. [Google Scholar] [CrossRef] [Green Version]
- Kravis, S.D.; Church, D.A.; Johnson, B.M.; Meron, M.; Jones, K.W.; Levin, J.; Sellin, I.A.; Azuma, Y.; Mansour, N.B.; Berry, H.G.; et al. Inner-shell photoionization of stored positive ions using synchrotron radiation. Phys. Rev. Lett. 1991, 66, 2956–2959. [Google Scholar] [CrossRef] [PubMed]
- Thissen, R.; Bizau, J.M.; Blancard, C.; Coreno, M.; Dehon, C.; Franceschi, P.; Giuliani, A.; Lemaire, J.; Nicolas, C. Photoionization cross section of Xe+ ion in the pure 5p5 2P3/2 ground level. Phys. Rev. Lett. 2008, 100, 223001. [Google Scholar] [CrossRef] [PubMed]
- Bizau, J.M.; Blancard, C.; Coreno, M.; Cubaynes, D.; Dehon, C.; Hassan, N.E.; Folkmann, F.; Gharaibeh, M.F.; Giuliani, A.; Lemaire, J.; et al. Photoionization study of Kr+ and Xe+ ions with the combined use of a merged-beam set-up and an ion trap. J. Phys. B 2011, 44, 055205. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.C.; Crespo López-Urrutia, J.R.; Beilmann, C.; Schwarz, M.; Harman, Z.; Epp, S.W.; Schmitt, B.L.; Baumann, T.M.; Behar, E.; Bernitt, S.; et al. Resonant and near-threshold photoionization cross sections of Fe14+. Phys. Rev. Lett. 2010, 105, 183001. [Google Scholar] [CrossRef]
- Simon, M.C.; Schwarz, M.; Epp, S.W.; Beilmann, C.; Schmitt, B.L.; Harman, Z.; Baumann, T.M.; Mokler, P.H.; Bernitt, S.; Ginzel, R.; et al. Photoionization of N3+ and Ar8+ in an electron beam ion trap by synchrotron radiation. J. Phys. B 2010, 43, 065003. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, K.; Zamudio-Bayer, V.; Ameseder, F.; Langenberg, A.; Rittmann, J.; Vogel, M.; Möller, T.; Issendorff, B.; Lau, J.T. 2p X-ray absorption of free transition-metal cations across the 3d transition elements: Calcium through copper. Phys. Rev. A 2012, 85, 062501. [Google Scholar] [CrossRef]
- Lyon, I.C.; Peart, B.; West, J.B.; Dolder, K. Measurements of absolute cross sections for the photoionisation of Ba+ ions. J. Phys. B 1986, 19, 4137–4147. [Google Scholar] [CrossRef]
- Kjeldsen, H. Photoionization cross sections of atomic ions from merged-beam experiments. J. Phys. B 2006, 39, R325–R377. [Google Scholar] [CrossRef]
- Schippers, S.; Kilcoyne, A.L.D.; Phaneuf, R.A.; Müller, A. Photoionization of ions with synchrotron radiation: From ions in space to atoms in cages. Contemp. Phys. 2016, 57, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Bizau, J.M.; Cubaynes, D.; Richter, M.; Wuilleumier, F.J.; Obert, J.; Putaux, J.C.; Morgan, T.J.; Källne, E.; Sorensen, S.; Damany, A. First observation of photoelectron spectra emitted in the photoionization of a singly charged-ion beam with synchrotron radiation. Phys. Rev. Lett. 1991, 67, 576–579. [Google Scholar] [CrossRef]
- Oura, M.; Kravis, S.; Koizumi, T.; Itoh, Y.; Kojima, T.M.; Sano, M.; Sekioka, T.; Kimura, M.; Okuno, K.; Awaya, Y. Experimental setups for photoionization of multiply charged ions by synchrotron radiation. Nucl. Instrum. Methods B 1994, 86, 190. [Google Scholar] [CrossRef]
- Kjeldsen, H.; Folkmann, F.; Knudsen, H.; Rasmussen, M.S.; West, J.B.; Andersen, T. Absolute photoionization cross cection of K+ ions from the 3p to the 3s threshold. J. Phys. B 1999, 32, 4457–4465. [Google Scholar] [CrossRef]
- Yamaoka, H.; Oura, M.; Kawatsura, K.; Hayaishi, T.; Sekioka, T.; Agui, A.; Yoshigoe, A.; Koike, F. Photoionization of singly and doubly charged neon ions following inner-shell excitation. Phys. Rev. A 2001, 65, 012709. [Google Scholar] [CrossRef]
- Covington, A.M.; Aguilar, A.; Covington, I.R.; Gharaibeh, M.F.; Hinojosa, G.; Shirley, C.A.; Phaneuf, R.A.; Álvarez, I.; Cisneros, C.; Dominguez-Lopez, I.; et al. Photoionization of Ne+ using synchrotron radiation. Phys. Rev. A 2002, 66, 062710. [Google Scholar] [CrossRef]
- Schippers, S.; Ricz, S.; Buhr, T.; Borovik, A., Jr.; Hellhund, J.; Holste, K.; Huber, K.; Schäfer, H.J.; Schury, D.; Klumpp, S.; et al. Absolute cross sections for photoionization of Xeq+ ions (1 ≤ q ≤ 5) at the 3d ionization threshold. J. Phys. B 2014, 47, 115602. [Google Scholar] [CrossRef] [Green Version]
- Bizau, J.M.; Cubaynes, D.; Guilbaud, S.; Eassan, N.E.; Shorman, M.M.A.; Bouisset, E.; Guigand, J.; Moustier, O.; Marié, A.; Nadal, E.; et al. A merged-beam setup at SOLEIL dedicated to photoelectron- photoion coincidence studies on ionic species. J. Electron Spectrosc. Relat. Phenom. 2016, 210, 5–12. [Google Scholar] [CrossRef]
- Lestinsky, M.; Andrianov, V.; Aurand, B.; Bagnoud, V.; Bernhardt, D.; Beyer, H.; Bishop, S.; Blaum, K.; Bleile, A.; Borovik, A.; et al. Physics book: CRYRING@ESR. Eur. Phys. J. Spec. Top. 2016, 225, 797–882. [Google Scholar] [CrossRef]
- Borovik, A.; Weber, G.; Hilbert, V.; Lin, H.; Pfäfflein, P.; Zhu, B.; Hahn, C.; Lestinsky, M.; Schippers, S.; Stöhlker, T.; et al. Development of a detector to register low-energy, charge-changed ions from ionization experiments at CRYRING@ESR. J. Phys. Conf. Ser. 2020, 1412, 242003. [Google Scholar] [CrossRef]
- Viefhaus, J.; Scholz, F.; Deinert, S.; Glaser, L.; Ilchen, M.; Seltmann, J.; Walter, P.; Siewert, F. The variable polarization XUV beamline P04 at PETRA III: Optics, mechanics and their performance. Nucl. Instrum. Methods A 2013, 710, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Schippers, S.; Buhr, T.; Borovik, A., Jr.; Holste, K.; Perry-Sassmannshausen, A.; Mertens, K.; Reinwardt, S.; Martins, M.; Klumpp, S.; Schubert, K.; et al. The photon-ion merged-beams experiment PIPE at PETRA III—The first five years. X-ray Spectrom. 2020, 49, 11. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Bernhardt, D.; Borovik, A., Jr.; Buhr, T.; Hellhund, J.; Holste, K.; Kilcoyne, A.L.D.; Klumpp, S.; Martins, M.; Ricz, S.; et al. Photoionization of Ne atoms and Ne+ ions near the K edge: Precision spectroscopy and absolute cross sections. Astrophys. J. 2017, 836, 166. [Google Scholar] [CrossRef]
- Müller, A.; Lindroth, E.; Bari, S.; Borovik, A., Jr.; Hillenbrand, P.M.; Holste, K.; Indelicato, P.; Kilcoyne, A.L.D.; Klumpp, S.; Martins, M.; et al. Photoionization of metastable heliumlike C4+(1s2s3S1) ions: Precision study of intermediate doubly excited states. Phys. Rev. A 2018, 98, 033416. [Google Scholar] [CrossRef] [Green Version]
- Yerokhin, V.A.; Surzhykov, A.; Müller, A. Relativistic configuration-interaction calculations of the energy levels of the 1s22l and 1s 2l 2l’ states in lithiumlike ions: Carbon through chlorine. Phys. Rev. A 2017, 96, 042505, Erratum in 2017, 96, 069901. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.; Bian, G.; Paul, N.; Trassinelli, M.; Amaro, P.; Guerra, M.; Szabo, C.I.; Gumberidze, A.; Isac, J.M.; Santos, J.P.; et al. Reference-free measurements of the 1s2 2s 2p 2Po1/2,3/2 → 1s2 2s 2S1/2 and 1s 2s 2p 4P5/2 → 1s2 2s 2S1/2 transition energies and widths in lithiumlike sulfur and argon ions. Phys. Rev. A 2020, 101, 062505. [Google Scholar] [CrossRef]
- Schippers, S.; Martins, M.; Beerwerth, R.; Bari, S.; Holste, K.; Schubert, K.; Viefhaus, J.; Savin, D.W.; Fritzsche, S.; Müller, A. Near L-edge single and multiple photoionization of singly charged iron ions. Astrophys. J. 2017, 849, 5. [Google Scholar] [CrossRef] [Green Version]
- Schippers, S.; Beerwerth, R.; Bari, S.; Buhr, T.; Holste, K.; Kilcoyne, A.L.D.; Perry-Sassmannshausen, A.; Phaneuf, R.A.; Reinwardt, S.; Savin, D.W.; et al. Near L-edge single and multiple photoionization of doubly charged iron ions. In preparation.
- Beerwerth, R.; Buhr, T.; Perry-Sassmannshausen, A.; Stock, S.O.; Bari, S.; Holste, K.; Kilcoyne, A.L.D.; Reinwardt, S.; Ricz, S.; Savin, D.W.; et al. Near L-edge single and multiple photoionization of triply charged iron ions. Astrophys. J. 2019, 887, 189. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.G.; Snow, T.P. New insights on interstellar gas-phase iron. Astrophys. J. 2007, 669, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, E.B. A unified representation of gas-phase element depletions in the interstellar medium. Astrophys. J. 2009, 700, 1299. [Google Scholar] [CrossRef]
- Juett, A.M.; Schulz, N.S.; Chakrabarty, D.; Gorczyca, T.W. High-resolution X-ray spectroscopy of the interstellar medium. II. neon and iron absorption edges. Astrophys. J. 2006, 648, 1066. [Google Scholar] [CrossRef] [Green Version]
- Miedema, P.S.; de Groot, F.M.F. The iron L edges:Fe 2p X-ray absorption and electron energy loss spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2013, 187, 32–48. [Google Scholar] [CrossRef]
- Richter, T.; Godehusen, K.; Martins, M.; Wolff, T.; Zimmermann, P. Interplay of intra-atomic and interatomic effects: An investigation of the 2p core level spectra of atomic Fe and molecular FeCl2. Phys. Rev. Lett. 2004, 93, 023002. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Godehusen, K.; Richter, T.; Wernet, P.; Zimmermann, P. Open shells and multi-electron interactions: Core level photoionization of the 3d metal atoms. J. Phys. B 2006, 39, R79–R125. [Google Scholar] [CrossRef]
- Blancard, C.; Cubaynes, D.; Guilbaud, S.; Bizau, J.M. Absolute photoionization cross section for Fe6+ to Fe10+ ions in the photon energy region of the 2p-3d resonance lines. Astrophys. J. 2018, 853, 32. [Google Scholar] [CrossRef]
- Kjeldsen, H.; Kristensen, B.; Folkmann, F.; Andersen, T. Measurements of the absolute photoionization cross section of Fe+ ions from 15.8 to 180 eV. J. Phys. B 2002, 35, 3655–3668. [Google Scholar] [CrossRef] [Green Version]
- Bizau, J.M.; Blancard, C.; Cubaynes, D.; Folkmann, F.; Kilbane, D.; Faussurier, G.; Luna, H.; Lemaire, J.L.; Blieck, J.; Wuilleumier, F.J. Experimental and theoretical studies of the photoionization cross section of Fe4+. Phys. Rev. A 2006, 73, 020707. [Google Scholar] [CrossRef]
- El Hassan, N.; Bizau, J.M.; Blancard, C.; Cosse, P.; Cubaynes, D.; Faussurier, G.; Folkmann, F. Photoionization cross sections of iron isonuclear sequence ions: Fe2+ to Fe6+. Phys. Rev. A 2009, 79, 033415. [Google Scholar] [CrossRef]
- Gharaibeh, M.F.; Aguilar, A.; Covington, A.M.; Emmons, E.D.; Scully, S.W.J.; Phaneuf, R.A.; Müller, A.; Bozek, J.D.; Kilcoyne, A.L.D.; Schlachter, A.S.; et al. Photoionization measurements for the iron isonuclear sequence Fe3+, Fe5+, and Fe7+. Phys. Rev. A 2011, 83, 043412. [Google Scholar] [CrossRef] [Green Version]
- Verner, D.A.; Yakovlev, D.G.; Band, I.M.; Trzhaskovskaya, M.B. Subshell photoionization cross sections and ionization energies of atoms and ions from He to Zn. Atomic Data Nucl. Data Tables 1993, 55, 233–280. [Google Scholar] [CrossRef]
- Kaastra, J.S.; Mewe, R. X-ray emission from thin plasmas. I - Multiple Auger ionisation and fluorescence processes for Be to Zn. Astron. Astrophys. Suppl. Ser. 1993, 97, 443–482. [Google Scholar]
- Kučas, S.; Drabužinskis, P.; Kynienė, A.; Masys, Š.; Jonauskas, V. Evolution of radiative and Auger cascades following 2s vacancy creation in Fe2+. J. Phys. B 2019, 52, 225001. [Google Scholar] [CrossRef]
- Kučas, S.; Drabužinskis, P.; Jonauskas, V. Radiative and Auger cascade following 2p vacancy creation in Fe2+. Atomic Data Nucl. Data Tables 2020, 101357. [Google Scholar] [CrossRef]
- Müller, A. Precision studies of deep-inner-shell photoabsorption by atomic ions. Phys. Scr. 2015, 90, 054004. [Google Scholar] [CrossRef]
- Andersen, P.; Andersen, T.; Folkmann, F.; Ivanov, V.K.; Kjeldsen, H.; West, J.B. Absolute cross sections for the photoionization of 4d electrons in Xe+ and Xe2+ ions. J. Phys. B 2001, 34, 2009–2019. [Google Scholar] [CrossRef]
- Berrah, N.; Bozek, J.D.; Turri, G.; Akerman, G.; Rude, B.; Zhou, H.L.; Manson, S.T. K-shell photodetachment of He−: Experiment and theory. Phys. Rev. Lett. 2002, 88, 093001. [Google Scholar] [CrossRef]
- Bilodeau, R.C.; Bozek, J.D.; Aguilar, A.; Ackerman, G.D.; Turri, G.; Berrah, N. Photoexcitation of He− hollow-ion resonances: Observation of the 2s 2p2 4P state. Phys. Rev. Lett. 2004, 93, 193001. [Google Scholar] [CrossRef]
- Kjeldsen, H.; Andersen, P.; Folkmann, F.; Kristensen, B.; Andersen, T. Inner-shell photodetachment of Li−. J. Phys. B 2001, 34, L353–L357. [Google Scholar] [CrossRef]
- Berrah, N.; Bozek, J.D.; Wills, A.A.; Turri, G.; Zhou, H.L.; Manson, S.T.; Akerman, G.; Rude, B.; Gibson, N.D.; Walter, C.W.; et al. K-shell photodetachment of Li−: Experiment and theory. Phys. Rev. Lett. 2001, 87, 253002. [Google Scholar] [CrossRef] [Green Version]
- Scully, S.W.J.; Álvarez, I.; Cisneros, C.; Emmons, E.D.; Gharaibeh, M.F.; Leitner, D.; Lubell, M.S.; Müller, A.; Phaneuf, R.A.; Püttner, R.; et al. Doubly excited resonances in the photoionization spectrum of Li+: Experiment and theory. J. Phys. B 2006, 39, 3957–3968. [Google Scholar] [CrossRef]
- Berrah, N.; Bilodeau, R.C.; Dumitriu, I.; Bozek, J.D.; Gibson, N.D.; Walter, C.W.; Ackerman, G.D.; Zatsarinny, O.; Gorczyca, T.W. Shape resonances in the absolute K-shell photodetachment of B−. Phys. Rev. A 2007, 76, 032713. [Google Scholar] [CrossRef]
- Müller, A.; Schippers, S.; Phaneuf, R.A.; Scully, S.W.J.; Aguilar, A.; Cisneros, C.; Gharaibeh, M.F.; Schlachter, A.S.; McLaughlin, B.M. K -shell photoionization of Be-like boron (B+) ions: Experiment and theory. J. Phys. B 2014, 47, 135201. [Google Scholar] [CrossRef]
- Müller, A.; Schippers, S.; Phaneuf, R.A.; Scully, S.W.J.; Aguilar, A.; Cisneros, C.; Gharaibeh, M.F.; Schlachter, A.S.; McLaughlin, B.M. K-shell photoionization of ground-state Li-like boron ions [B2+]: Experiment and theory. J. Phys. B 2010, 43, 135602. [Google Scholar] [CrossRef] [Green Version]
- Gibson, N.D.; Walter, C.W.; Zatsarinny, O.; Gorczyca, T.W.; Ackerman, G.D.; Bozek, J.D.; Martins, M.; McLaughlin, B.M.; Berrah, N. K-shell photodetachment from C−: Experiment and theory. Phys. Rev. A 2003, 67, 030703(R). [Google Scholar] [CrossRef]
- Walter, C.W.; Gibson, N.D.; Bilodeau, R.C.; Berrah, N.; Bozek, J.D.; Ackerman, G.D.; Aguilar, A. Shape resonance in K-shell photodetachment from C−. Phys. Rev. A 2006, 73, 062702. [Google Scholar] [CrossRef]
- Perry-Sassmannshausen, A.; Buhr, T.; Borovik, A., Jr.; Martins, M.; Reinwardt, S.; Ricz, S.; Stock, S.O.; Trinter, F.; Müller, A.; Fritzsche, S.; et al. Multiple photodetachment of carbon anions via single and double core-hole creation. Phys. Rev. Lett. 2020, 124, 083203. [Google Scholar] [CrossRef] [Green Version]
- Schlachter, A.S.; Sant’Anna, M.M.; Covington, A.M.; Aguilar, A.; Gharaibeh, M.F.; Emmons, E.D.; Scully, S.W.J.; Phaneuf, R.A.; Hinojosa, G.; Álvarez, I.; et al. Lifetime of a K-shell vacancy in atomic carbon created by 1s → 2p photoexcitation of C+. J. Phys. B 2004, 37, L103–L109. [Google Scholar] [CrossRef]
- Müller, A.; Borovik, A., Jr.; Buhr, T.; Hellhund, J.; Holste, K.; Kilcoyne, A.L.D.; Klumpp, S.; Martins, M.; Ricz, S.; Viefhaus, J.; et al. Observation of a four-electron Auger process in near-K-edge photoionization of singly charged carbon ions. Phys. Rev. Lett. 2015, 114, 013002. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Borovik, A.; Buhr, T.; Hellhund, J.; Holste, K.; Kilcoyne, A.L.D.; Klumpp, S.; Martins, M.; Ricz, S.; Viefhaus, J.; et al. Near-K-edge single, double, and triple photoionization of C+ ions. Phys. Rev. A 2018, 97, 013409. [Google Scholar] [CrossRef] [Green Version]
- Scully, S.W.J.; Aguilar, A.; Emmons, E.D.; Phaneuf, R.A.; Halka, M.; Leitner, D.; Levin, J.C.; Lubell, M.S.; Püttner, R.; Schlachter, A.S.; et al. K-shell photoionization of Be-like carbon ions: Experiment and theory for C2+. J. Phys. B 2005, 38, 1967–1975. [Google Scholar] [CrossRef]
- Müller, A.; Schippers, S.; Phaneuf, R.A.; Scully, S.W.J.; Aguilar, A.; Covington, A.M.; Álvarez, I.; Cisneros, C.; Emmons, E.D.; Gharaibeh, M.F.; et al. K-shell photoionization of li-like carbon ions [C3+]: Experiment, theory and comparison with time-reversed photorecombination. J. Phys. B 2009, 42, 235602. [Google Scholar] [CrossRef]
- Gharaibeh, M.F.; Bizau, J.M.; Cubaynes, D.; Guilbaud, S.; El Hassan, N.; Al Shorman, M.M.; Miron, C.; Nicolas, C.; Robert, E.; Blancard, C.; et al. K-shell photoionization of singly ionized atomic nitrogen: Experiment and theory. J. Phys. B 2011, 44, 175208. [Google Scholar] [CrossRef]
- Bari, S.; Inhester, L.; Schubert, K.; Mertens, K.; Schunck, J.O.; Dörner, S.; Deinert, S.; Schwob, L.; Schippers, S.; Müller, A.; et al. Inner-shell X-ray absorption spectra of the cationic series NH+y (y = 0–3). Phys. Chem. Chem. Phys. 2019, 21, 16505–16514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, B.M.; Mosnier, J.P.; Kennedy, E.T.; Sokell, E.; Bizau, J.M.; Cubaynes, D.; Guilbaud, S.; Carniato, S. K-shell Photoionization of the N+, NH+ and NH+2 ions. J. Phys. Conf. Ser. 2020, 1412, 142007. [Google Scholar] [CrossRef]
- Gharaibeh, M.; El Hassan, N.; Shorman, M.A.; Bizau, J.; Cubaynes, D.; Guilbaud, S.; Sakho, I.; Blancard, C.; McLaughlin, B. K-shell photoionization of B-like atomic nitrogen ions: Experiment and theory. J. Phys. B 2014, 47, 065201. [Google Scholar] [CrossRef]
- Al Shorman, M.M.; Gharaibeh, M.F.; Bizau, J.M.; Cubaynes, D.; Guilbaud, S.; El Hassan, N.; Miron, C.; Nicolas, C.; Robert, E.; Sakho, I.; et al. K-shell photoionization of Be-like and Li-like ions of atomic nitrogen: Experiment and theory. J. Phys. B 2013, 46, 195701. [Google Scholar] [CrossRef]
- Gibson, N.D.; Bilodeau, R.C.; Walter, C.W.; Hanstorp, D.; Aguilar, A.; Berrah, N.; Matyas, D.J.; Li, Y.G.; Alton, R.M.; Lou, S.E. K-shell photodetachment from O−. J. Phys. Conf. Ser. 2012, 388, 022102. [Google Scholar] [CrossRef]
- Schippers, S.; Beerwerth, R.; Abrok, L.; Bari, S.; Buhr, T.; Martins, M.; Ricz, S.; Viefhaus, J.; Fritzsche, S.; Müller, A. Prominent role of multielectron processes in K-shell double and triple photodetachment of oxygen anions. Phys. Rev. A 2016, 94, 041401. [Google Scholar] [CrossRef] [Green Version]
- Kawatsura, K.; Yamaoka, H.; Oura, M.; Hayaishi, T.; Sekioka, T.; Agui, A.; Yoshigoe, A.; Koike, F. The 1s − 2p resonance photoionization measurement of O+ ions in comparison with an isoelectronic species Ne3+. J. Phys. B 2002, 35, 4147–4153. [Google Scholar] [CrossRef]
- Bizau, J.M.; Cubaynes, D.; Guilbaud, S.; Al Shorman, M.M.; Gharaibeh, M.F.; Ababneh, I.Q.; Blancard, C.; McLaughlin, B.M. K-shell photoionization of O+ and O2+ ions: Experiment and theory. Phys. Rev. A 2015, 92, 023401. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, B.; Bizau, J.; Cubaynes, D.; Shorman, M.A.; Guilbaud, S.; Sakho, I.; Blancard, C.; Gharaibeh, M. K-shell photoionization of B-like oxygen (O3+) ions: Experiment and theory. J. Phys. B 2014, 47, 115201. [Google Scholar] [CrossRef]
- McLaughlin, B.M.; Bizau, J.M.; Cubaynes, D.; Guilbaud, S.; Douix, S.; Shorman, M.M.A.; Ghazaly, M.O.A.E.; Sakho, I.; Gharaibeh, M.F. K-shell photoionization of O4+ and O5+ ions: Experiment and theory. Mon. Not. R. Astron. Soc. 2017, 465, 4690–4702. [Google Scholar] [CrossRef]
- Müller, A.; Borovik, A., Jr.; Bari, S.; Buhr, T.; Holste, K.; Martins, M.; Perry-Sassmannshausen, A.; Phaneuf, R.A.; Reinwardt, S.; Ricz, S.; et al. Near-K-edge double and triple detachment of the F− negative ion: Observation of direct two-electron ejection by a single photon. Phys. Rev. Lett. 2018, 120, 133202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oura, M.; Yamaoka, H.; Kawatsura, K.; Kimata, J.; Hayaishi, T.; Takahashi, T.; Koizumi, T.; Sekioka, T.; Terasawa, M.; Itoh, Y.; et al. Photoionization of Ne3+ ions in the region of the 1s2p autoionizing resonance. Phys. Rev. A 2001, 63, 014704. [Google Scholar] [CrossRef]
- Buhr, T.; Stock, S.O.; Perry-Sassmannshausen, A.; Reinwardt, S.; Martins, M.; Ricz, S.; Müller, A.; Fritzsche, S.; Schippers, S. Photoionization of low-charged silicon ions. J. Phys. Conf. Ser. 2020, 1412, 152024. [Google Scholar] [CrossRef]
- Liao, J.Y.; Zhang, S.N.; Yao, Y. Wavelength measurements of K transitions of oxygen, neon, and magnesium with X-ray absorption lines. Astrophys. J. 2013, 774, 116. [Google Scholar] [CrossRef] [Green Version]
- Gorczyca, T.W. Auger decay of the photoexcited 1s−1np Rydberg series in neon. Phys. Rev. A 2000, 61, 024702. [Google Scholar] [CrossRef]
- Gatuzz, E.; Garcia, J.; Kallman, T.R.; Mendoza, C.; Gorczyca, T.W. ISMabs: A comprehensive X-ray absorption model for the interstellar medium. Astrophys. J. 2015, 800, 29. [Google Scholar] [CrossRef]
- Witthoeft, M.C.; Bautista, M.A.; Mendoza, C.; Kallman, T.R.; Palmeri, P.; Quinet, P. K-shell photoionization and photoabsorption of Ne, Mg, Si, S, Ar, and Ca. Astrophys. J. Suppl. Ser. 2009, 182, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Landi, E.; Lepri, S.T. Photoionization in the Solar wind. Astrophys. J. 2015, 812, L28. [Google Scholar] [CrossRef]
- Larsson, M.; Geppert, W.D.; Nyman, G. Ion chemistry in space. Rep. Prog. Phys. 2012, 75, 066901. [Google Scholar] [CrossRef]
- Tielens, A.G.G.M. The molecular universe. Rev. Mod. Phys. 2013, 85, 1021–1081. [Google Scholar] [CrossRef]
- Millar, T.J.; Walsh, C.; Field, T.A. Negative ions in space. Chem. Rev. 2017, 117, 1765–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosnier, J.P.; Kennedy, E.T.; van Kampen, P.; Cubaynes, D.; Guilbaud, S.; Sisourat, N.; Puglisi, A.; Carniato, S.; Bizau, J.M. Inner-shell photoexcitations as probes of the molecular ions CH+, OH+, and SiH+: Measurements and theory. Phys. Rev. A 2016, 93, 061401. [Google Scholar] [CrossRef]
- Hellhund, J.; Borovik, A., Jr.; Holste, K.; Klumpp, S.; Martins, M.; Ricz, S.; Schippers, S.; Müller, A. Photoionization and photofragmentation of multiply charged Lu3N@C80 ions. Phys. Rev. A 2015, 92, 013413. [Google Scholar] [CrossRef]
- Müller, A.; Martins, M.; Kilcoyne, A.L.D.; Phaneuf, R.A.; Hellhund, J.; Borovik, A.; Holste, K.; Bari, S.; Buhr, T.; Klumpp, S.; et al. Photoionization and photofragmentation of singly charged positive and negative Sc3N@C80 endohedral fullerene ions. Phys. Rev. A 2019, 99, 063401. [Google Scholar] [CrossRef] [Green Version]
- Voulot, D.; Gillen, D.R.; Thompson, W.R.; Gilbody, H.B.; McCullough, R.W.; Errea, L.; Macias, A.; Mendez, L.; Riera, A. First studies of state-selective electron capture in collisions of state-prepared ions with atomic hydrogen; the case of C2+–H(1s). J. Phys. B 2000, 33, L187–L192. [Google Scholar] [CrossRef]
- Covington, A.M.; Aguilar, A.; Covington, I.R.; Gharaibeh, M.; Shirley, C.A.; Phaneuf, R.A.; Álvarez, I.; Cisneros, C.; Hinojosa, G.; Bozek, J.D.; et al. Photoionization of metastable O+ ions: Experiment and theory. Phys. Rev. Lett. 2001, 87, 243002. [Google Scholar] [CrossRef]
- Benis, E.P.; Madesis, I.; Laoutaris, A.; Nanos, S.; Zouros, T.J.M. Mixed-state ionic beams: An effective tool for collision dynamics investigations. Atoms 2018, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Schippers, S.; Müller, A.; Ricz, S.; Bannister, M.E.; Dunn, G.H.; Bozek, J.D.; Schlachter, A.S.; Hinojosa, G.; Cisneros, C.; Aguilar, A.; et al. Experimental link of photoionization of Sc2+ to photorecombination of Sc3+: An application of detailed balance in a unique atomic system. Phys. Rev. Lett. 2002, 89, 193002. [Google Scholar] [CrossRef]
- Wolf, A.; Berger, J.; Bock, M.; Habs, D.; Hochadel, B.; Kilgus, G.; Neureither, G.; Schramm, U.; Schwalm, D.; Szmola, E.; et al. Experiments with highly-charged ions in the storage ring TSR. Z. Phys. D 1991, 21, S69–S75. [Google Scholar] [CrossRef]
- Andersen, T. Atomic negative ions: Structure, dynamics and collisions. Phys. Rep. 2004, 394, 157–313. [Google Scholar] [CrossRef]
- Schippers, S. Analytical expression for the convolution of a Fano line profile with a gaussian. J. Quant. Spectrosc. Radiat. Transf. 2018, 219, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Lindroth, E.; Argenti, L. Atomic resonance states and their role in charge-changing processes. Adv. Quantum Chem. 2012, 63, 247. [Google Scholar] [CrossRef]
- Indelicato, P.; Gorveix, O.; Desclaux, J.P. Multiconfigurational Dirac-Fock studies of two-electron ions. II. Radiative corrections and comparison with experiment. J. Phys. B 1987, 20, 651. [Google Scholar] [CrossRef]
- Zeegers, S.T.; Costantini, E.; Rogantini, D.; de Vries, C.P.; Mutschke, H.; Mohr, P.; de Groot, F.; Tielens, A.G.G.M. Dust absorption and scattering in the silicon K-edge. Astron. Astrophys. 2019, 627, A16. [Google Scholar] [CrossRef] [Green Version]
- Schulz, N.S.; Corrales, L.; Canizares, C.R. Si K edge structure and variability in Galactic X-ray binaries. Astrophys. J. 2016, 827, 49. [Google Scholar] [CrossRef] [Green Version]
- Witthoeft, M.C.; García, J.; Kallman, T.R.; Bautista, M.A.; Mendoza, C.; Palmeri, P.; Quinet, P. K-shell photoionization of Na-like to Cl-like ions of Mg, Si, S, Ar, and Ca. Astrophys. J. Suppl. Ser. 2011, 1992, 7. [Google Scholar] [CrossRef] [Green Version]
- Kučas, S.; Karazija, R.; Momkauskaitė, A. Cascades after K-vacancy production in atoms and ions of light elements. Astrophys. J. 2012, 750, 90. [Google Scholar] [CrossRef]
- Hasoglu, M.F.; Gorczyca, T.W. X-Ray Absorption by Interstellar Atomic Gases near the K Edges of C, O, Ne, Mg, and Si and the L Edge of Fe. ASP Conf. Ser. 2018, 515, 275. [Google Scholar]
- Ueda, K.; Sokell, E.; Schippers, S.; Aumayr, F.; Sadeghpour, H.; Burgdörfer, J.; Lemell, C.; Tong, X.M.; Pfeifer, T.; Calegari, F.; et al. Roadmap on photonic, electronic and atomic collision physics: I. Light–matter interaction. J. Phys. B 2019, 52, 171001. [Google Scholar] [CrossRef]
Z | Ion | Energy Range (eV) | Light Source | Year | Reference |
---|---|---|---|---|---|
2 | He | 80–140 | ASTRID | 2001 | [56] |
2 | He | 38–44 | ALS | 2002 | [57] |
2 | He | 43–44 | ALS | 2004 | [58] |
3 | Li | 56–70 | ASTRID | 2001 | [59] |
3 | Li | 56–66 | ALS | 2001 | [60] |
3 | Li | 149–181 | ALS | 2006 | [61] |
5 | B | 187–196 | ALS | 2007 | [62] |
5 | B | 193–210 | ALS | 2014 | [63] |
5 | B | 195–235 | ALS | 2010 | [64] |
6 | C | 280–285 | ALS | 2003 | [65] |
6 | C | 281–282 | ALS | 2006 | [66] |
6 | C | 282–1000 | PETRA III | 2020 | [67] |
6 | C | 287–290 | ALS | 2004 | [68] |
6 | C | 286–326 | PETRA III | 2015 | [69] |
6 | C | 286–326 | PETRA III | 2018 | [70] |
6 | C | 292–323 | ALS | 2005 | [71] |
6 | C | 300–338 | ALS | 2009 | [72] |
6 | C | 358–439 | PETRA III | 2018 | [34] |
7 | N | 399–406 | SOLEIL | 2011 | [73] |
7 | N | 390–435 | PETRA III | 2019 | [74] |
7 | N | 415–440 | SOLEIL | 2020 | [75] |
7 | N | 404–442 | SOLEIL | 2014 | [76] |
7 | N | 412–414 | SOLEIL | 2013 | [77] |
7 | N | 421–460 | SOLEIL | 2013 | [77] |
8 | O | 526–536 | ALS | 2012 | [78] |
8 | O | 524–543 | PETRA III | 2016 | [79] |
8 | O | 525–540 | SPRING-8 | 2002 | [80] |
8 | O | 526–620 | SOLEIL | 2015 | [81] |
8 | O | 526–620 | SOLEIL | 2015 | [81] |
8 | O | 540–600 | SOLEIL | 2014 | [82] |
8 | O | 550–670 | SOLEIL | 2017 | [83] |
8 | O | 561–570 | SOLEIL | 2017 | [83] |
9 | F | 660–1000 | PETRA III | 2018 | [84] |
10 | Ne | 841–858 | SPRING-8 | 2001 | [25] |
10 | Ne | 840–925 | PETRA III | 2017 | [33] |
10 | Ne | 850–863 | SPRING-8 | 2001 | [25] |
10 | Ne | 853–873 | SPRING-8 | 2001 | [85] |
14 | Si | 1830–1880 | PETRA III | 2020 | [86] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schippers, S.; Müller, A. Photoionization of Astrophysically Relevant Atomic Ions at PIPE. Atoms 2020, 8, 45. https://doi.org/10.3390/atoms8030045
Schippers S, Müller A. Photoionization of Astrophysically Relevant Atomic Ions at PIPE. Atoms. 2020; 8(3):45. https://doi.org/10.3390/atoms8030045
Chicago/Turabian StyleSchippers, Stefan, and Alfred Müller. 2020. "Photoionization of Astrophysically Relevant Atomic Ions at PIPE" Atoms 8, no. 3: 45. https://doi.org/10.3390/atoms8030045
APA StyleSchippers, S., & Müller, A. (2020). Photoionization of Astrophysically Relevant Atomic Ions at PIPE. Atoms, 8(3), 45. https://doi.org/10.3390/atoms8030045