An Investigation of Laser Produced Lead-Tin Alloy Plasmas between 10 and 18 nm
Abstract
:1. Introduction
2. Experimental
3. Theoretical Calculations
3.1. Collisional Radiative Model
3.2. Atomic Structure Calculations
4. Results
4.1. Effects of Input Laser Energy on Continuum Emission in the 10–18 nm Region
4.2. Line Emission in the 10−18 nm Region
4.3. Discussion of Spectra and Line Identification
4.4. Influence of Spot Size on Plasma Expansion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carroll, P.K.; O’Sullivan, G. Ground-state configurations of ionic species I through XVI for Z = 57−74 and the interpretation of 4 d–4 f emission resonances in laser-produced plasmas. Phys. Rev. A 1982, 25, 275. [Google Scholar] [CrossRef]
- Hayden, P.; Cummings, A.; Murphy, N.; O’Sullivan, G.; Sheridan, P.; White, J.; Dunne, P. 13.5 nm extreme ultraviolet emission from tin based laser produced plasma sources. Appl. Phys. Lett. 2006, 99, 093302. [Google Scholar]
- White, J.; Dunne, P.; Hayden, P.; O’Reilly, F.; O’Sullivan, G. Optimizing 13.5 nm laser-produced tin plasma emission as a function of laser wavelength. Appl. Phys. Lett. 2007, 90, 181502. [Google Scholar] [CrossRef]
- White, J. Opening the Extreme Ultraviolet Lithography Source Bottleneck: Developing A 13.5-Nm Laser-Produced Plasma Source for the Semiconductor Industry. Ph.D. Thesis, National College of Ireland, Dublin, Ireland, 2006. [Google Scholar]
- Fahy, K.; O’Reilly, F.; Scally, E.; Kambali, I.; Sheridan, P. Robust Liquid Metal Collector Mirror for EUV and Soft X-ray Plasma Sources. In Proceedings of the International Workshop on Extreme Ultraviolet Sources, Dublin, Ireland, 13–15 November 2010. [Google Scholar]
- Kambali, I.; Scally, E.; Dunne, P.; O’Sullivan, G.; Sheridan, P.; Sokell, E.; O’Reilly, F. A tin–gold alloy based EUV source for metrology applications. J. Phys. D Appl. Phys. 2013, 46, 5014–5020. [Google Scholar] [CrossRef]
- Tobin, I.; Juschkin, L.; Sidelnikov, Y.; O’Reilly, F.; Sheridan, P.; Sokell, E.; Lunney, J.G. Laser triggered Z-pinch broadband extreme ultraviolet source for metrology. Appl. Phys. Lett. 2013, 102, 203504. [Google Scholar] [CrossRef] [Green Version]
- Cowan, R.D. Theoretical Calculation of Atomic Spectra Using Digital Computers. J. Opt. Soc. Am. 1968, 58, 808–818. [Google Scholar] [CrossRef]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
- Harilal, S.S.; Coons, R.W.; Hough, P.; Hassanein, A. Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas. Appl. Phys. Lett. 2009, 95, 221501. [Google Scholar] [CrossRef] [Green Version]
- Hurst, N.; Harilal, S.S. Pulse shaping of transversely excited atmospheric CO2 laser using a simple plasma shutter. Rev. Sci. Instrum. 2009, 80, 035101. [Google Scholar] [CrossRef] [Green Version]
- Colombant, D.; Tonon, G.F. X-ray emission in laser-produced plasmas. J. Appl. Phys. 1973, 44, 3524–3537. [Google Scholar] [CrossRef]
- Bates, D.R.; Kingston, A.E.; McWhirter, R.W.P. Recombination between electrons and atomic ions, I. Optically thin plasmas. Proc. R. Soc. A 1962, 267, 298–313. [Google Scholar]
- Cowan, R.D. Theoretical Study of pm–p(m−1)l Spectra. J. Opt. Soc. Am. 1968, 58, 924–930. [Google Scholar] [CrossRef]
- Svendsen, W.; O’Sullivan, G. Statistics and characteristics of xuv transition arrays from laser-produced plasmas of the elements tin through iodine. Phys. Rev. A 1994, 50, 3710–3718. [Google Scholar] [CrossRef] [PubMed]
- Churilov, S.S.; Ryabtsev, A.N. Analysis of the spectra of in XII–XIV and Sn XIII–XV in the far-VUV region. Opt. Spectrosc. 2006, 101, 169–178. [Google Scholar] [CrossRef]
- Torretti, F.; Sheil, J.; Schupp, R.; Basko, M.M.; Bayraktar, M.; Meijer, R.A.; Witte, S.; Ubachs, W. Prominent radiative contributions from multiplyexcited states in laser-produced tin plasma for nanolithography. Nat. Commun. 2020, 11, 2334. [Google Scholar] [CrossRef] [PubMed]
- Churilov, S.S.; Ryabtsev, A.N. Analyses of the Sn IX–Sn XII spectra in the EUV region. Phys. Scr. 2006, 73, 614. [Google Scholar] [CrossRef]
- Bouza, Z.; Scheers, J.; Ryabtsev, A.; Schupp, R.; Behnke, L.; Shah, C.; Sheil, J.; Bayraktar, M.; López-Urrutia, J.R.C.; Ubachs, W.; et al. EUV spectroscopy of Sn5+–Sn10+ ions in an electron beam ion trap and laser-produced plasmas. J. Phys. B At. Mol. Phys. 2020, 53, 1–10. [Google Scholar] [CrossRef]
- Bridges, J.M.; Cromer, C.L.; Mcllrath, T.J. Investigation of a laser-produced plasma VUV light source. Appl. Opt. 1986, 25, 2208–2214. [Google Scholar] [CrossRef]
- Churilov, S.S.; Joshi, Y.N. Observation of the strongest 5s25p65d–(5s25p55d6s + 5s25p57p) Transitions in Au XI to Bi XV ions. Phys. Scr. 2001, 63, 363–366. [Google Scholar] [CrossRef]
- Churilov, S.S.; Joshi, Y.N.; Reader, J. Analysis of 5p65d–(5p65f+5p66p+5p55d2+5p55d6s) Transitions in Tl XIII, Pb XIV, and Bi XV and Revised Wavelengths for 5p6 1S0–5p55d (3/2, 5/2)1 Transitions in Hg XIII, Tl XIV, Pb XV, and Bi XVI. Phys. Scr. 2002, 66, 213–221. [Google Scholar] [CrossRef]
- Kaufman, V.; Sugar, J. Wavelength, classification, and ionization energies in the isoelectronic sequences fr om Yb II and Yb III through Bi XV and Bi XVI. J. Opt. Soc. Am. 1976, 66, 1019–1025. [Google Scholar] [CrossRef]
- Carroll, P.K.; Costello, J.T.; Kennedy, E.T.; O’Sullivan, G. XUV emission from Thorium plasmas; the identificationof Th XI and Th XIII. J. Phys. B At. Mol. Phys. 1986, 19, L651–L656. [Google Scholar] [CrossRef]
- Carroll, P.K.; Costello, J.T.; Kennedy, E.T.; O’Sullivan, G. XUV emission from Uranium plasmas; the identification of U XIII and U XV. J. Phys. B At. Mol. Phys. 1984, 17, 2169–2176. [Google Scholar] [CrossRef]
- Liu, L.; O’Sullivan, G.; O’Reilly, F.; Long, E.; Wang, X.; Dunne, P. EUV spectral analysis of ns-laser produced bismuth plasmas at 8–17 nm. Opt. Express 2017, 25, 9974–9985. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kilbane, D.; Dunne, P.; Wang, X.; O’Sullivan, G. Configuration Interaction Effects in Unresolved 5p65dN+1, 5p55dN+2+5p65dN5f1 Transition Arrays in Ions Z = 79–92. Atoms 2017, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, S.; Conway, J.G. Analysis of the configurations 5d86s2 in Pt I through Hg II and 5d96p in Pt I through Bi VI. J. Opt. Soc. Am. 1975, 65, 1371–1375. [Google Scholar] [CrossRef]
- White, J.; Dunne, P.; Hayden, P.; O’Sullivan, G. Simplified one-dimensional calculations of 13.5 nm emission in a tin plasma including radiation transport. J. Appl. Phys. 2009, 106, 113303. [Google Scholar] [CrossRef]
- Burdt, R.A.; Yuspeh, S.; Sequoia, K.L.; Tao, Y.; Tillack, M.S.; Najmabadi, F. Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser. Appl. Phys. Lett. 2009, 106, 033310. [Google Scholar] [CrossRef]
- Cummings, A.; O’Sullivan, G.; Dunne, P.; Sokell, E.; Murphy, N.; White, J.; Hayden, P.; Sheridan, P.; Lysaght, M.; O’Reilly, F. A spatio-temporal study of variable composition laser-produced Sn plasmas. J. Phys. D Appl. Phys. 2006, 39, 73–93. [Google Scholar] [CrossRef]
- Mehlman, G.; Burkhalter, P.G.; Newman, D.A.; Ripin, B.H. Soft X-ray Emission Spectra from Laser-Irradiated High Z-Targets; NRL Memorandum Report 6674; Dynamics of Solids Branch: Washington, DC, USA, 1990. [Google Scholar]
- Salzman, D. Atomic Physics in Hot Plasmas; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- O’Sullivan, G.; Cummings, A.; Dong, C.Z.; Dunne, P.; Hayden, P.; Morris, O.; Sokell, E.; O’Reilly, F.; Su, M.G.; White, J. Emission and absorption in laser produced plasmas: Processes and applications. J. Phys. Conf. Ser. 2009, 163, 012003. [Google Scholar] [CrossRef]
- O’Sullivan, G. The origin of line-free XUV continuum emission from laser-produced plasmas of the lelements 62 < Z < 74. J. Phys. B At. Mol. Phys. 1983, 16, 3291–3304. [Google Scholar]
- Hayden, P.; White, J.; Cummings, A.; Dunne, P.; Lysaght, M.; Murphy, N.; Sheridan, P.; O’Sullivan, G. Tin based laser-produced plasma source development for EUVL. Microelectron. Eng. 2006, 83, 699–702. [Google Scholar] [CrossRef]
- D’Arcy, R.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; et al. Transitions and the effects of configuration interaction in the spectra of Sn XV–Sn XVIII. Phys. Rev. A 2009, 79, 042509. [Google Scholar] [CrossRef]
- Bauche, J.; Bauche-Arnoult, C.; Klapisch, M. Unresolved Transition Arrays. Phys. Scr. 1988, 37, 659–663. [Google Scholar] [CrossRef]
- Yan-Bia, F.; Chen-Zhang, D.; Mao-Gen, S.; O’Sullivan, G. Dielectronic Recombination of Sn10+ Ions and Related Satellite Spectra. Chin. Phys. Lett. 2008, 25, 927. [Google Scholar] [CrossRef]
- Sasaki, A.; Nishihara, K.; Koike, F.; Kagawa, T.; Nishikawa, T.; Fujima, K.; Kawamura, T.; Furukawa, H. Simulation of the EUV SPectrum of Xe and Sn Plasmas. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 1307–1314. [Google Scholar] [CrossRef]
- Sasaki, A.; Nishihara, K.; Murakami, M.; Koike, F.; Kagawa, T.; Nishikawa, T.; Fujima, K.; Kawamure, T.; Furukawa, H. Effect of the satellite lines and opacity on the extreme ultraviolet emission from high-density Xe plasmas. Appl. Phys. Lett. 2004, 85, 5857–5859. [Google Scholar] [CrossRef]
- Elsieda, M.; Diwakar, P.K.; Polek, M.; Hassanein, A. Dynamics of low- and high-Z metal ions emitted during nanosecond laser-produced plasmas. J. Appl. Phys. 2016, 120, 173104. [Google Scholar] [CrossRef]
- Harilal, S.S. Influence of spot size on propagation dynamics of laser-produced tin plasma. J. Appl. Phys. 2007, 102, 123306. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Harilal, S.S.; Tillack, M.S.; Sequoia, K.L.; O’Shay, B.; Najmabadi, F. Effect of focal spot size on in-band 13.5 nm extreme ultraviolet emission from laser-produced Sn plasma. Opt. Lett. 2006, 31, 2492–2494. [Google Scholar] [CrossRef]
- White, J.; Cummings, A.; Dunne, P.; Hayden, P.; O’Sullivan, G. Simplified calculation of nonlocal thermodynamic equilibrium excited populations contributing to 13.5 nm emission in a tin plasma. J. Appl. Phys. 2007, 101, 043301. [Google Scholar] [CrossRef]
- Coons, R.W.; Campos, D.; Crank, M.; Harilal, S.S.; Hassanein, A. Comparison of EUV spectral and ion emission features from laser produced Sn and Li plasmas. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 21–25 February 2010; Volume 7636, pp. 1–7. [Google Scholar]
Sn Percentage Weight [%] | Pb Percentage Weight [%] |
---|---|
93 ± 4 | |
84 ± 6 | |
6 ± 1 | 94 ± 10 |
35 ± 26 | 65 ± 25 |
Ion Stage | Transition Configuration | Jj Composition | Observed λ/nm | Calculated λ/nm | (×1011) gA/s−1 | Prev. Observed λ/nm |
---|---|---|---|---|---|---|
Pb XIV | 5p65d1 (2D5/2) – 5p55d16s1 | 99% ([2D5/2] 3,1/2)5/2 | 9.91 | 9.950 | 4.98 | 9.926 C |
Pb XIV | 5p65d1 (2D5/2) – 5p55d16s1 | 98.7% ([2D5/2] 3,1/2)7/2 | 9.99 | 10.023 | 1.78 | 10.003 C |
Pb XIV | 5p65d1 (2D5/2) – 5p55d16s1 | 95.2% ([2D3/2] 2,1/2)5/2 | 10.02 | 10.079 | 4.15 | 10.063 C |
Pb XIV | 5p65d1 (2D3/2) – 5p55d16s1 | 48.6% ([2D2] 2,1/2)5/2 + 45% ([2D3] 3,1/2)5/2 | 10.05 | 10.087 | 6.38 | 10.070 C |
Pb XIV | 5p65d1 (2D5/2) – 5p55d16s1 | 91.2% ([2D2] 2,1/2)3/2 | 10.12 | 10.143 | 3.07 | 10.132 C |
Pb XIV | 5p65d1 (2D3/2) – 5p55d16s1 | 54.1% ([2D3] 3,1/2)5/2 –42.8% ([2D2] 2,1/2)5/2 | 10.15 | 10.151 | 1.56 | 10.137 C |
Pb XIV | 5p65d1 (2D5/2) – 5p55d16s1 | 97.4% ([2D4] 4,1/2)7/2 | 10.2 | 10.179 | 9.22 | 10.176 C |
Pb XIII | 5p65d2 (1G4) – 5p55d26s1 | 62.7% ([1G4] 9/2,1/2)4 –35.8% ([3F4] 9/2,1/2)4 | 10.48 | 10.495 | 6.07 | |
Pb XIII | 5p65d2 (3F3) – 5p55d26s1 | 88.4% ([3F3] 9/2,1/2)4 – 3% ([3F2] 7/2,1/2)4 | 10.6 | 10.607 | 9.81 | |
Pb XIII | 5p65d2 (3F4) – 5p55d26s1 | 50.8% ([3F4] 11/2,1/2)5 – 44.3% ([1G4]11/2,1/2)5 | 10.63 | 10.648 | 11.90 | |
Pb XII | 5p65d3 (2G9/2) – 5p55d36s | 38.8% ([2G9/2] 6,1/2)11/2 –29.6% ([2H9/2]6,1/2)11/2 –22.6% ([4F9/2] 6,1/2)11/2 | 11.14 | 11.133 | 12.21 | |
Pb XII | 5p65d3 (2H11/2) – 5p56s | 90.2% ([2H11/2]7,1/2)13/2 | 11.16 | 11.162 | 10.45 | |
Pb XII | 5p65d3 (4F3/2) – 5p55d36s | 31.5% ([4F1/2] 1,1/2)3/2 + 25.7%([4F1/2]2,1/2)3/2 + 28.1% ([2D1/2]2,1/2)3/2 | 11.20 | 11.195 | 3.80 | |
Pb XV | 5p6 (1S0) – 5p55d1 | 90% ([2P1/2] 1/2,3/2)1 – 9.3% ([3P3/2] 3/2,5/2)1 | 12.11 | 12.116 | 23.82 | 12.160 K |
Pb XIV | 5p65d1 (2D5/2) – 5p55d2 | 54.1% ([3P1] 3/2,0)3/2 –22.6% ([3P2] 3/2,0)3/2 | 12.16 | 12.159 | 32.30 | 12.162 C |
Pb XIV | 5p65d1 (2D5/2) – 5p55d2 | 68.8% ([1G4] 7/2,0)7/2 + 12.2% ([3F3] 7/2,0)7/2 | 12.20 | 12.237 | 64.89 | 12.230 C |
Pb XIV | 5p65d1 (2D5/2) – 5p55d2 | 47.5% ([3F3] 5/2,0)5/2 –18.9% ([3P2] 5/2,0)5/2 + 10.5% ([1D2] 5/2,0)5/2 | 12.25 | 12.243 | 55.98 | 12.249 C |
Pb XIV | 5p65d1 (2D3/2) – 5p55d2 | 65.9% ([3F2] 5/2,0)5/2 – 8.9% 5d05f1([1S0]0,5/2)5/2 + 7.9% ([1D2]5/2,0)5/2 | 13.04 | 13.078 | 30.98 | 13.137 C |
Pb XIII | 5p65d2 (3F4) – 5p55d3 | 62.3% ([2H9/2]5,0)5 + 13.2% ([2H11/2]5,0)5 – 10.6% ([4F9/2]5,0)5 | 13.14 | 13.176 | 23.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scally, E.; O’Reilly, F.; Hayden, P.; Tobin, I.; O’Sullivan, G. An Investigation of Laser Produced Lead-Tin Alloy Plasmas between 10 and 18 nm. Atoms 2020, 8, 75. https://doi.org/10.3390/atoms8040075
Scally E, O’Reilly F, Hayden P, Tobin I, O’Sullivan G. An Investigation of Laser Produced Lead-Tin Alloy Plasmas between 10 and 18 nm. Atoms. 2020; 8(4):75. https://doi.org/10.3390/atoms8040075
Chicago/Turabian StyleScally, Enda, Fergal O’Reilly, Patrick Hayden, Isaac Tobin, and Gerry O’Sullivan. 2020. "An Investigation of Laser Produced Lead-Tin Alloy Plasmas between 10 and 18 nm" Atoms 8, no. 4: 75. https://doi.org/10.3390/atoms8040075
APA StyleScally, E., O’Reilly, F., Hayden, P., Tobin, I., & O’Sullivan, G. (2020). An Investigation of Laser Produced Lead-Tin Alloy Plasmas between 10 and 18 nm. Atoms, 8(4), 75. https://doi.org/10.3390/atoms8040075