Magic Wavelengths for Optical-Lattice Based Cs and Rb Active Clocks
Abstract
:1. Introduction
2. Method of Evaluation
3. Results
3.1. Static Polarizabilities
3.2. Magic Wavelengths
3.2.1. Cs Atom
3.2.2. Rb Atom
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Norcia, M.A.; Winchester, M.N.; Cline, J.R.K.; Thompson, J.K. Superradiance on the millihertz linewidth strontium clock transition. Sci. Adv. 2016, 2, e1601231. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, X. Optical lattice laser. In Frequency Control Symposium and Exposition; IEEE: Vancouver, BC, Canada, 2005; p. 3. [Google Scholar]
- Yu, D.; Chen, J. Optical clock with millihertz linewidth based on a phase-matching effect. Phys. Rev. Lett. 2007, 98, 050801. [Google Scholar] [CrossRef]
- Meiser, D.; Ye, J.; Carlson, D.R.; Holland, M.J. Prospects for a millihertz-linewidth laser. Phys. Rev. Lett. 2009, 102, 163601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J. Active optical clock. Chin. Sci. Bull. 2009, 54, 348–352. [Google Scholar]
- Major, F.G. The Quantum Beat: Principles and Applications of Atomic Clocks; Springer: New York, NY, USA, 2015. [Google Scholar]
- Schawlow, A.L.; Devlin, G.E. Intermediate State of Superconductors: Influence of Crystal Structure. Phys. Rev. 1958, 110, 1011. [Google Scholar] [CrossRef]
- Kuppens, S.J.; van Exter, M.P.; Woerdman, J.P. Quantum-limited linewidth of a bad-cavity laser. Phys. Rev. Lett. 1994, 72, 3815. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Zang, X.; Zhuang, W.; Chen, J. Active optical clock based on four-level quantum system. Chin. Sci. Bull. 2013, 58, 2033–2038. [Google Scholar] [CrossRef] [Green Version]
- Bohnet, J.G.; Chen, Z.; Weiner, J.M.; Cox, K.C.; Thompson, J.K. Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser. Phys. Rev. Lett. 2012, 109, 253602. [Google Scholar] [CrossRef] [Green Version]
- Bohnet, J.; Chen, Z.; Weiner, J.; Cox, K.; Thompson, J. Linear-response theory for superradiant lasers. Phys. Rev. A 2014, 89, 013806. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B.T.R.; Henriksen, M.R.; Schaffer, S.A.; Westergaard, P.G.; Ye, J.; Holland, M.; Thomsen, J.W. Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization. Phys. Rev. A 2015, 92, 053820. [Google Scholar] [CrossRef] [Green Version]
- Kazakov, G.; Schumm, T. Stability analysis for bad cavity lasers using inhomogeneously boradened spin −1/2 atoms as a gain medium. Phys. Rev. A 2017, 95, 023839. [Google Scholar] [CrossRef] [Green Version]
- Weiner, J.M.; Cox, K.C.; Bohnet, J.G.; Thompson, J.K. Phase synchronization inside a superradiant laser. Phys. Rev. A 2017, 95, 033808. [Google Scholar] [CrossRef] [Green Version]
- Kazakov, G.; Bohnet, J.; Schumm, T. Prospects for a bad-cavity laser using a large ion crystal. Phys. Rev. A 2017, 96, 023412. [Google Scholar] [CrossRef] [Green Version]
- Norcia, M.A.; Thompson, J.K. Cold-Strontium Laser in the Superradiant Crossover Regime. Phys. Rev. X 2016, 6, 011025. [Google Scholar] [CrossRef] [Green Version]
- Norcia, M.A.; Cline, J.R.K.; Muniz, J.A.; Robinson, J.M.; Hutson, R.B.; Goban, A.; Marti, G.E.; Ye, J.; Thompson, J.K. Frequency measurements of superradiance from the strontium clock transition. Phys. Rev. X 2018, 8, 021036. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Wang, Y.; Zhang, X.; Yuan, B.; Han, C.; Xue, F. Superradiant Laser with Ultra-Narrow Linewidth Based on 40Ca. Chin. Phys. Lett. 2012, 29, 73202. [Google Scholar]
- Xu, Z.; Zhuang, W.; Wang, Y.; Wang, D.; Zhang, X.; Xue, X.; Pan, D.; Chen, J. Lasing of Cesium four-level active optical clock. In Proceedings of the European Frequency and Time Forum & International Frequency Control Symposium, Prague, Czech Republic, 21–25 July 2013; p. 395. [Google Scholar]
- Pan, D.; Xu, Z.; Xue, X.; Zhuang, W.; Chen, J. Lasing of cesium active optical clock with 459 nm laser pumping. In Proceedings of the Internatinal Frequency Control Symposium, Taipei, Taiwan, 19–22 May 2014; p. 1. [Google Scholar]
- Pan, D.; Arora, B.; mei Yu, Y.; Sahoo, B.K.; Chen, J. Optical-lattice based Cs active clock with continual superradiant lasing signal. arXiv 2020, arXiv:2008.11397. [Google Scholar]
- Katori, H.; Ido, T.; Kuwata-Gonokami, M. Optimal design of dipole potentials for efficient loading of Sr atoms. J. Phys. Soc. Jpn. 1999, 68, 2479–2482. [Google Scholar] [CrossRef]
- Takamoto, M.; Hong, F.L.; Higashi, R.; Katori, H. An optical lattice clock. Nature 2005, 435, 321–324. [Google Scholar] [CrossRef]
- Ovsiannikov, V.D.; Pal’chikov, V.G.; Taichenachev, A.V.; Yudin, V.I.; Katori, H.; Takamoto, M. Magic-wave-induced S 0 1- P 0 3 transition in even isotopes of alkaline-earth-metal-like atoms. Phys. Rev. A 2007, 75, 020501. [Google Scholar] [CrossRef]
- Arora, B.; Safronova, M.S.; Clark, C.W. Magic wavelengths for the np–ns transitions in alkali-metal atoms. Phys. Rev. A 2007, 76, 052509. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kaur, K.; Sahoo, B.K.; Arora, B. Comparing magic wavelengths for the 6s2S1/2-6p2P1/2,3/2 transitions of Cs using circularly and linearly polarized light. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 145005. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Nandy, D.K.; Arora, B.; Sahoo, B.K. Properties of alkali-metal atoms and alkaline-earth-metal ions for an accurate estimate of their long-range interactions. Phys. Rev. A 2015, 91, 1012705. [Google Scholar] [CrossRef]
- Schäffer, S.A.; Christensen, B.T.R.; Rathmann, S.M.; Appel, M.H.; Henriksen, M.R.; Thomsen, J.W. Towards passive and active laser stabilization using cavity-enhanced atomic interaction. In Proceedings of the International Conference on Spectral Line Shapes, Torun, Poland, 19–24 June 2016. [Google Scholar]
- Topcu, T.; Derevianko, A. Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 144004. [Google Scholar] [CrossRef] [Green Version]
- Iskrenova-Tchoukova, E.; Safronova, M.S.; Safronova, U.I. High-precision study of Cs polarizabilities. J. Comp. Meth. Sci. Eng. 2007, 7, 521. [Google Scholar] [CrossRef]
- Bonin, K.D.; Kresin, V.V. Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters; World Scientific: Singapore, 1997. [Google Scholar]
- Manakov, N.L.; Ovsiannikov, V.D.; Rapoport, L.P. Atoms in a laser field. Phys. Rep. 1986, 141, 319. [Google Scholar] [CrossRef]
- Singh, S.; Sahoo, B.K.; Arora, B. Magnetic-sublevel-independent magic wavelengths: Application to Rb and Cs atoms. Phys. Rev. A 2016, 93, 063422. [Google Scholar] [CrossRef] [Green Version]
- Blundell, S.A.; Johnson, W.R. Sapirstein J Relativistic all-order calculations of energies and matrix elements in cesium. Phys. Rev. A 1991, 43, 3407. [Google Scholar] [CrossRef]
- Johnson, W.R.; Idrees, M. Sapirstein, J Second-order energies and third-order matrix elements of alkali-metal atoms. Phys. Rev. A 1987, 35, 8. [Google Scholar] [CrossRef]
- Blundell, S.; Johnson, W.; Liu, Z.; Sapirstein, J. Relativistic all-order calculations of energies and matrix elements for Li and Be+. Phys. Rev A 1989, 40, 2233. [Google Scholar] [CrossRef]
- Safronova, M.S.; Johnson, W.R. All-Order Methods for Relativistic Atomic Structure Calculations. Adv. At. Mol. Opt. Phys. 2007, 55, 191. [Google Scholar]
- Safronova, M.S. High-Precision Calculation of Atomic Properties and Parity Nonconservation in Systems with One Valence Electron. Ph.D. Thesis, University of Notre Dame, Notre Dame, IN, USA, 2001. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J. NIST Atomic Spectra Database; Version 5; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012. Available online: http://physics.nist.gov/asd (accessed on 12 December 2012).
- van Wijngaarden, W.; Li, J. Polarizabilities of cesium S, P, D, and F states. Quant. Spectrosc. Radiat. Transf. 1994, 52, 555. [Google Scholar] [CrossRef]
- Bates, D.R.; Damgaard, A. The calculation of the absolute strengths of spectral lines. Philos. Trans. R. Soc. 1949, 242, 101. [Google Scholar]
- Hunter, L.R.; Krause, D.; Miller, K.E.; Berkeland, D.J.; Boshier, M.G. Precise measurement of the Stark shift of the cesium D1 line. Opt. Commun. 1992, 94, 210. [Google Scholar] [CrossRef]
- Tanner, C.E.; Wieman, C.E. Precision measurement of the Stark shift in the 6P1/2–6P2/3 cesium transition using a frequency-stabilized laser diode. Phys. Rev. A 1988, 38, 162. [Google Scholar] [CrossRef]
- van Wijngaarden, W. Scalar and tensor polarizabilities of low lying S, P, D, F and G states in rubidium. J. Quant. Spectrosc. Radiat. Transf. 1997, 57, 275. [Google Scholar] [CrossRef]
- Zhu, C.; Dalgarno, A.; Porsev, S.G.; Derevianko, A. Dipole polarizabilities of excited alkali-metal atoms and long-range interactions of ground- And excited-state alkali-metal atoms with helium atoms. Phys. D At. Mol. Clust. 1997, 41, 229. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.E.; Krause, D.; Hunter, L.R. Precise measurement of the Stark shift of the rubidium and potassium D1 lines. Phys. Rev. A 1994, 49, 5128. [Google Scholar] [CrossRef]
- Krenn, C.; Scherf, W.; Khaitm, O.; Musso, M.; Windholz, L. Stark effect investigations of resonance lines of neutral potassium, rubidium, europium and gallium Z. Phys. D At. Mol. Clust. 1997, 41, 229–233. [Google Scholar] [CrossRef]
- Bennett, S.C.; Roberts, J.L.; Wieman, C.E. Measurement of the dc Stark shift of the 6S→7S transition in atomic cesium. Phys. Rev. A 1999, 59, 16(R). [Google Scholar] [CrossRef]
- Kaur, J.; Singh, S.; Arora, B.; Sahoo, B.K. Annexing magic and tune-out wavelengths to the clock transitions of the alkaline-earth-metal ions. Phys. Rev. A 2017, 95, 042501. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Tong, Z.; Jing, C. Magic wavelengths for a lattice trapped rubidium four-level active optical clock. Chin. Phys. Lett. 2012, 29, 090601. [Google Scholar]
State | State | State | |||||||
---|---|---|---|---|---|---|---|---|---|
Transition | Transition | Transition | |||||||
4.25(9) | −179(8) | 4.489(7) | −131.9(4) | 6.324(7) | −124.7(3) | 124.7(3) | |||
10.33(5) | 2415(23) | 4.25(9) | 180(8) | 6.49(8) | 226(5) | −226(5) | |||
0.929(9) | 8.8(2) | 1.0(1) | 6(1) | 1.5(1) | 6(1) | −6(1) | |||
0.356(7) | 1.02(4) | 0.55(6) | 1.4(3) | 0.77(8) | 1.4(3) | −1.4(3) | |||
0.185(5) | 0.25(1) | 0.36(4) | 0.57(9) | 0.51(5) | 0.6(1) | −0.6(1) | |||
6.49(8) | −453(11) | 7.02(2) | 1084(7) | 3.17(2) | 133(1) | 106(1) | |||
14.34(5) | 4413(31) | 4.3(4) | 121(2) | 2.1(2) | 15(3) | 12(3) | |||
1.64(1) | 27.3(5) | 2.1(2) | 21(4) | 1.0(1) | 2.5(5) | 2.0(4) | |||
0.70(1) | 3.9(1) | 1.3(1) | 7(1) | 0.61(6) | 0.8(2) | 0.7(1) | |||
0.388(8) | 1.08(4) | 0.93(9) | 3.6(7) | 0.43(4) | 0.40(8) | 0.32(6) | |||
0.71(7) | 2.0(4) | 0.33(3) | 0.22(4) | 0.18(4) | |||||
9.59(8) | 1174(20) | −235(4) | |||||||
6.3(6) | 132(26) | −26(5) | |||||||
2.9(3) | 22(4) | −4.3(9) | |||||||
1.8(2) | 7(1) | −1.5(3) | |||||||
1.3(1) | 3.5(7) | −0.7(1) | |||||||
1.0(1) | 2.0(4) | −0.40(8) | |||||||
Main() | 6238(41) | Main() | 1295(12) | Main() | 1602(33) | −256(9) | |||
Tail() | 4(2) | Tail() | 28(14) | Tail() | 30(9) | −6(2) | |||
−0.47 | ∼0 | ∼0 | ∼0 | ||||||
15.8(3) | 15.8(3) | 15.8(3) | |||||||
Total | 6257(41) | Total | 1339(18) | Total | 1648(35) | −262(9) | |||
Others | 6238(41) [30] | Others | 1338 [25] | Others | 1650 [25] | −261 [25] | |||
6140 [40] | 1290 [40] | 1600 [40] | −233 [40] | ||||||
Experiment | 6238(6) [48] | Experiment | 1328.4(6) [42] | Experiment | 1641(2) [43] | −262(2) [43] |
State | State | State | |||||||
---|---|---|---|---|---|---|---|---|---|
Transition | Transition | Transition | |||||||
4.15(3) | −167(2) | 4.231(3) | −104.1(1) | 5.977(4) | −102.0(1) | 102.0(1) | |||
9.68(6) | 1915(24) | 4.15(3) | 167(2) | 6.05(3) | 183(2) | −183(2) | |||
0.999(6) | 9.5(1) | 0.953(2) | 4.83(1) | 1.350(2) | 4.94(2) | −4.94(2) | |||
0.393(4) | 1.2(2) | 0.502(2) | 1.120(7) | 0.708(2) | 1.129(7) | −1.129(7) | |||
6.05(3) | −366(4) | 8.05(7) | 700(12) | 3.63(3) | 74(1) | 59(1) | |||
13.6(1) | 3693(54) | 1.35(6) | 10(1) | 0.66(3) | 1.3(1) | 1.01(9) | |||
1.54(1) | 22.4(3) | 1.1(1) | 5(1) | 0.51(5) | 0.6(1) | 0.5(1) | |||
0.628(7) | 2.967(7) | 0.79(6) | 2.6(4) | 0.37(3) | 0.29(4) | 0.23(3) | |||
0.61(4) | 1.4(2) | 0.28(2) | 0.16(2) | 0.13(2) | |||||
10.90(9) | 665(11) | −133(2) | |||||||
1.98(9) | 11(1) | −2.2(2) | |||||||
1.5(1) | 5(1) | −1.1(2) | |||||||
1.10(8) | 2.5(4) | −0.51(7) | |||||||
0.8(5) | 1.4(2) | −0.28(3) | |||||||
Main() | 5112(59) | Main() | 788(12) | Main() | 849(11) | −163(2) | |||
Tail() | 3(2) | Tail() | 16(8) | Tail() | 17(9) | −5(3) | |||
−0.26 | ∼0 | ∼0 | ∼0 | ||||||
9.08(45) | 9.08(45) | 9.08(45) | |||||||
Total | 5124(59) | Total | 813(14) | Total | 875(14) | −168(4) | |||
Others | 5110 [44] | Others | 805 [25] | Others | 867 [25] | −167 [25] | |||
807 [45] | 870 [45] | −171 [45] | |||||||
Experiment | 810.6(6) [46] | Experiment | 857(10) [47] | −163(3) [47] |
Resonance | Resonance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
894.59 | 917.48 | |||||||||
918.46(2) | −1335 | |||||||||
918.671 | 918.671 | |||||||||
920.101(4) | −1225 | 918.677(3) | 35,277 | |||||||
920.141 | 920.141 | |||||||||
973(3) | −393 | 921.0(9) | −147 | 920.3(3) | 56 | |||||
978.651 | 921.11 | |||||||||
980.86(5) | −376 | 978.651 | ||||||||
981.231 | 980.1(7) | −14 | 979.01(8) | 1126 | ||||||
1081(5) | −415 | 981.231 | ||||||||
1093.356 | 982(2) | −46 | 981.33(3) | 1088 | ||||||
1097.92(6) | −444 | 1005(5) | −269 | |||||||
1098.723 | 1088(3) | −625 | ||||||||
1359.201 | 1093.356 | |||||||||
1378.173 | 1098.09(9) | −661 | 1095.9(3) | 424 | ||||||
1379.9(1) | 5830 | 1098.723 | ||||||||
1394.057 | 1100.6(8) | 413 | ||||||||
1395.8(2) | 3248 | 1213(6) | 249 | |||||||
1413(2) | 2145 | 1359.201 | ||||||||
1469.892 | 1378.173 | |||||||||
1392.4(1) | −4207 | 1382.4(5) | 113 | |||||||
1394.057 | ||||||||||
1469.892 |
920.8(1) | −119 | 920.5(3) | −35 |
979.3(3) | 398 | 979.1(1) | 938 |
981.5(2) | 366 | 981.35(4) | 901 |
1097.7(2) | −274 | 1096.5(4) | 243 |
1102(3) | 229 | ||
1181(8) | 73 | ||
1391.2(5) | −2623 | 1383.5(9) | −533 |
920.6(1) | −81 | 920.9(1) | −136 |
979.1(1) | 722 | 979.6(6) | 180 |
981.38(7) | 687 | 982(1) | 150 |
1043(9) | −290 | ||
1082(3) | −430 | ||
1097.1(4) | 36 | 1097.9(1) | −480 |
1112(5) | −1 | ||
1130(7) | −47 | ||
1386(2) | −1320 | 1392.0(2) | −3469 |
Resonance | Resonance | ||||||||
---|---|---|---|---|---|---|---|---|---|
867.95 | 867.95 | ||||||||
921.96(2) | −917 | 922.281(9) | −1351 | ||||||
922.71 | 922.71 | ||||||||
923.533(3) | −917 | 923.569(2) | −1350 | 923.414(6) | −301 | ||||
923.67 | 923.67 | ||||||||
1026.58(9) | −1090 | 1027.31(5) | −1516 | 1020.6(6) | −467 | ||||
1028.67 | 1028.67 | ||||||||
1030.336(9) | −1102 | 1030.395(7) | −1526 | 1030.20(1) | −487 | ||||
1030.67 | 1030.67 | ||||||||
1290.85(3) | −5597 | 1290.80(3) | −5259 | 1289.70(7) | −1583 | ||||
1292.28 | 1292.28 | ||||||||
1297.867(7) | −6606 | 1297.841(7) | −5671 | 1297.67(1) | −1655 | ||||
1298.28 | 1298.28 | ||||||||
1323.88 | 1323.88 | ||||||||
1342.4(2) | 2609 | 1331.2(1) | −9501 | 1336.5(2) | −2095 | ||||
1366.87 | 1366.87 | ||||||||
1421.8(7) | −7909 | 1461.7(7) | −5872 | 1453.3(8) | −6139 | ||||
1475.65 | 1529.26 | ||||||||
2732.18 | 1529.37 | ||||||||
2771.1(3) | 1132 | 2732.18 | |||||||
2791.29 | 2771.0(3) | 1501 | 2771.1(3) | 1000 | |||||
2791.29 |
921.98(2) | −930 | 919.6(4) | −446 |
923.534(3) | −930 | 923.455(5) | −451 |
1026.60(8) | −1100 | 1023.9(3) | −621 |
1030.337(9) | −1110 | 1030.24(1) | −635 |
1290.49(4) | -3781 | 1289.94(6) | −2103 |
1297.786(8) | −4063 | 1297.71(1) | −2228 |
1332.7(1) | −6714 | 1335.3(2) | −3279 |
1459.1(9) | −5950 | 1455(1) | −6082 |
2771.1(3) | 1300 | 2771.1(3) | 1071 |
923.507(3) | −720 | 923.559(2) | −1201 |
1025.9(1) | −891 | 1027.12(5) | −1367 |
1030.30(1) | −902 | 1030.377(9) | −1377 |
1290.28(4) | −3045 | 1290.70(3) | -4731 |
1297.753(9) | −3259 | 1297.823(7) | −5097 |
1333.7(2) | −5258 | 1331.7(1) | −8520 |
1457.5(6) | −6000 | 1460.9(9) | −5897 |
2771.1(3) | 1201 | 2771.0(3) | 1429 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Jyoti; Arora, B.; Sahoo, B.K.; Yu, Y.-m. Magic Wavelengths for Optical-Lattice Based Cs and Rb Active Clocks. Atoms 2020, 8, 79. https://doi.org/10.3390/atoms8040079
Singh S, Jyoti, Arora B, Sahoo BK, Yu Y-m. Magic Wavelengths for Optical-Lattice Based Cs and Rb Active Clocks. Atoms. 2020; 8(4):79. https://doi.org/10.3390/atoms8040079
Chicago/Turabian StyleSingh, Sukhjit, Jyoti, Bindiya Arora, B. K. Sahoo, and Yan-mei Yu. 2020. "Magic Wavelengths for Optical-Lattice Based Cs and Rb Active Clocks" Atoms 8, no. 4: 79. https://doi.org/10.3390/atoms8040079
APA StyleSingh, S., Jyoti, Arora, B., Sahoo, B. K., & Yu, Y. -m. (2020). Magic Wavelengths for Optical-Lattice Based Cs and Rb Active Clocks. Atoms, 8(4), 79. https://doi.org/10.3390/atoms8040079