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Abstract: This study focuses on the details of cascade repopulation of doubly excited triply open-shell
C3+(1s2s2p) 4P and 2P± states produced in 2–18 MeV collisions of C4+(1s2s 3S) with He. Such cascade
calculations are necessary for the correct determination of the ratio R of their cross sections, used as
a measure of spin statistics [Madesis et al. PRL 124 (2020) 113401]. Here, we present the details of
our cascade calculations within a new matrix formulation based on the well-known diagrammatic
cascade approach [Curtis, Am. J. Phys. 36 (1968) 1123], extended to also include Auger depopulation.
The initial populations of the 1s2sn` 4L and 1s2sn` 2L levels included in our analysis are obtained from
the direct n` single electron capture (SEC) cross sections, calculated using the novel three-electron
close-coupling (3eAOCC) approach. All relevant radiative branching ratios (RBR) for n ≤ 4 were
computed using the COWAN code. While doublet RBRs are found to be very small, quartet RBRs
are found to be large, indicating cascade feeding to be important only for quartets, consistent with
previous findings. Calculations including up to third order cascades, extended to n→ ∞ using an
n−3 SEC model, showed a ∼60% increase of the 1s2s2p 4P populations due to cascades, resulting,
for the first time, in R values in good overall agreement with experiment.

Keywords: cascade feeding; single electron capture; cascade matrix; mixed-state beams; metastable
states; Li-like states; He-like states; zero-degree Auger projectile spectroscopy; 3eAOCC

1. Introduction

Highly excited (autoionizing) atomic and ionic states can be produced in ion-atom and ion-electron
collisions by various processes such as inner-shell excitation, ionization, electron capture (to excited
states), and/or their combinations. These states then relax to lower energy states and the ground
state via radiative and/or Auger decays in a stepwise manner, known as cascades, resulting in the
repopulation of the intermediate levels. Cascade repopulation of intermediate levels is also common to
atoms and multi-charged ions in laboratory plasmas [1,2], as well as astrophysical plasmas encountered
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in solar coronas, gas nebulae and active galactic nuclei (AGN) [1,3,4]. The complex character of
the stepwise cascade process, an inherent, but usually unwanted side effect in most investigations,
has received considerable attention, studied primarily by simulations [5–8]. Such studies have focused
on mostly radiative cascades related to recombination in He-like ions [9], emission of polarized
X-rays [10], X-ray fusion diagnostics [11], shake-off effects [12], solar wind [13] and electron capture in
H-like ions [14–16], just to mention a few. Cascade repopulation affects the accurate determination of
cross sections, therefore adding uncertainty in the comparison with theory, which eventually must
also include the additional cascade contributions by performing a detailed cascade feeding analysis.
Moreover, cascades have been an ever present limitation in the precise determination of lifetimes [17]
using beam-foil spectroscopy [18–22].

Some of the most investigated states in ion-atom collisions are the Li-like doubly excited quartet
1s2snl 4L states. In particular, the lowest-lying 1s2s2p 4P state, which is also metastable, has been
under study since the early 70s, first observed in the ions of Be+, B2+ and F6+ [23], C3+ [24], O5+

and F6+ [25,26], Li [27], as well as in highly charged heavier ions such as Cl14+ and Ar15+ [28]. For a
general review of optical studies of these states, see also [29] and references therein.

Of more recent interest has been the ratio R of 1s2s2p 4P/2P cross sections [30]. In the case of 2p
single electron capture (SEC) in collisions of 1s2s 3S ions with He and H2, R has been considered to be
an indicator of spin statistics [31–35]. Indeed, this ratio results in R = 1, when considering only spin
multiplicity, while R = 2 in the frozen core approximation, where only the 4P and a single 2P state can
be produced from the 1s2s 3S initial state [34,36,37]. Such statistical arguments and approximations are
often used to simplify difficult problems of computing relative populations in high energy plasmas [4]
and can therefore be of important practical use. Very recently, we reported [30] that in collisions using
C4+(1s2s 3S) projectile ions, a complete breakdown of the frozen core treatment used for SEC to date is
observed, as regards to spin statistics in this highly correlated dynamical atomic system. Furthermore,
we showed that only a new dynamical calculation involving three active electrons is found to give
results consistent with experiment, with radiative cascade repopulation playing an important role.

Here, we present the details of modeling this radiative cascade feeding of the doubly excited
C3+ 1s2s2p 4P and 1s2s2p 2P levels formed by SEC. Our cascade calculation is based on a new,
elegant, and easy to use matrix formulation extending the well-known diagrammatic approach
of Curtis [38]. The necessary radiative and Auger transition rates were computed using the
COWAN [39] atomic structure code, while the initial state populations were taken from our recent
publication [30], where they were computed using the new three-electron atomic orbital close-coupling
(3eAOCC) approach.

2. Mathematical Description of Radiative Cascade Feeding

In this section, we present our mathematical description of radiative cascades extending the
treatment of Curtis [38] to also include Auger depopulation. These Auger transitions are important
in the case of the C3+(1s2s2p 4,2P) states [35], to which we apply our otherwise general treatment.
An elegant, cascade matrix formulation is used making the cascade calculations much easier to evaluate
to any desired cascade order, as required.

2.1. Definitions—The Cascade Rate Equation

We consider a set of m levels labeled consecutively in order of decreasing binding energies Ei
from 1 to m. The population at time t of the j-th level denoted Nj(t) with energy Ej is assumed to be
the result of cascade feeding from higher energy levels (k > j) by radiative transitions with rates Ar

kj
and photon energies h̄ωkj = Ek − Ej, as well as depopulation by radiative transitions to all lower energy
levels f = 1, 2, . . . , j−1, with rates Ar

j f . Additional depopulation can also occur due to autoionizing
(including Auger and Coster-Kronig) transitions, which remove population from the level j to all final
states f ′, with the rate Aa

j f ′ . The final states f ′ of the autoionizing transitions correspond to a different
set of electronic configurations from those of the radiative transitions (the ion charge is reduced by
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one in the case of autoionization) and are therefore denoted by a prime. An example of the schematic
decay of a 5-level system (m = 5) is shown in Figure 1.

Figure 1. Schematic decay of a 5-level system indicating radiative cascade feeding to the level 2 of
interest (i.e., n = 2 and m = 5 in Equation (1)). The radiative transitions are indicated by red arrows,
while Auger transitions by blue arrows. Cascades are separated into feeding orders c0, c1, c2, c3, . . .
requiring, in this example, a total of 0, 1, 2 or 3 sequential transitions, respectively, to reach the chosen
level of interest, i = 2. Thus, the k-th cascade order ck results in the emission of k photons along each of
the allowed cascade sequences. For simplicity, only one radiative ( f = 1) and one Auger ( f ′ = 1′) final
levels are shown. The radiative branching ratios, also known as partial fluorescence yields, are given in
general by ωij (only ω21 is shown) for transitions from initial level i to final levels j (see Equation (4)).
Also indicated is the partial Auger yield ξ21′ .

The coupled differential equations governing the population of any particular level n ∈ [1, m]

(i.e., the general index j now has the specific value j = n) are then readily given [38] with the addition
of the depopulating autoionization channel [35] 1 by:

dNn

dt
=

m

∑
i=n+1

Ar
inNi(t)−

n−1

∑
f=1

Ar
n f + ∑

f ′
Aa

n f ′

 Nn(t) =
m

∑
i=n+1

Ar
inNi(t)− αn Nn(t), (1)

with αn defined as2:

αn ≡
n−1

∑
f=1

Ar
n f + ∑

f ′
Aa

n f ′ =
1
τn

. (2)

Thus, αn is seen to be the total decay rate (= h̄ Γn, where Γn is the total width) of level n,
i.e., the inverse of its lifetime τn, and is defined as the sum of all transition probabilities between
level n and all lower-lying levels, including Auger decays. In αn (Equation (2)), we now include

1 It is assumed that any populating channel due to autoionization is negligible—this is justified for the system studied
here, i.e., energetic collisions of C4+(1s2s 3S) + He. In principle, such an autoionizing feeding channel would require
the production of Be-like states of the type C2+(1s2snln′ l′) by low probability double capture events, which could then
autoionize to the C3+(1s2snl) states considered here and in Ref. [35]. This is not known to happen, but could happen
due to Coster-Kronig transitions for other carbon transitions such as C2+(1s22pnl) → C3+(1s22s) + e− for n ≥ 4 [40] or
C3+(1s2pnl)→ C4+(1s2l′) + e− for n ≥ 7 [41].

2 The transition rates Aij are related to the corresponding widths Γij = h̄Aij. It is important not to confuse the decay line width
Γ(i, j), which is the sum of the widths of both initial and final states, Γ(i, j) = Γi + Γj, with the natural width of a level Γi
which is related to its lifetime through the uncertainty relationship, τiΓi = h̄ or Γi = h̄αi .
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both radiative and Auger decays, thus extending the treatment of Curtis [38] (which only included the
radiative term Ar

n f in αn). This is seen not to change the overall mathematical form of the rate equation
which remains:

dNn

dt
+ αnNn(t) =

m

∑
i=n+1

Ar
inNi(t). (3)

It is helpful to also introduce the notions of the partial fluorescence yield ωn f and the partial Auger
yield ξn f ′ , in addition to the fluorescence yield ωn and the Auger yield ξn [42]:

ωn f =
Ar

n f

αn
and ωn =

Ar
n

αn
, (4)

ξn f ′ =
Aa

n f ′

αn
and ξn =

Aa
n

αn
, (5)

where we have also introduced the total radiative Ar
n and total Auger Aa

n rates for level n:

Ar
n ≡

n−1

∑
f=1

Ar
n f and Aa

n ≡ ∑
f ′

Aa
n f ′ , (6)

and therefore we also have:

αn = Ar
n + Aa

n and ωn + ξn = 1. (7)

Thus, ωn f and ξn f ′ , are equivalent to probabilities for the state n to decay either radiatively or by
autoionization to any one of the final states f or f ′, respectively. The partial fluorescence yield ωij is
also known as the radiative branching ratio (RBR).

Equation (3) can be readily solved by multiplying both sides by the integrating factor exp(αnt)
and performing the integration after exchanging the order of sum and integral [38] to give an iterative
solution that can be readily programmed to give analytic results:

Nn(t) =

[
Nn(0) +

m

∑
i=n+1

Ar
in

∫ t

0
dt′ exp(αnt′)Ni(t′)

]
exp(−αnt). (8)

Inclusion of the depopulating Auger transitions in the definition of αn (Equation (2)) does not
change the form of the differential equation (Equation (3)), thus having exactly the same solution as
Equation (8), like the ones given by Curtis [38]. However, the result is more general and, as seen in the
case of the C3+(1s2s2p 4,2P) level populations, plays an important role in the detailed understanding of
the cascade feeding mechanism, which is found to selectively enhance the population of the quartets
compared to that of the doublets [30,33,35].

2.2. Time-Dependence of Level Populations and Cascade Feeding Orders

The first three iterations of Equation (8) can be readily computed after performing the trivial
integrations. Defining the radiative cascade feeding orders c0, c1, c2, we have [38]:
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c0 : Nc0
n (t) = Nn(0) exp(−αnt), (9)

c1 : Nc1
n (t) =

[
m

∑
i=n+1

Ni(0)Ar
in

∫ t

0
dt′ exp[(αn − αi)t′]

]
exp(−αnt)

=
m

∑
i=n+1

Ni(0)Ar
in

[
exp(−αit)
(αn − αi)

+
exp(−αnt)
(αi − αn)

]
, (10)

c2 : Nc2
n (t) =

 m−1

∑
i=n+1

m

∑
j=i+1

Nj(0)Ar
ji A

r
in

∫ t

0
dt′ exp[(αn − αi)t′]

∫ t′

0
dt′′ exp[(αi − αj)t′′]

 exp(−αnt)

=
m−1

∑
i=n+1

m

∑
j=i+1

Nj(0)Ar
ji A

r
in

[
exp(−αjt)

(αi − αj)(αn − αj)
+

exp(−αit)
(αj − αi)(αn − αi)

+
exp(−αnt)

(αj − αn)(αi − αn)

]
, (11)

with the total contribution up to and including cascade order ck, Nn(t)[≤ ck], readily computed using
Equation (8) and given by the sum:

Nn(t)[≤ ck] = Nc0
n (t) + Nc1

n (t) + Nc2
n (t) + . . . + Nck

n (t) =
k

∑
i=0

Nci
n (t). (12)

We note that the t = 0 initial level populations Ni(0) above, refer to the i-th level populations
before cascading begins and are independently calculated, as discussed in detail in Section 3.3.

Referring to Figure 1, the 0-th order cascade term c0 corresponds to the depopulating of level n
of interest, either by an Auger or a radiative transition, to all available levels below it, while cascade
orders ck (with k ≥ 1) correspond to the populating of level n from all higher-lying energy levels.
The initial population of level n at time t = 0, i.e., in the absence of cascade feeding, is usually the
primary process under investigation. Here, this is the direct 2p SEC leading to the production of the
1s2s2p 4P and 2P states detected by their Auger decay [30,43]. The higher order cascades usually
constitute an unwanted complication that needs to be understood and quantified before accurate cross
section information can be extracted about the population of level n due to just the primary process.

The first-order cascade term c1 corresponds to the radiative feeding of the level n from all levels i
above it, i.e., n + 1 ≤ i ≤ m, by direct one-step radiative {i → n} transitions, i.e., with the emission
of 1 photon. The second-order c2 corresponds to the feeding of the level n from all levels j above it,
in a two-step radiative transition sequence {j → i → n}, with the first step described by the index j
with i + 1 ≤ j ≤ m, and the second step by the index i, with the second-step index i within the range
n + 1 ≤ i ≤ m− 1. The second step has its upper limit reduced by 1, i.e., m− 1, to accommodate the
first step which would start in this case from j = m, (i.e., {j = m→ i→ n}). Thus, in the c2 sequence
2 photons are emitted. Similarly, the ck order results in a sequence of k-steps with the emission of k
photons. The contribution of any order k corresponds to the total probability of emitting k sequential
photons, each transition contributing with its RBR ωij, and thus is roughly proportional to the product
(ωij)

k, which therefore rapidly decreases with increasing value of k. The maximum permitted order is
clearly determined by the number of levels between n and the highest level m = M, where M is the
maximum number of levels included in the calculation.

In a typical cascade calculation, it is rare to include contributions beyond the 3rd order (c3),
since the convergence of the summation series (Equation (12)) is usually quite rapidly attained. Here,
in our calculations (see next sections), we include up to 3rd order cascades, clearly showing that
convergence has effectively been attained by c2 for all, but the lowest collision energies3.

3 At collision energies below 0.3 MeV/u, even higher order cascades might need to be considered since the value of n at
which SEC is maximized moves from nmax = 2 for MeV/u collisions to higher values nmax ∼ 3–5 for keV/u collisions [44].
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2.3. Final Level Populations

Integrating the time-dependent population number Nn(t) over a sufficiently long detection time
τd, so as to include all the decaying radiative transitions of interest (dipole E1 transitions typically
occur within the lifetime of any level i, i.e., τi = 1/αi, so we need αiτd >> 1), results in integrals of
the type:

∫ τd

0
exp(−αit)dt =

1− exp(−αiτd)

αi
≈ 1

αi
(for all αiτd >> 1), (13)

effectively equivalent to integrating over all time, i.e., τd → ∞. Thus, integrating over all time,
the general expressions for Nn(t) from Equations (9)–(11) for c0, c1 and c2 cascades we have:

c0 : Ic0
n ≡

∫ ∞

t=0
dt Nc0

n (t) =
Nn(0)

αn
, (14)

c1 : Ic1
n ≡

∫ ∞

t=0
dt Nc1

n (t) =
m

∑
i=n+1

Ni(0)Ar
in

[
1

(αn − αi)αi
+

1
(αi − αn)αn

]

=
m

∑
i=n+1

Ni(0)
αn

Ar
in

αi
=

1
αn

m

∑
i=n+1

Ni(0)ωin, (15)

c2 : Ic2
n ≡

∫ ∞

t=0
dt Nc2

n (t)

=
m−1

∑
i=n+1

m

∑
j=i+1

Nj(0)Ar
ji A

r
in

[
1

αj (αi − αj)(αn − αj)
+

1
αi (αj − αi)(αn − αi)

+
1

αn (αj − αn)(αi − αn)

]

=
m−1

∑
i=n+1

m

∑
j=i+1

Nj(0)
αn

Ar
ji

αj

Ar
in

αi
=

1
αn

m−1

∑
i=n+1

m

∑
j=i+1

Nj(0)ωji ωin, (16)

and similarly for c3 and so on with

c3 : Ic3
n ≡

∫ ∞

t=0
dt Nc3

n (t) =
1

αn

m−2

∑
l=n+1

m−1

∑
i=l+1

m

∑
j=i+1

Nj(0)ωji ωil ωln. (17)

This can be readily extended to include cascades to any order ck so that in general we have:

In [≤ ck] =
∫ ∞

t=0
dt Nn(t)[≤ ck] = Ic0

n + Ic1
n + Ic2

n + . . . + Ick
n =

Nn[≤ ck]

αn
=

k

∑
i=0

Ici
n ,

with the total population of level n up to and including order ck given by:

Nn [≤ ck] ≡ Nc0
n + Nc1

n + Nc2
n + Nc3

n + . . . + Nck
n =

k

∑
i=0

Nci
n

= Nn(0) +
m

∑
i=n+1

Ni(0)ωin +
m−1

∑
i=n+1

m

∑
j=i+1

Nj(0)ωjiωin +
m−2

∑
l=n+1

m−1

∑
i=l+1

m

∑
j=i+1

Nj(0)ωjiωilωln + . . . , (18)

with:

Nck
n ≡ αn Ick

n . (19)

These results are clearly what one would intuitively expect by inspecting Figure 1.
Thus, in Equation (18), the 0-th cascade order c0 refers to just the initial occupation number Nn(t = 0).
The 1st cascade order, c1, requires a single radiative transition to feed the state n from all higher-lying
states j with probability ωjn and initial occupation number Nj(0), readily given by ∑m

j=n+1 Nj(0)ωjn.
The 2nd cascade order, c2, requires the contributions of all possible two-step radiative transition
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pathways ending on level n, i.e., all two-step pathways {j → i → n}, with probability ωji and
ωin and starting from all initial states j with occupation number Nj(0). This is readily given by
∑m−1

i=n+1 ∑m
j=i+1 Nj(0)ωjiωin, and so on. Thus, the general result for any order can be readily written

down simply by inspection of the cascade level diagram. The clarity of this diagrammatic approach is
nicely presented by Curtis [38] and summarized here.

2.4. X-ray and Auger Electron Emission Rates

Experimental information about the n level population comes mostly from either X-ray or Auger
electron measurements. The rate of X-rays (or Auger electrons) emitted in a transition from the level n

to level f (or f ′, respectively) is given (in #/s) by [33,45]:

Ṅx
n f (t) ≡

dNx
n f

dt
= Nn(t)Ar

n f (characteristic x-rays), (20)

Ṅe
n f ′ (t) ≡

dNe
n f ′

dt
= Nn(t)Aa

n f ′ (Auger electrons). (21)

Noting from Equation (4) that ωn f =
Ar

n f
αn

and from Equation (5) that ξn f ′ =
Aa

n f ′
αn

, the total number of
X-rays or Auger electrons emitted up to and including order ck is then given by:

Nx
n f [≤ ck] =

∫ ∞

t=0
dt Ṅx

n f (t) = Ar
n f In[≤ ck] = ωn f Nn[≤ ck] (characteristic x-rays), (22)

Ne
n f ′ [≤ ck] =

∫ ∞

t=0
dt Ṅe

n f ′ (t) = Aa
n f ′ In[≤ ck] = ξn f ′Nn[≤ ck] (Auger electrons), (23)

with Nn[≤ ck] given by Equation (18).
Here, we have used the technique of zero-degree Auger projectile spectroscopy (ZAPS) [46] to

obtain the level populations of the 1s2s2p 4P and 2P± states [30,43].

2.5. The Cascade Matrix Formulation

The above results can be put into a very practical and general matrix format for any level n of
primary interest (1 ≤ n ≤ M) by introducing the upper triangular M×M matrix Ω̃ as follows:

Ω̃ = ω̃ij =

{
0 j ≤ i

ωji j > i
(where i = 1, 2, 3, . . . , M and j = 1, 2, 3, . . . , M), (24)

i.e., Ω̃ has all its diagonal elements and its lower off-diagonal elements equal to 0 (see example in
Equation (27)). The upper off-diagonal elements are the RBRs ωji, i.e., the partial fluorescence yields
for the radiative transition {j → i}. Unfortunately, for array element ω̃ij, to have its indices in the
right order for matrix multiplication, one must have them reversed from the existing notation of ωij,
i.e., ω̃ij = ωji, where j and i are the initial and final level numbers of the transition {j→ i}.

With this definition, it can be readily seen from Equation (15) that for any level of interest n in a
system of M levels we can write for c1:

Nc1
n = αn Ic1

n =
M

∑
i=n+1

ωin Ni(0) =
M

∑
i=1

ω̃ni Ni(0), (25)

since all elements of ω̃ni = 0 for n ≤ i. The last summation in Equation (25) is just the multiplication of
the matrix Ω̃ with column vector Nc0 :

Nc1 = Ω̃⊗Nc0 (Ep), (26)
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where Nc0 is the column vector with elements Nc0
i ≡ (Nc0 )i = Ni(0), i.e., the population numbers of all

i = 1 . . . M levels at time t = 0 for the collision energy Ep explicitly noted. Then, in full matrix form
(with the n-th entry of interest in bold) this reads:



Nc1
1

Nc1
2

. . .

Nc1
n−1

Nc1
n

Nc1
n+1

. . .

Nc1
M−1

Nc1
M



=



0 ω̃12 ω̃13 . . . . . . . . . . . . . . . ω̃1M

0 0 ω̃23 ω̃24 . . . . . . . . . . . . ω̃2M

0 . . . 0 . . . . . . . . . . . . . . . . . .

0 . . . . . . 0 ω̃n−1n . . . . . . . . . ω̃n−1M

0 . . . . . . . . . 0 ω̃nn+1 . . . . . . ω̃nM

0 . . . . . . . . . . . . 0 ω̃n+1n+2 . . . ω̃n+1M

0 . . . . . . . . . . . . . . . 0 . . . . . .

0 . . . . . . . . . . . . . . . . . . 0 ω̃M−1M

0 0 0 0 0 0 0 . . . 0





Nc0
1

Nc0
2

. . .

Nc0
n−1

Nc0
n

Nc0
n+1

. . .

Nc0
M−1

Nc0
M



, (27)

setting everywhere ω̃ij = ωji, we obtain the c1 contributions for any level n with 1 ≤ n ≤ M.
The second cascade order contributions (c2) can also be obtained in exactly the same way from the

first order (c1). In fact, from Equation (16) we have:

Nc2
n = αn Ic2

n =
m−1

∑
i=n+1

m

∑
j=i+1

ωinωji Nj(0) =
M

∑
i=1

ω̃ni

M

∑
j=1

ω̃ij Nj(0) =
M

∑
i=1

ω̃ni Nc1
i . (28)

Thus, the general formula for cascades of order k (ck) is seen to be obtained from the immediately
lower order k− 1 (ck−1) by the following simple algorithm:

Nck
n =

M

∑
i=1

ω̃ni N
c(k−1)
i , (29)

or in matrix form:

Nck = Ω̃⊗N
c(k−1) = Ω̃k ⊗Nc0 (Ep), (30)

where Ω̃k refers to the matrix product of k Ω̃ matrices. Thus, the total population up to and including
contributions of order ck can be written in column form as:

N[≤ ck] =
k

∑
i=0

Nci =
(

Ω̃0 + Ω̃ + Ω̃2 + . . . + Ω̃k
)
⊗Nc0 (Ep), (31)

where Ω̃0 ≡ I, is the identity matrix.
We note that the initial population number Ni(0) of each level i is proportional to its (direct)

production cross section σi(= σc0
i ):

Ni(0) = Nc0
i (0)(Ep) = κ σc0

i (Ep), (32)

where the proportionality constant κ depends quite generally only on the particular features of the
specific experimental setup. Thus, we may define the cross section column vector Sc0 analogous to the
population column vector Nc0 :

Nc0 (Ep) = κ Sc0 (Ep), (33)

and then write in analogy with Equation (30):

Sck = Ω̃⊗ S
c(k−1) = Ω̃k ⊗ Sc0 (Ep). (34)
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Thus, the total cross sections up to and including contributions of order ck is given in analogy
with Equation (31) in column form by:

S[≤ ck] =
k

∑
i=0

Sci =
(

Ω̃0 + Ω̃ + Ω̃2 + . . . + Ω̃k
)
⊗ Sc0 (Ep), (35)

where each cross section entry i of the column vector Sck can be symbolised by σ
ck
i .

The simplicity of this matrix formulation is obvious. One only needs to compute the partial
fluorescence yields ωi f for all relevant transitions and insert them into the matrix Ω̃ and, of course,
to have also calculated the relevant direct (0-th order) cross sections Sc0 (Ep) at each collision energy Ep.
Then, all available cascade orders may be readily computed for all required levels using Equation (34).

The results of our cascade calculations based on such an iterative cascade matrix formulation have
already been presented in Ref. [30]. The details of our matrix approach, presented here for the first time,
are seen to be similar to other cascade matrix formulations that appear in the literature, as for example
in the analysis of optical recombination line spectra by astrophysicists (see [3,47] and references therein).
Our upper triangular matrix Ω̃ consisting of the RBRs, is seen to be equivalent to the full cascade matrix
Cnl,n′ l′ for any transition from level n, l to any other n′l′ [47]. Indeed, in the cascade matrix Cnl,n′ l′ only
transitions from higher-lying energy levels to lower-lying levels have non-zero RBRs, thus making it
equivalent to an upper triangular matrix. Our formulation, independently derived as an extension of
the diagrammatic approach of Curtis [38], seems to be simpler and mathematically more transparent,
allowing for the direct calculation of any cascade order.

3. Calculations of 1s2s2p 4P and 2P SEC Populations Including Cascade Repopulation

As mentioned earlier, in the production of the 1s2s2p 4P and 1s2s2p 2P states by 2p SEC in collisions
of He-like (1s2s 3S) ion beams with atomic targets, as for example in:

C4+(1s2s 3S) + He→ C3+(1s2s2p 4,2P) + He+(n`) (2p SEC), (36)

it has been shown that the production of the 1s2s2p 4P population is enhanced relative to the 2P

populations [33,34] due to selective cascade feeding [30,35]. As shown schematically in Figure 2,
higher-lying 1s2sn` 4L quartet states (with n > 2 and L = ` ≤ n − 1), also formed in the collision by
n` SEC, Auger decay very weakly to the 1s2 ground state (forbidden by spin conservation), compared to
the corresponding higher-lying 1s2sn` 2L doublet states, similarly formed in the collision, which strongly

Auger decay to the 1s2 ground state (allowed by spin conservation). Both quartets and doublets also
strongly radiatively decay to lower-lying quartets and doublets correspondingly, thus, in principle,
cascade feeding all lower-lying states of the same spin symmetry (intercombination quartet� doublet
E1 transitions are spin forbidden [48,49] and thus very weak). However, in practice, the doublets are
efficiently depleted by their much stronger Auger decay allowing for minimal cascade feeding of
lower-lying doublet levels, while quartets suffer negligible Auger depletion, thus resulting in strong
cascade repopulation. Eventually, practically all higher-lying quartet SEC population is effectively
transferred to the 1s2s2p 4P state which is thus seen to act as a kind of “excited” ground state [30,33–35].
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Figure 2. Schematic illustration of the 1s2s2p 4P state selective cascade feeding mechanism compared
to the similarly configured 1s2s2p 2P states all produced by SEC in collisions of C4+(1s2s 3S) with
atomic targets. Green solid arrows: n` SEC leading to the production of 1s2sn` 4L quartets (left) and
1s2sn` 2L doublets (right). Red arrows: E1 radiative transitions. Blue arrows: Auger transitions to
C4+(1s2) ground state. The strong Auger decay of the doublet states (solid blue slanted arrows)
depletes their SEC populations resulting in negligible cascade feeding of the 1s2s2p 2P state. On the
contrary, the much weaker Auger decay of the quartet states (dashed blue slanted arrows - forbidden
due to spin conservation) allows for the strong cascade feeding of the 1s2s2p 4P state.

Consequently, to determine the direct 2p SEC cross section in the production of the 1s2s2p 4P and
2P states according to Equation (36), as well as their ratio R, one must also separately determine the
cascade contributions. Since this usually cannot be done experimentally, it is typically included in the
calculation. This requires the additional cascade calculation, as presented in Section 2, which includes
the atomic structure calculation of the necessary RBRs, as well as the collision dynamics calculations of
the initial production cross sections. Next, we present our RBR results based on the COWAN code
calculations, as well as the initial production cross sections based on our 3eAOCC approach.

3.1. Decay Rates and Radiative Branching Ratios for C3+[(1s2s 3S)n` 4,2L] States with n = 3 and n = 4

Reported atomic structure calculations on Li-like ion states including carbon have been quite
prevalent. In particular, the energies of the 1s2lnl′ states for n = 2, 3 and their E1 and Auger transition
rates to 1s2nl and 1s2, respectively have been reported by Cheng [50] and Chen [51] using the
multi-configuration Dirac-Fock method (MCDF). Also by Vainshtein and Safronova [52], Safronova
and Bruch [53], and most recently by Goryaev et al. [54], using the Z-expansion method. Davis and
Chung [55] presented results for the spin-induced autoionization and radiative transition rates for the
1s2s2p 4PJ states using the saddle-point complex rotation method. More recently, radiative and Auger
transition rates also using the MCDF method, were presented for 1s2s2p 4PJ states by Benis et al. [56]
and for 1s2s3p levels by Santos et al. [57].

In addition, various energy level calculations, Auger yields and line identifications of Auger
transitions for Li-like carbon states have also been presented within the field of high resolution
Auger projectile spectroscopy in ion-atom collisions by Schneider et al. [24,58], Mann [59], Mack and
Niehaus [44], and Deveney et al. [60]. In all these publications, radiative transitions to the singly excited
states 1s2nl are only reported. However, some selective results on carbon, for radiative transitions
between doubly excited states are given in Blanke et al. [61,62] (including lifetimes of 1s2pnl 4L states
for n = 2− 3), [62] (wavelengths of 1s2s3d 4D → 1s2s2p 4P transitions), Laughlin [63] (transition rates
and radiative lifetimes for 1s2snl 4L and 1s2pnl 4L levels with L ≤ 4). These results do not cover all the
radiative and Auger transitions needed for our cascade calculations. We therefore performed our
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own calculations using the COWAN code [39], to obtain the radiative and Auger transition rates and
RBRs for the C3+[(1s2s 3S)n` 2,4L] states decaying to the 1s2sn′l′ 2,4L′ states. These results were used in our
present calculations of the cascade repopulation of the 1s2s2p 2,4P states during the capture process.

Our calculations were carried out using the 2018 version of the COWAN [39] code, which is free
of certain bugs reported earlier [64]. Our results on transition rates were compared with data from
Ref. [51] for n = 2 and n = 3 and found in good agreement. The RCE subroutine of the code that
performs the least-squares fitting of the energy levels was not used due to the lack of an adequate
number of experimentally determined energy levels for the C3+[(1s2s 3S)n` 2,4L] states.

For the autoionizing decays of the C3+(1s2snl) configurations with n ≤ 6, the only allowed final
state is the ground state 1s2 1S of C4+ [41]. Thus, the Auger decay channels reported here correspond
to transitions 1s2snl (2S+1)LJ → 1s2 1S0 + e−(l). Moreover, our results include Auger decay rates for
transitions that violate spin conservation (i.e., ∆S 6= 0) for the Coulomb interaction, e.g., (1s2s 3S)3p 4P1/2 →
1s2 1S0 + e−(p). Such transitions are attributed to the fact that the initial state of the transition is a
mixed-state, i.e., it cannot be represented as a pure state in the LS coupling scheme, and thus decays
via a component of the mixed-state that is permitted to Auger decay [55].

Our results for the decay rates and branching ratios are presented in Table 1 for the quartet and
Table 2 for the doublet states, respectively. Transitions with RBRs smaller than 0.1 are considered
negligible and omitted. Based on these results, a Grotrian diagram of the strongest quartet transitions
for the carbon 1s2snl 4LJ states with n ≤ 4 is shown in Figure 3.

Figure 3. Grotrian diagram of the C3+(1s2snl 4L) quartet level system for n ≤ 4. E1 transition selection
rules require ∆l = ±1, ∆J = 0,±1 and ∆S = 0. Only E1 transitions with the strongest RBRs from
Table 1 are shown. The c2 Yrast transition chain 4 f 4F9/2 → 3d 4D7/2 → 2p 4P5/2 is clearly seen to have
the strongest branching ratios.
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Table 1. Radiative (Ar
ij) and Auger (Aa

i f ′ ) decay rates, radiative branching ratios (RBR) given by
the partial fluorescence yields (ωij), and partial Auger yields (ξi f ′ ) for selected transitions of the
C3+[(1s2s 3S)nl 4L] quartet states for n = 2− 4. States are listed in order of decreasing binding energy.
The lowest-lying levels (of primary interest) are separated from the rest by a double line. A “-” signifies
that the computed rate leads to a negligible value (i.e., <0.1) for the related partial branching ratio and
is therefore not listed.

i Initial j Final a Ar
ij(s−1) Aa

i f ′(s−1) a αi(s−1) RBR—ωij ξi f ′
a

# nl 2S+1LJ # nl 2S+1LJ (Equation (2)) (Equation (4)) (Equation (5))

1 2p 4P1/2 - - - 3.39 × 108 b 3.401 × 108 b - 0.996

2 2p 4P3/2 - - - 1.37 × 108 b 1.374 × 108 b - 0.997

3 2p 4P5/2 - - - 8.26 × 106 b 8.239 × 106 b - 0.998

4 3s 4S3/2 1 2p 4P1/2 3.038 × 109 - 1.820 × 1010 0.167 -
4 2 2p 4P3/2 6.071 × 109 - 0.333 -
4 3 2p 4P5/2 9.095 × 109 - 0.500 -

5 3p 4P1/2 4 3s 4S3/2 8.643 × 107 2.730 × 107 1.492 × 108 0.579 0.183

6 3p 4P3/2 4 3s 4S3/2 1.733 × 108 1.380 × 108 3.886 × 108 0.446 0.355

7 3p 4P5/2 4 3s 4S3/2 2.611 × 108 - 3.615 × 108 0.722 -

8 3d 4D1/2 1 2p 4P1/2 4.661 × 1010 - 5.595 × 1010 0.833 -
8 2 2p 4P3/2 9.316 × 109 - 0.167 -

9 3d 4D3/2 1 2p 4P1/2 4.661 × 1010 3.240 × 105 1.119 × 1011 0.417 -
9 2 2p 4P3/2 5.962 × 1010 - 0.533 -
9 3 2p 4P5/2 5.584 × 109 - 0.050 -

10 3d 4D5/2 2 2p 4P3/2 1.174 × 1011 7.590 × 105 1.677 × 1011 0.700 -
10 3 2p 4P5/2 5.026 × 1010 - 0.300 -

11 3d 4D7/2 3 2p 4P5/2 2.234 × 1011 - 2.235 × 1011 1.000 -

12 4s 4S3/2 2 2p 4P3/2 1.875 × 109 - 1.051 × 1010 0.178 -
12 3 2p 4P5/2 2.810 × 109 - 0.267 -
12 6 3p 4P3/2 1.630 × 109 - 0.155 -
12 7 3p 4P5/2 2.442 × 109 - 0.232 -

13 4p 4P1/2 4 3s 4S3/2 1.214 × 109 1.280 × 107 1.630 × 109 0.745 -
13 8 3d 4D1/2 1.866 × 108 - 0.114 -
13 9 3d 4D3/2 1.866 × 108 - 0.114 -

14 4p 4P3/2 4 3s 4S3/2 2.427 × 109 6.460 × 107 3.302 × 109 0.735 -
14 10 3d 4D5/2 4.703 × 108 - 0.142 -

15 4p 4P5/2 4 3s 4S3/2 3.642 × 109 - 4.850 × 109 0.751 -
15 11 3d 4D7/2 8.960 × 108 - 0.185 -

16 4d 4D1/2 1 2p 4P1/2 1.614 × 1010 - 2.314 × 1010 0.698 -
16 2 2p 4P3/2 3.225 × 109 - 0.139 -
16 5 3p 4P1/2 3.141 × 109 - 0.136 -

17 4d 4D3/2 1 2p 4P1/2 1.614 × 1010 1.560 × 105 4.626 × 1010 0.349 -
17 2 2p 4P3/2 2.064 × 1010 - 0.446 -

18 4d 4D5/2 2 2p 4P3/2 4.064 × 1010 3.640 × 105 6.936 × 1010 0.586 -
18 3 2p 4P5/2 1.740 × 1010 - 0.251 -
18 6 3p 4P3/2 7.911 × 109 - 0.114 -

19 4d 4D7/2 3 2p 4P5/2 7.735 × 1010 - 9.243 × 1010 0.837 -
19 7 3p 4P5/2 1.506 × 1010 - 0.163 -

20 4 f 4F3/2 8 3d 4D1/2 1.153 × 1010 - 1.647 × 1010 0.700 -
20 9 3d 4D3/2 4.614 × 109 - 0.280 -

21 4 f 4F5/2 9 3d 4D3/2 1.845 × 1010 7.060 × 104 2.471 × 1010 0.747 -
21 10 3d 4D5/2 6.025 × 109 - 0.244 -

22 4 f 4F7/2 10 3d 4D5/2 2.824 × 1010 1.290 × 105 3.295 × 1010 0.857 -
22 11 3d 4D7/2 4.706 × 109 - 0.143 -

23 4 f 4F9/2 11 3d 4D7/2 4.118 × 1010 - 4.118 × 1010 1.000 -
a All Auger transitions refer to the same final ionic state f ′, i.e., C4+(1s2 1S0).; b From Benis et al. [56].
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Table 2. Same as Table 1, but for the C3+[(1s2s 3,1S)nl 2L] doublet states. Shorthand: nl2L−J ≡
(1s2s 3S)nl 2LJ and nl2L+J ≡ (1s2s 1S)nl 2LJ . Here we only list states with the largest radiative rates,
as well as a few other indicative connecting ones. In most cases, the RBR is much smaller than 0.022,
marked by "-" and considered negligible.

i Initial j Final a Ar
ij(s−1) Aa

ij′(s−1)a αi(s−1) RBR—ωij ξij′
a

# nl 2S+1LJ # nl 2S+1LJ (Equation (2)) (Equation (4)) (Equation (5))

1 2p 2P−1/2 - - - 1.47 × 1013 b 1.52 × 1013 b - 0.968

2 2p 2P−3/2 - - - 1.43 × 1013 b 1.48 × 1013 b - 0.967

3 2p 2P+1/2 - - - 3.86 × 1013 b 3.87 × 1013 b - 0.998

4 2p 2P+3/2 - - - 3.86 × 1013 b 3.87 × 1013 b - 0.998

5 3s 2S−1/2 1 2p 2P−1/2 2.954 × 108 2.380 × 1013 2.381 × 1013 - 1.00
5 2 2p 2P−3/2 5.795 × 108 -
5 3 2p 2P+1/2 1.734 × 109 -
5 4 2p 2P+3/2 3.482 × 109 -

6 3s 2S+1/2 3 2p 2P+1/2 2.084 × 109 1.380 × 1013 1.382 × 1013 - 0.999

7 3p 2P−1/2 6 3s 2S+1/2 1.561 × 107 5.130 × 1012 5.494 × 1012 - 0.934

8 3p 2P−3/2 5 3s 2S−1/2 3.107 × 107 1.030 × 1013 1.103 × 1013 - 0.934

9 3p 2P+1/2 6 3s 2S+1/2 4.573 × 107 1.880 × 1013 1.893 × 1013 - 0.993

10 3p 2P+3/2 6 3s 2S+1/2 9.235 × 107 3.760 × 1013 3.785 × 1013 - 0.993

11 3d 2D−3/2 3 2p 2P+1/2 4.768 × 1010 5.690 × 1011 6.751 × 1011 0.071 0.843

12 3d 2D−5/2 4 2p 2P+3/2 8.646 × 1010 8.540 × 1011 1.013 × 1012 0.085 0.843

13 3d 2D+3/2 1 2p 2P−1/2 4.480 × 1010 1.830 × 1012 1.937 × 1012 0.023 0.945

14 3d 2D+5/2 2 2p 2P−3/2 8.120 × 1010 2.740 × 1012 2.901 × 1012 0.028 0.945

15 4s 2S−1/2 4 2p 2P+3/2 1.716 × 109 9.530 × 1012 9.536 × 1012 - 0.999

16 4s 2S+1/2 4 2p 2P+3/2 1.920 × 109 4.780 × 1012 4.792 × 1012 - 0.997

17 4p 2P−3/2 5 3s 2S−1/2 3.251 × 109 4.020 × 1012 4.369 × 1012 - 0.920

18 4p 2P+3/2 6 3s 2S+1/2 2.667 × 109 1.510 × 1013 1.519 × 1013 - 0.994

19 4d 2D−3/2 1 2p 2P−1/2 1.865 × 1010 2.130 × 1011 2.627 × 1011 0.071 0.811

20 4d 2D−5/2 4 2p 2P+3/2 2.507 × 1010 3.190 × 1011 3.936 × 1011 0.064 0.810

21 4d 2D+3/2 3 2p 2P+1/2 2.477 × 1010 1.040 × 1012 1.084 × 1012 0.022 0.960

22 4d 2D+5/2 4 2p 2P+3/2 4.442 × 1010 1.550 × 1012 1.615 × 1012 0.028 0.960

23 4 f 2F−5/2 11 3d 2D−3/2 2.081 × 1010 5.170 × 109 2.835 × 1010 0.734 0.182

24 4 f 2F−7/2 12 3d 2D−5/2 2.973 × 1010 6.890 × 109 3.780 × 1010 0.787 0.182

25 4 f 2F+5/2 13 3d 2D+3/2 2.241 × 1010 6.550 × 109 3.186 × 1010 0.703 0.206

26 4 f 2F+7/2 14 3d 2D+5/2 3.201 × 1010 8.730 × 109 4.247 × 1010 0.754 0.206
a All Auger transitions refer to the same final ionic state, i.e., C4+(1s2 1S0); b From Chen [51].

3.2. Cascade Feeding Considerations

As seen in Table 1 and more clearly in the Grotrian diagram of Figure 3 for the quartets, there are
higher-lying levels where the RBR ωij is close to 1. On the other hand, in Table 2 for the doublets,
the computed RBRs are mostly very small making cascade feeding negligible. This is consistent with
previous cascade repopulation findings for Li-like carbon [34,35] and fluorine [33] states populated by
nl SEC (Equation (36)). Therefore, in the case of the doublets, no cascade calculations were performed.
Thus, cascade feeding calculations were only performed for the quartet states.

In general, for the quartets, the Auger rates Aa
i f ′ decrease in strength as the principal quantum

number n increases, while the radiative rates Ar
ij increase. Thus, the higher-lying levels are seen to

have increased RBRs compared to levels below them, increasing the cascade feeding probability of
the lowest-lying 2p 4PJ levels (i.e., with J = 1/2, 3/2, 5/2) of interest. Of special interest are also the Yrast
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states (those with maximal J within the same nl 4L level), as already pointed out by Schneider et al [24],
which can provide a path of maximal cascade probability. Indeed, we note that the Yrast cascade
chain 4 f 4F9/2 → 3d 4D7/2 → 2p 4P5/2 (or in Table 1 level numbers 23→ 11→ 3) all have the strongest RBRs
ωi f = 1 along this path (e.g., ω23,11 = ω11,3 = 1) and therefore a 2nd-order (c2) cascade probability of
1 (ω23,11 ·ω11,3 = 1).

For the doublets, even though there are RBRs with large ωij values as listed in Table 2 for n = 4

(e.g., the Yrast transition 4 f 2F−7/2 → 3d 2D−5/2, has ω24,12 = 0.787), their follow up transition feeding
the levels of interest are seen to be much weaker (e.g., the transition 3d 2D−5/2 → 2p 2P+1/2, has only
ω12,3 = 0.085), effectively resulting in a negligible overall c2 cascade probability (e.g., 0.787 · 0.085 = 0.067).

3.3. Initial State Populations

The same initial state populations (cross sections Sc0 (Ep) in Equation (33)) were used as used in
Ref. [30]. These were computed in [30] for 2p SEC using ab initio dynamical calculations involving three

active electrons within a full configuration interaction approach. This involved a semiclassical atomic
orbital close-coupling calculation (referred to as 3eAOCC), with asymptotic descriptions of the atomic
collision partners [65–67]: the time-dependent Schrödinger equation was solved non-perturbatively,
with the inclusion of all couplings related to the static and dynamic interelectronic repulsions and
effects stemming from the Pauli exclusion principle. This approach allows for the accurate modeling
of the C4+ and C3+ electronic structures, including spin and spatial components. It also describes
the dynamics of the system, inducing among other things, excitation, ionization (through population
of pseudo states [67]) and capture to singly and doubly excited states on the carbon center. Overall,
this 3eAOCC approach goes much beyond frozen core models advocated in the past [34,35], where only
one active electron is considered in the dynamics4. SEC cross sections to higher-lying 1s2snl 4L states for
n = 3− 4 were also computed by our close-coupling treatment. Finally, the He target was described by
a model potential binding just a single electron to He+ with the appropriate He(1s2) energies4.

Using these initial state cross sections, the calculated ratio R was found in good agreement
with experiment, for the first time, when the radiative cascades were also taken into account.
These results on R, presented in [30], resolved the previously existing disagreement between theory and
experiment [34,35], while underlining the limited predictive power of the frozen core approximation
as regards to spin statistics in such highly correlated dynamical atomic systems.

4. Results and Discussion

In this work, we implement the cascade matrix formulation (i.e., Equation (34)), progressively
computing increasing cascade order contributions to obtain the overall cascade repopulation of the
states of interest. This requires the independent calculation of: (i) the initial SEC production cross
sections, and (ii) the necessary RBRs ωij. Since, as already mentioned, intercombination transitions are
very weak, the cascade calculations are typically done separately for each spin symmetry (i.e., quartet
or doublet). Due to the much smaller doublet RBRs (compared to the corresponding quartet RBRs),
as evident in Table 2, the cascade repopulation of the doublets will be insignificant, consistent with
previously reported results [35], and is therefore not performed. Thus, only cascade repopulation of
the quartet states is considered here. This is performed using an Ω̃[M = 23×M = 23] cascade matrix
with entries ω̃ji = ωij, as listed in Table 1.

4 See [30] Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.124.113401 for additional details
on the theoretical 3eAOCC approach

http://link.aps.org/supplemental/10.1103/PhysRevLett.124.113401
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4.1. Cascade Enhancement of the 1s2s2p 4P Level Population and Contributing Cascade Orders

In Figure 4, we plot, as a function of the collision energy Ep, the ratio of progressive cascade
contributions c1, c2, and c3 to c0 for the 1s2s2p 4P state due to higher-lying 1s2sn` 4L populations with
increasing principal quantum number n.

Figure 4. Ratio of the cumulative cascade contributions of the 1s2sn` 4L state populations to the
1s2s2p 4P as a function of the projectile energy Ep, for increasing principal quantum number n. Cascade
contributions including up to: [Left] first order, c1. [Middle] second order, c2. [Right] third order, c3.
Symbols: (Black squares) n ≤ 3, (Red circles) n ≤ 4, (Blue triangles) Extrapolation to include all
n → ∞. Convergence is seen to be attained with c3. The Yrast c2 contribution (Red open circles)
4 f 4F9/2 → 3d 4D7/2 → 2p 4P5/2 (see text) is also shown for comparison.

These results are then extrapolated to n → ∞, using an n−3 SEC population model [34,45].
From Figure 4, it is evident, that depending on collision energy Ep, the first cascade order c1, accounts
for an increase of about 10–30% for transitions just from the n = 3 levels. This is consistent with the
Grotrian diagram in Figure 3, where most n = 3 RBRs are seen to be large. Furthermore, the second
cascade order, c2, for both n = 3 and n = 3+ 4, as well as the extrapolation to include all n, are even more
important accounting for a further increase of 10–40%. Finally, including also cascade contributions c3,
only a very small increase is observed with decreasing collision energy, as SEC to higher-lying n levels
becomes more important [44]. Also shown, is the contribution of the Yrast cascade sequence also seen
to become increasingly important with decreasing collision energy.

4.2. Spin Statistics—Ratio R of 1s2s2p 4P to 2P Cross Sections

In our recent publication [30], the long-standing problem of how multi-unpaired-electron ion
cores behave, while undergoing electron processes during fast atomic collisions, was treated both
experimentally and theoretically. A viable way to explore this is to consider the 2p SEC channel in
MeV collisions (Equation (36)). There, the ratio R of the similarly configured 1s2s2p 4P to 2P± SEC cross
sections, defined by Equation (37), should bear the corresponding population spin statistics signature.
This ratio should have the value of R = 1 when considering only spin multiplicity, or the value R = 2,
in the frozen core approximation, where only the 4P and a single 2P states can be produced by SEC
from the 1s2s 3S initial state [34,36,37]. Experimental investigations involved beams of C4+(1s2, 1s2s 3S)

mixed-state ions, prepared with different amounts of metastable 1s2s 3S component. Then, the ratio
R could be evaluated by applying our two-spectra technique for the proper determination of the
contributions from just the 1s2s 3S beam component [43]. The measurements were performed using
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the ZAPS [46] setup, currently located at the NCSR “Demokritos” 5.5 MV Tandem accelerator facility
in Athens [68]. The corresponding theoretical investigations were performed in Paris using the
above mentioned 3eAOCC calculations involving the dynamics of three active electrons within a full
configuration interaction approach [66].

Based on the above 3eAOCC and cascade calculations, the ratio R of the SEC cross sections of the
quartet 1s2s2p 4P (for short 4P) to doublet 1s2s2p 2P± (for short 2P±) is given by:

R ≡ σ(4P)
σ(2P−) + σ(2P+)

=
σc0 (4P) + σc1 (4P) + σc2 (4P) + σc3 (4P)

σc0 (2P−) + σc0 (2P+)
, (37)

where the cross sections σck (X) correspond to the sum of the cross sections of all levels i related to the
same term X, e.g., σc3 (4P) = σc3 (4P1/2) + σc3 (4P3/2) + σc3 (4P5/2), i.e., the c3 cascade contributions to levels
i = 1− 3 according to Table 1.

R was computed up to and including third order cascades, c3, according to the formulation of
Equation (34). Results are shown in Figure 5, along with the ZAPS measurements reported in [30].
Here, we increased the number of electron configurations from 20 to 29 in the COWAN code5 obtaining
slightly smaller values for R compared to the ones previously reported [30], which resulted in improved
agreement with experiment as seen in Figure 5.

Figure 5. Ratio R of 1s2s2p 4P to 1s2s2p 2P± cross sections in collisions of C4+(1s2s 3S) ions with He as
a function of the projectile energy (see Equation (37)). Experiment: Blue squares [30]. Calculations
(3eAOCC [30]): Black line and open circles (no cascades n=2, only c0 possible); Red lines including
cascades up to c3 (see Equation (34)). Triangles: n ≤ 3; Inverted triangles: n ≤ 4; Open squares:
Includes all n→ ∞ (extrapolations based on an n−3 model). The cascade contributions (shaded region)
are thus seen to enhance the ratio R over and above its direct 2p SEC value (black line). The frozen
1s2s 3S core spin statistics and pure spin statistics values are also indicated. The cascade calculations
shown here include a more extensive number of configurations than what was used in Ref. [30] (see text)
and show slightly improved agreement with experiment.

5 New calculations (this work): 29 configurations consisting of 1s2snl (n = 2, 3, 4, 5) + 1s2nl (n = 2, 3, 4, 5) + 1s2p2. Previous
calculations ([30]): 20 configurations consisting of 1s2snl (n = 2, 3, 4) + 1s2nl (n = 2, 3) + 1s2p2 + 1s3snl (n = 2, 3).
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These and our previous results [30], essentially invalidate the frozen core approximation
commonly used in the past (e.g., Röhrbein et al. [35], found much larger values of the ratio R with
or without cascades) when considering electron capture in multi-electron, multi-open-shell quantum
systems [30]. While the frozen 1s2s 3S spin statistic limit shown in Figure 5 with the value of 2 [37],
does indeed seem to agree with our experimental data, it does not include cascades. These have
been shown by us (and Röhrbein et al. [35] before us) to be important, lifting this limit of 2 to about
3.5 (minimum), when including cascade repopulation as calculated here.

4.3. Comparison to Older Cascade Calculations on the C4+(1s2s 3S)+ He Collision System

Finally, we should also mention the two previous cascade calculations for the same C4+(1s2s 3S)+

He collision system reported by Strohschein et al. [34] and Röhrbein et al. [35]. In Ref. [34], the cascade
calculations ignored the Auger channel. Thus, the decay constant αn in Equation (2) included only
radiative rates and was therefore smaller than when Augers are included. This was corrected in
Ref. [35], where the full αn decay constants were used, thus also properly including the Auger
decays. In the former 4P calculation [34], since the 4P Auger decay rate is small compared to the
inter-quartet E1 radiative transitions rates, the RBR is not much affected by the non-inclusion of
the Auger channel, so the selective enhancement of the 4P remained substantial [34]. However,
neglecting the Auger channel in the calculation of the doublets is a much stronger effect since here
the RBRs change substantially [35]. This can be readily seen in our calculated doublet rates shown in
Table 2. For example, for the initial level (1s2s 3S)3d 2D5/2, referred to in the table as level 12 (3d 2D−5/2),
α12 = 1.013× 1012 s−1 including the Auger channel, while equal to 1.013× 1012− 8.540× 1011 = 1.590× 1011 s−1

without, with corresponding RBR ω12,4 = 8.646 × 1010/1.103 × 1012 = 0.0854 with the Auger channel,
and ω12,4 = 8.646× 1010/1.590× 1011 = 0.5438 without (a huge difference).

In addition to these atomic structure considerations, in both previous calculations, the initial SEC
populations were calculated within a one-active-electron frozen core treatment using the two-center
basis generator method (TC-BGM) [35]. This gave a ratio R ≈ 2 without cascades, very different from
the value of R ≈ 1.1− 1.4 reported by us [30], using the 3eAOCC approach. Furthermore, the cascade
contributions to R were found to increase its value by a factor of . 2.9 (see Figure 6 in Ref. [35]), while in
our calculation [30], as also shown here, the increase due to cascades in R is smaller, at about a factor
∼1.6 (see Figure 5). These differences between the two results, can be readily attributed in both cases
(i.e., R with and without cascade contributions) to the present use of a dynamic approach involving
several active correlated electrons, avoiding the constraints of the 1s2s 3S frozen core approximation
required in one-electron treatments [30].

5. Summary and Conclusions

We have theoretically investigated radiative cascade repopulation of the C3+(1s2s2p) 4P quartet
and 2P doublet states formed in 2–18 MeV collisions of C4+(1s2s 3S) ions with He gas target. Using the
diagrammatic cascade formalism of Curtis [38], after including also the Auger decay of the doubly
excited states, we have integrated the rate equations over long-enough time (t → ∞) to obtain the
final level populations including cascade repopulation. Results are calculated analytically within a
straight-forward cascade matrix approach and the contributions of each cascade order to the cross
sections are readily computed, as described in detail.

To initiate the cascade calculations, the t = 0 initial populations of the 1s2sn` 4L, 1s2sn` 2L levels
included in our analysis are obtained from the direct n` single electron capture (SEC) cross sections
previously computed in Ref. [30], using the novel three-electron close-coupling (3eAOCC) approach.

Our cascade matrix includes all relevant radiative branching ratios (RBR) for n ≤ 4 computed
using the COWAN atomic structure code. In the case of the doublets, the RBRs are found to be very
small (<0.1) showing that cascade feeding in this case, can be neglected, consistent with previous
results by other groups [35]. In the case of the quartets though, the RBRs are found to be large, in some
cases equal to 1. Cascade calculations (extrapolated to n → ∞ using an n−3 SEC model) were then
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performed including up to third order cascades, which showed an up to 60% increase of the 1s2s2p 4P

population due to cascades. Using these cascade calculations including initial level populations
provided by our independently calculated cross sections, we computed the ratio R of 1s2s2p 4P to 2P

cross sections including cascades, of recent spin statistics interest [30,33–35], and found it in good
agreement with experiment.

Future systematic isoelectronic investigations of the spin statistics ratio R would be of great interest
to further validate our conclusions in a more general context. Cascade calculations will therefore also
be important, particularly at the lowest collision energies where SEC to higher-lying levels is strongest.
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