Fourier-Transform VUV Spectroscopy of 14,15N and 12,13C
Abstract
:1. Introduction
2. Experimental
3. Results and Interpretation
3.1. Nitrogen I
3.1.1. Initial State: Ground S
3.1.2. Initial State: Metastable D
3.2. Carbon I
4. Discussion
4.1. Level Energies of N I
4.2. Isotope Shifts
4.3. Isotope Shift in N I
4.4. Isotope Shift in C I
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database; Version 5.7.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. Available online: https://physics.nist.gov/asd (accessed on 14 May 2020).
- Kaufman, V.; Ward, J.F. Newly measured and calculated wavelengths in the vacuum ultraviolet spectrum of neutral nitrogen. Appl. Opt. 1967, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, K.B.S. Revised energy levels for the neutral nitrogen atom. Arkiv Fysik 1958, 13, 429. [Google Scholar]
- Eriksson, K.B.S.; Johansson, I. The spectrum of the neutral nitrogen atom in the lead-sulfide region. Arkiv Fysik 1961, 19, 235. [Google Scholar]
- Eriksson, K.B.S.; Pettersson, J.E. New measurements in the spectrum of the neutral nitrogen atom. Phys. Scr. 1971, 3, 211. [Google Scholar] [CrossRef]
- Eriksson, K.B.S. An extension of the analysis of N I. Phys. Scr. 1974, 9, 151. [Google Scholar] [CrossRef]
- Moore, C.E. Selected Tables of Atomic Spectra—A Atomic Energy Levels—Second Edition, B Multiplet Tables; Tech. Rep.; National Bureau of Standards: Washington, DC, USA, 1975.
- Eriksson, K.B.S. Additions to the spectrum of the neutral nitrogen atom. Phys. Scr. 1986, 34, 211. [Google Scholar] [CrossRef]
- Salumbides, E.J.; Sprengers, J.P.; Reinhold, E.; Ubachs, W. High precision frequency calibration of N I lines in the XUV domain. J. Phys. B At. Mol. Opt. Phys. 2005, 38, L383. [Google Scholar] [CrossRef] [Green Version]
- Haris, K.; Kramida, A. Critically evaluated spectral data for neutral carbon (C I). Astrophys. J. Suppl. Ser. 2017, 233, 16. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, V.; Ward, J.F. Measurement and calculation of Cu II, Ge II, Si II, and C I vacuum-ultraviolet lines. J. Opt. Soc. Am. 1966, 56, 1591. [Google Scholar] [CrossRef]
- Yamamoto, S.; Saito, S. Laboratory observation of the 3P1–3P0 transition of the neutral carbon atom by submillimeter-wave absorption spectroscopy. Astrophys. J. Lett. 1991, 370, L103. [Google Scholar] [CrossRef]
- Klein, H.; Lewen, F.; Schieder, R.; Stutzki, J.; Winnewisser, G. Precise laboratory observation of the 3P2–3P1 fine-structure transitions of 12C and 13C. Astrophs. J. Lett. 1998, 494, L125. [Google Scholar] [CrossRef]
- Burnett, C.R. Isotope shift in the atomic spectrum of carbon. Phys. Rev. 1950, 80, 494. [Google Scholar] [CrossRef]
- Holmes, J.R. Isotope shifts in some lines of carbon and nitrogen. J. Opt. Soc. Am. 1951, 41, 360. [Google Scholar] [CrossRef]
- Bernheim, R.A.; Kittrell, C. 12C-13C isotope shift of the 5S - 3P2 and 5S - 3P1 transitions in carbon. Spectroch. Acta At. Spectrosc. 1980, 35, 51. [Google Scholar] [CrossRef]
- Labazan, I.; Reinhold, E.; Ubachs, W.; Flambaum, V.V. Wavelength calibration of the C I line at 94.5 nm for comparison with quasar data. Phys. Rev. A 2005, 71, 040501. [Google Scholar] [CrossRef] [Green Version]
- Haridass, C.; Huber, K.P. A high-resolution 13C isotope study in the vacuum ultraviolet of spectra of CO (A-X), C , and C II. Astroph. J. 1994, 420, 433. [Google Scholar] [CrossRef]
- Berengut, J.C.; Flambaum, V.V.; Kozlov, M.G. Calculation of isotope shifts and relativistic shifts in C I, C II, C III, and C IV. Phys. Rev. A 2006, 73, 012504. [Google Scholar] [CrossRef] [Green Version]
- Holmes, J.R. Isotope shifts in some lines of Nitrogen. Phys. Rev. 1943, 63, 41. [Google Scholar] [CrossRef]
- Cangiano, P.; de Angelis, M.; Gianfrani, L.; Pesce, G.; Sasso, A. Hyperfine structure and isotope-shift investigations of atomic nitrogen by saturation spectroscopy. Phys. Rev. A 1994, 50, 1082. [Google Scholar] [CrossRef]
- Jennerich, R.M.; Keiser, A.N.; Tate, D.A. Hyperfine structure and isotope shifts in near-infrared transitions of atomic nitrogen. Eur. Phys. J. D 2006, 40, 81. [Google Scholar] [CrossRef]
- Carette, T.; Nemouchi, M.; Jonsson, P.; Godefroid, M. Saturation spectra of low lying states of Nitrogen: Reconciling experiment with theory. Eur. Phys. J. D 2010, 60, 231. [Google Scholar] [CrossRef]
- De Oliveira, N.; Roudjane, M.; Joyeux, D.; Phalippou, D.; Rodier, J.-C.; Nahon, L. High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm. Nat. Photon. 2011, 5, 149. [Google Scholar] [CrossRef]
- De Oliveira, N.; Joyeux, D.; Roudjane, M.; Gil, J.-F.; Pilette, B.; Archer, L.; Ito, K.; Nahon, L. The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL. J. Synch. Rad. 2016, 23, 87. [Google Scholar] [CrossRef] [PubMed]
- Sansonetti, C.J.; Greene, M.B. Infrared spectrum and revised energy levels for neutral krypton. Phys. Scr. 2007, 75, 577. [Google Scholar] [CrossRef]
- Trickl, T.; Kung, A.H.; Lee, Y.T. Krypton atom and testing the limits of extreme-ultraviolet tunable-laser spectroscopy. Phys. Rev. A 2007, 75, 022501. [Google Scholar] [CrossRef] [Green Version]
- Heays, A.N.; Lewis, B.R.; de Oliveira, N.; Ubachs, W. The spin-forbidden vacuum-ultraviolet absorption spectrum of 14N15N. J. Chem. Phys. 2019, 151, 224305. [Google Scholar] [CrossRef] [Green Version]
- Western, C.M.; Booth, J.-P.; Chatterjee, A.; de Oliveira, N. Rydberg spectra of singlet metastable states of O2. Mol. Phys. 2020, e1741714. [Google Scholar] [CrossRef]
- Mercier, B.; Compin, M.; Prevost, C.; Bellec, G.; Thissen, R.; Dutuit, O.; Nahon, L. Experimental and theoretical study of a differentially pumped absorption gas cell used as a low energy-pass filter in the vacuum ultraviolet photon energy range. J. Vac. Sci. Technol. A 2000, 18, 2533. [Google Scholar] [CrossRef]
- Diebold, G.J.; McFadden, D.L. Paramagnetic resonance spectrum of metastable 2P atomic nitrogen. Phys. Rev. A 1982, 25, 1504. [Google Scholar] [CrossRef]
- Niu, M.L.; Salumbides, E.J.; Heays, A.N.; de Oliveira, N.; Field, R.W.; Ubachs, W. Spectroscopy and perturbation analysis of the CO A1Π − X1Σ+ (2,0), (3,0) and (4,0) bands. Mol. Phys. 2016, 114, 627. [Google Scholar] [CrossRef] [Green Version]
- Niu, M.L.; Salumbides, E.J.; Zhao, D.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Field, R.W.; Ubachs, W. High resolution spectroscopy and perturbation analysis of the CO A1Π − X1Σ+ (0,0) and (1,0) bands. Mol. Phys. 2013, 111, 2163. [Google Scholar] [CrossRef]
- Kramida, A.E. The program LOPT for least-squares optimization of energy levels. Comp. Phys. Comm. 2011, 182, 419. [Google Scholar] [CrossRef]
- Bley, U.; Koch, M.; Temps, F.; Davies, P.B.; Davis, I.H. Measurement of the 2D5/2-2D3/2 fine structure interval in metastable nitrogen atoms at 1.15 mm by laser magnetic resonance. J. Chem. Phys. 1989, 90, 628. [Google Scholar] [CrossRef]
- Eikema, K.S.E.; Ubachs, W.; Hogervorst, W. Isotope shift in the neon ground state by extreme-ultraviolet laser spectroscopy at 74 nm. Phys. Rev. A 1994, 49, 803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, C.W. Isotope shifts of C I spectral lines and their application to radioactive dating by laser-assisted mass spectrometry. Opt. Lett. 1983, 8, 572. [Google Scholar] [CrossRef]
- Clark, C.W. Isotope shifts of some ultraviolet transitions of first row elements. Astrophys. J. 1984, 285, 322. [Google Scholar] [CrossRef]
Excited State | J | N | Refs. [2,9] | |
---|---|---|---|---|
1/2 | 83,284.021 (25) | 83,284.085 (42) | 0.01 (4) | |
P | 3/2 | 83,317.784 (25) | 83,317.843 (42) | 0.00 (4) |
5/2 | 83,364.570 (25) | 83,364.637 (42) | 0.01 (4) | |
5/2 | 88,107.226 (25) | 88,107.272 (39) | 0.64 (1) | |
P | 3/2 | 88,151.130 (25) | 88,151.185 (39) | 0.63 (1) |
1/2 | 88,170.525 (25) | 88,170.585 (39) | 0.63 (1) | |
5/2 | 104,825.080 (25) | 104,825.0699 (50) | 0.00 (4) | |
P | 3/2 | 104,859.698 (25) | 104,859.6952 (50) | 0.00 (4) |
1/2 | 104,886.012 (25) | 104,886.0687 (50) | 0.02 (4) | |
F | 5/2 | 104,810.335 (25) | 104,810.3324 (50) | 0.01 (4) |
Initial State | Excited State | N | Ref. [2] |
---|---|---|---|
D | 80,439.004 (25) | 80,438.900 (78) | |
P | 84,997.212(25) | 84,997.174 (79) | |
F | 85,656.939 (25) | 85,656.890 (81) | |
D | D | 85,919.307 (25) | 85,919.252 (81) |
P | 90,879.420 (25) | 90,879.406 (83) | |
F | 91,138.025 (25) | 91,138.01 (17) | |
F | 93,666.807 (25) | 93,666.64 (18) | |
D | 80,430.769 (25) | 80,430.684 (71) | |
P | 84,911.672 (25) | 84,911.643 (72) | |
F | 85,577.230(25) | 85,577.181 (73) | |
D | P | 85,591.960 (25) | 85,591.933 (73) |
D | 85,886.730 (25) | 85,886.702 (66) | |
P | 90,802.570 (25) | 90,802.522 (66) | |
F | 91,053.168 (25) | 91,053.04 (17) | |
P | 91,066.829 (25) | 91,066.64 (17) | |
P | (S) S | 87,439.234 (25) | 87,439.252 |
P | 87,439.717 (25) | 87,439.638 |
This Work | Ref. [10] | Ref. [18] | |||||
---|---|---|---|---|---|---|---|
Transition | C | C | C | C | |||
PP | 60,309.245 (25) | 60,309.141 (25) | −0.104 (35) | 60,309.2459 (13) | −0.0919 (28) | 60,309.22 (10) | - |
PP | 17.021 (25) | 16.919 (25) | −0.102 (35) | 17.0319 (14) | −0.0919 (28) | 17.02(10) | −0.3 |
PP | 36.234 (25) | 36.148 (25) | −0.086 (35) | 36.2427 (13) | −0.0917 (28) | 36.22(10) | −0.15 |
PP | 49.750 (25) | 49.653 (25) | −0.097 (35) | 49.7568 (13) | −0.0918 (28) | 49.73(10) | −0.14 |
PP | 52.663 (25) | 52.549 (25) | −0.114 (35) | 52.6594 (13) | −0.0914 (28) | 52.64(10) | −0.14 |
PP | 76.750 (25) | 76.649 (25) | −0.101 (35) | 76.7536 (13) | −0.0916 (28) | 76.73 (10) | −0.16 |
C | C | |||
---|---|---|---|---|
This Work | Ref. [10] | This Work | Ref. [10] | |
P | 0 | 0 | 0 | 0 |
P | 16.420 (30) | 16.4167122 (6) | 16.404 (30) | 16.4167869 (6) |
P | 43.419 (30) | 43.4134544 (8) | 43.405 (30) | 43.4136669 (16) |
P | 60,333.441 (41) | 60,333.4484 (14) | 60,333.323 (41) | 60,333.357 (4) |
P | 60,352.663 (30) | 60,352.6594 (13) | 60,352.549 (30) | 60,352.568 (4) |
P | 60,393.169 (40) | 60,393.1703 (13) | 60,393.055 (40) | 60,393.078 (4) |
Transition | This work | Refs. [12,13] | This work | Refs. [12,13] |
P - P | 16.420 (30) | 16.4167122 (6) | 16.404 (30) | 16.416787 (1) |
P - P | 26.999 (25) | 26.9967422 (6) | 27.001 (25) | 26.996881 (3) |
Level | This Work and Ref. [9] | NIST | Difference |
---|---|---|---|
S | 0 | 0 | - |
D | 19,224.373 (25) | 19,224.464 | −0.091 |
D | 19,233.108 (15) | 19,233.177 | −0.069 |
P | 83,284.021 (25) | 83,284.070 | −0.049 |
P | 83,317.784 (25) | 83,317.830 | −0.046 |
P | 83,364.570 (25) | 83,364.620 | −0.050 |
P | 88,107.226 (25) | 88,107.260 | −0.034 |
P | 88,151.130 (25) | 88,151.170 | −0.004 |
P | 88,170.525 (25) | 88,170.570 | −0.045 |
D | 99,663.377 (36) | 99,663.427 | −0.050 |
D | 99,663.877 (29) | 99,663.912 | −0.035 |
P | 103,622.4773 (50) | 103,622.51 | −0.03 |
P | 103,667.1214 (50) | 103,667.16 | −0.04 |
P | 103,735.4527 (50) | 103,735.48 | −0.03 |
P | 104,144.780 (29) | 104,144.820 | −0.04 |
P | 104,221.585 (36) | 104,221.630 | −0.045 |
F | 104,810.3327 (48) | 104,810.360 | −0.0273 |
F | 104,881.312 (36) | 104,881.350 | −0.038 |
P | 104,825.0702 (48) | 104,825.110 | −0.040 |
P | 104,859.6953 (49) | 104,859.73 | −0.04 |
P | 104,886.0684 (49) | 104,886.10 | −0.03 |
D | 104,984.3238 (50) | 104,984.37 | −0.05 |
D | 104,996.2343 (50) | 104,996.27 | −0.04 |
D | 105,008.5141 (50) | 105,008.55 | −0.04 |
D | 105,119.8418 (49) | 105,119.880 | −0.038 |
D | 105,143.6799 (50) | 105,143.710 | −0.030 |
P | 110,035.678 (29) | 110,035.720 | −0.042 |
P | 110,103.793 (36) | 110,103.834 | −0.041 |
F | 110,286.276 (29) | 110,286.305 | −0.029 |
P | 110,299.937 (29) | 110,299.974 | −0.037 |
F | 110,362.398 (36) | 110,362.462 | −0.064 |
F | 112,891.180 (36) | 112,891.238 | −0.058 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, K.-F.; Ubachs, W.; De Oliveira, N.; Salumbides, E.J. Fourier-Transform VUV Spectroscopy of 14,15N and 12,13C. Atoms 2020, 8, 62. https://doi.org/10.3390/atoms8030062
Lai K-F, Ubachs W, De Oliveira N, Salumbides EJ. Fourier-Transform VUV Spectroscopy of 14,15N and 12,13C. Atoms. 2020; 8(3):62. https://doi.org/10.3390/atoms8030062
Chicago/Turabian StyleLai, Kin-Fung, Wim Ubachs, Nelson De Oliveira, and Edcel J. Salumbides. 2020. "Fourier-Transform VUV Spectroscopy of 14,15N and 12,13C" Atoms 8, no. 3: 62. https://doi.org/10.3390/atoms8030062
APA StyleLai, K. -F., Ubachs, W., De Oliveira, N., & Salumbides, E. J. (2020). Fourier-Transform VUV Spectroscopy of 14,15N and 12,13C. Atoms, 8(3), 62. https://doi.org/10.3390/atoms8030062