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Abstract: We describe the atomic database of the XSTAR spectral modeling code, summarizing the
systematic upgrades carried out in the past twenty years to enable the modeling of K-lines from
chemical elements with atomic number Z ≤ 30 and recent extensions to handle high-density plasmas.
Such plasma environments are found, for instance, in the inner region of accretion disks round
compact objects (neutron stars and black holes), which emit rich information about the system’s
physical properties. Our intention is to offer a reliable modeling tool to take advantage of the
outstanding spectral capabilities of the new generation of X-ray space telescopes (e.g., XRISM and
ATHENA) to be launched in the coming years. Data curatorial aspects are discussed and an updated
list of reference sources is compiled to improve the database provenance metadata. Two XSTAR

spin-offs—the ISMabs absorption model and the uaDB database—are also described.

Keywords: XSTAR; atomic databases; atomic processes; line formation; X-rays; high-density plasmas

1. Introduction

The XSTAR (https://heasarc.gsfc.nasa.gov/docs/software/xstar/xstar.html) code
computes the physical conditions and emission spectra of a photoionized gas and has been
widely used in astrophysics, most notably in X-ray astronomy, for the past 20 years [1,2].
It assumes an ionizing radiation source surrounded by a spherical gas shell that absorbs
and transfers parts of this radiation to finally emit a spectrum. From an input comprising
the incident continuum, shell thickness, elemental abundances, and gas density, the code
computes the ionization balance, level populations, and temperature to generate the gas
opacity and the emitted line and continuum fluxes. The computational model determines
simultaneously the gas state and radiation field at every user-defined spatial zone of the
cloud. To ensure convergence in local thermodynamic equilibrium (LTE) conditions, it
implements a detailed and consistent treatment of the radiative (bound–bound, bound–
free, and free–free) and collisional (electron-impact excitation and ionization, electron–ion
recombination, charge transfer and three-body recombination) processes, a procedure that
in turn depends on the accuracy of the underlying database of atomic rate coefficients.
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Therefore, XSTAR is an ideal platform to study data curation schemes for implementing
and maintaining application-based atomic databases.

Since 2001, we have been systematically computing for the XSTAR database the atomic
data required to model the K-lines and edges of both cosmically abundant and trace ele-
ments [3–46]. These X-ray spectral features are prime candidates to devise diagnostics to
determine the plasma conditions and chemical abundances in a wide variety of astronomi-
cal entities: interstellar, intergalactic, and intra-cluster media; active galactic nuclei (AGN);
X-ray binaries; supernova remnants; stars; the Sun, and some solar planets and satellites.
This long-term collaboration has reached an important milestone, and the corresponding
upgrading of the XSTAR database with the new datasets has more than doubled its volume,
bringing to the fore a series of data curational problems discussed in this report. Our
final goal is to upgrade XSTAR to take advantage of the relatively high spectral resolution
(5 eV in the soft X-ray band ∼0.3–12 keV) and sensitivity of the microcalorimeter-based
spectrometers in the joint NASA/JAXA X-ray Imaging and Spectroscopy Mission (XRISM,
https://heasarc.gsfc.nasa.gov/docs/xrism) to be launched in 2022 and in the European
Space Agency flagship Advanced Telescope for High-ENergy Astrophysics (ATHENA,
https://sci.esa.int/web/athena). As an example of this accuracy level, Figure 1 shows the
XSTAR fit in the 6.50–6.60 keV region of the spectrum of the Perseus Cluster taken by the
HITOMI (https://www.nasa.gov/hitomi) space telescope before its demise in 2016 [47].

Figure 1. HITOMI spectrum of the Perseus Cluster in the Fe XXV “triplet” spectral region
(6.50–6.60 keV) [47] showing the XSTAR fit (red line). With the higher resolution, the He-like
“triplet” becomes a quartet comprising the resonance (w), magnetic quadrupole (x), intercombi-
nation (y), and magnetic dipole (z) lines. Other Fe satellite lines begin to be detectable (e.g., the
bump at ∼6.5 keV).

We have recently introduced high-density (ne > 1018 cm−3) effects in the XSTAR

database, which come into play in the reflection spectra of the inner region of the accretion
disks around compact objects (e.g., black-hole candidates and neutron stars): continuum
lowering [40–45]; dielectronic recombination suppression [48,49]; collisional ionization;
three-body recombination; and stimulated emission. Since the Fe abundance is a key
measure of line reprocessing in reflection models [50], we are now in a good position
to test if the neglect of such high-density effects is responsible for the anomalously high
abundances recurrently derived [51]. Regarding XSTAR database curation, the inclusion of

https://heasarc.gsfc.nasa.gov/docs/xrism
https://heasarc.gsfc.nasa.gov/docs/xrism
https://sci.esa.int/web/athena
https://sci.esa.int/web/athena
https://www.nasa.gov/hitomi


Atoms 2021, 9, 12 3 of 35

high-density effects presents serious execution difficulties that are now managed by pre-
processing the database at each density point. Since this pre-processing time is generally
long, a grid of pre-computed databases has been deployed that, considering the data
volumes involved, favors a cloud computing environment for the XSTAR modeling of
high-density plasmas.

Finally, the development of the XSTAR database has given rise to two spin-offs: the
ISMabs (https://heasarc.gsfc.nasa.gov/xanadu/xspec/models/ismabs.html) absorption
model [35] and the uaDB (https://heasarc.gsfc.nasa.gov/uadb/index.php) online database.
The former is the result of benchmarks of the theoretical photoionization curves with
observed K absorption in the interstellar medium (ISM), which has led to the implementa-
tion of a reliable model of ISM K absorption and to the matching of the theoretical K-line
wavelengths with the astronomically observed and laboratory measured values, the latter
two not always agreeing (e.g., O I [23,52]). The uaDB database allows the downloading of
the XSTAR and other atomic rates without having to interfere with the code.

2. XSTAR Atomic Database

The XSTAR database comprises records of multilevel model ions (usually referred to
as ion targets) and data structures to derive the rates for the microprocesses that determine
the ionization and excitation of the plasma [2]. The rate types (rt) are the following:

01. Ground state ionization
03. Bound–bound collision
04. Bound–bound radiative
05. Bound–free collision (level)
06. Total recombination
07. Bound–free radiative (level)
08. Total recombination forcing normalization
09. Two-photon decay
11. Element data
12. Ion data
13. Level data
14. Bound–bound radiative, superlevel to spectroscopic level
15. Collisional ionization total rate
40. Bound–bound collisional, superlevel to spectroscopic level
41. Non-radiative Auger transition
42. Inner-shell photoabsorption followed by autoionization.

For each ionic species (Z; N) in the ranges 1 ≤ Z ≤ 30 and 1 ≤ N ≤ Z, where Z and
N are, respectively, the atomic and electron numbers, the data for the target models and
processes are contained in ASCII files labeled diont0dt. The ion index ion is defined as

ion = Z(Z− 1)/2 + (Z− N) + 1 , (1)

and dt is the data type (see Appendix A for a complete list). Each diont0dt file contains
integer, floating-point, and character variables. For each release, the database is transcribed
to a binary FITS-format-derived [53,54] structure (atdb.fits) consisting of three one-
dimensional arrays (floating point, integer, and character) and a pointer array, which are
uploaded in main memory at runtime. This scheme ensures portability, fast data uploading
when the code is invoked, and single-data accesses in main memory during processing.

The XSTAR data curation strategy essentially follows two principles:

1. Since the datasets are compiled from diverse sources, the original data structures
and units are explicitly kept in the database records to be transcribed and unified
at runtime. For instance, level energies are specified in eV but the photoionization
cross-sections are usually tabulated in Rydbergs. Levels in some atomic models are
listed in intermediate coupling (fine structure) while in others LS terms are adopted.

https://heasarc.gsfc.nasa.gov/xanadu/xspec/models/ismabs.html
https://heasarc.gsfc.nasa.gov/uadb/index.php
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These format differences are accounted for by defining data types, each of which
adheres to its own set of rules for data tabulation.

2. As new data and processes are included in the database, new data types may be
defined. Thus, photoionization cross-sections can be specified in more than one data
type—valence shell and K shell, say—if the tabulation for each energy region comes
from different sources. They are then concatenated and adjusted at runtime.

We show in Figure 2 the target model for Mg-like Zn XIX complying with data
type dt = 06 and contained in file d454t006. Each row is headed by the integer tuple
(dt, rt, 0, Nflt, Nint, Nchr), where dt is the data type, rt the rate type, Nflt the number of
floating-point parameters, Nint number of integer parameters, and Nchr the length of the
character string. As shown in the rate-type list above, rt = 13 corresponds to level data.
The first and second floating-point columns tabulate level energies (eV) and statistical
weights g = 2J + 1 (the other two floating-point columns have been edited out). The second
integer tuple (n, 2S + 1, L, Z, i, ion) lists: the n principal quantum number of the valence
electron; the 2S+ 1 spin multiplicity; the total orbital angular momentum L; element atomic
number Z; the i level index, and ion index. The character string gives the level assignment
(configuration and spectroscopic term), the end of the record being indicated with the %
character. Records may span one arbitrary length line or multiple lines in the ASCII file.

6 13 0 4 6 8 0.0000000E+00 1.0000000E+00 ... 3 1 0 30 1 454 3s2.1S_0 %
6 13 0 4 6 12 3.6651995E+01 1.0000000E+00 ... 3 3 1 30 2 454 3s1.3p1.3P_0 %
6 13 0 4 6 12 3.8015000E+01 3.0000000E+00 ... 3 3 1 30 3 454 3s1.3p1.3P_1 %
6 13 0 4 6 12 4.1638999E+01 5.0000000E+00 ... 3 3 1 30 4 454 3s1.3p1.3P_2 %
6 13 0 4 6 12 5.6705005E+01 3.0000000E+00 ... 3 1 1 30 5 454 3s1.3p1.1P_1 %
6 13 0 4 6 12 8.8177000E+01 1.0000000E+00 ... 3 3 1 306 454 3s0.3p2.3P_0 %
6 13 0 4 6 12 8.9971999E+01 3.0000000E+00 ... 3 3 1 30 7 454 3s0.3p2.3P_1 %
6 13 0 4 6 12 9.0909009E+01 5.0000000E+00 ... 3 3 1 30 8 454 3s0.3p2.3P_2 %
6 13 0 4 6 12 9.5230001E+01 5.0000000E+00 ... 3 1 2 30 9 454 3s0.3p2.1D_2 %
6 13 0 4 6 12 1.0956001E+02 1.0000000E+00 ... 3 1 0 30 10 454 3s0.3p2.1S_0 %
6 13 0 4 6 16 1.0583000E+03 3.0000000E+00 ... 3 3 0 30 11 454 2p5.3s2.3p1.3S_1 %
6 13 0 4 6 16 1.0607000E+03 5.0000000E+00 ... 3 3 2 30 12 454 2p5.3s2.3p1.3D_2 %
6 13 0 4 6 16 1.0645000E+03 7.0000000E+00 ... 3 3 2 30 13 454 2p5.3s2.3p1.3D_3 %
6 13 0 4 6 16 1.0654000E+03 3.0000000E+00 ... 3 1 1 30 14 454 2p5.3s2.3p1.1P_1 %
6 13 0 4 6 16 1.0674000E+03 5.0000000E+00 ... 3 3 1 30 15 454 2p5.3s2.3p1.3P_2 %
6 13 0 4 6 16 1.0766000E+03 1.0000000E+00 ... 3 3 1 30 16 454 2p5.3s2.3p1.3P_0 %
6 13 0 4 6 16 1.0843000E+03 3.0000000E+00 ... 3 3 2 30 17 454 2p5.3s2.3p1.3D_1 %
6 13 0 4 6 16 1.0895000E+03 3.0000000E+00 ... 3 3 1 30 18 454 2p5.3s2.3p1.3P_1 %
6 13 0 4 6 16 1.0901000E+03 5.0000000E+00 ... 3 1 2 30 19 454 2p5.3s2.3p1.1D_2 %
6 13 0 4 6 16 1.1029000E+03 1.0000000E+00 ... 3 1 0 30 20 454 2p5.3s2.3p1.1S_0 %
6 13 0 4 6 20 1.2384461E+03 1.0000000E+00 ... 3 3 1 30 21 454 2s1.2p6.3s2.3p1.3P_0 %
6 13 0 4 6 20 1.2391314E+03 3.0000000E+00 ... 3 3 1 30 22 454 2s1.2p6.3s2.3p1.3P_1 %
6 13 0 4 6 20 1.2434606E+03 5.0000000E+00 ... 3 3 1 30 23 454 2s1.2p6.3s2.3p1.3P_2 %
6 13 0 4 6 20 1.2457835E+03 3.0000000E+00 ... 3 1 1 30 24 454 2s1.2p6.3s2.3p1.1P_1 %
6 13 0 4 6 24 9.7285003E+03 1.0000000E+00 ... 3 3 1 30 25 454 1s1.2s2.2p6.3s2.3p1.3P_0 %
6 13 0 4 6 24 9.7293003E+03 3.0000000E+00 ... 3 3 1 30 26 454 1s1.2s2.2p6.3s2.3p1.3P_1 %
6 13 0 4 6 24 9.7340004E+03 5.0000000E+00 ... 3 3 1 30 27 454 1s1.2s2.2p6.3s2.3p1.3P_2 %
6 13 0 4 6 24 9.7373003E+03 3.0000000E+00 ... 3 1 1 30 28 454 1s1.2s2.2p6.3s2.3p1.1P_1 %
6 13 0 4 6 10 6.6340128E+02 2.0000000E+00 ... 12 1 0 30 29 454 superlevel %
6 13 0 4 6 14 1.0768748E+04 1.0000000E+00 ... 1 0 0 30 30 454 superlevel_[K] %
6 13 0 4 6 9 6.9751000E+02 2.0000000E+00 ... 3 2 0 30 31 454 continuum %

Figure 2. Content of file d454t006 of the XSTAR database listing the atomic model (data type dt = 06
and rate type rt = 13) for Mg-like Zn XIX (ion = 454).

This ion representation presents remarkable features. By looking at the level-i index
and assignment, the Zn XIX model contains data attributes for 31 levels from: the valence
shell (1 ≤ i ≤ 10), open L shell (11 ≤ i ≤ 24), and open K shell (25 ≤ i ≤ 28); two
superlevels (i = 29–30); and a continuum level (i = 31). The latter is associated to the
ionization potential of the ion. Therefore, the model comprises spectroscopic bound levels,
quasi-bound L- and K-vacancy resonances, and artificial levels. The tabulation must
identify the ground level with index 1 and the continuum level with the highest index.
Apart from this constraint, the levels are not necessarily listed in energy order facilitating
model upgrading, which simply involves adding new levels at the end of the existing
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tabulation. The level-assignment string has been carefully devised and used throughout to
facilitate searches based on filled shells, shell holes, LS terms, and J total angular momenta.

Following [1], the superlevel accounts in H- and He-like ions for the recombination
cascade from unaccounted high-lying levels to the spectroscopic levels of the model atom.
Rates have been determined from population kinetic calculations. For other isoelectronic
sequences, the superlevel is assumed to decay radiatively and collisionally to the ground
state. Rates populating and depopulating the superlevel are then calculated by fitting to
the total recombination rate, thus explicitly accounting for the contributions from excitation,
ionization, and recombination to the level populations. As a result, every ionic process is
accompanied by its detailed-balance inverse, ensuring the progressive convergence to the
LTE level populations. The superlevel_[K] is defined in Section 3.1.

All other data types follow similar data structures (floating point, integer, and char-
acter) as those displayed in Figure 2. For instance, we show in Figure 3 an excerpt of
file d454t050 containing radiative data for the bound–bound transitions (upper level
k ≤ 10) in Zn XIX. As before, the header integer tuple prescribes the data and rate types
dt = 50 and rt = 4; three floating-point items; four integer items; and no character strings.
The floating-point tuple (λ, g f (i, k), A(k, i)) lists the transition wavelength (Å), oscillator
strength (g f -value), and transition probability (A-value, s−1). The second integer tuple
(i, k, Z, ion) lists the lower and upper levels of the transition, atomic number, and ion index.
By comparing the i and k transition indices with the i level indices in Figure 2, it may be
seen that the tabulation includes both allowed and forbidden transitions, e.g., the resonance
transition (i, k) = (1, 5) and the forbidden transition (i, k) = (1, 4). Importantly, every
excited level in the database must include a decay mechanism, radiative and/or collisional;
otherwise, its population may grow out of bounds when modeling. For instance, the
3s1.3p1.3P_0 metastable level (i = 2) does not display a radiative transition (j = 0 → 0
radiative transitions are strictly forbidden), and consequently, an alternative decay process
must be provided in a separate data type; e.g., collisional de-excitation.

50 4 0 3 4 0 3.2047230E+02 5.2260000E-03 1.1310000E+08 1 3 30 454 %
50 4 0 3 4 0 2.0629320E+02 7.0930000E-01 3.7060000E+10 1 5 30 454 %
50 4 0 3 4 0 2.4417010E+02 2.5340000E-01 2.8350000E+10 3 6 30 454 %
50 4 0 3 4 0 4.2222080E+02 4.7650000E-03 1.7830000E+08 5 6 30 454 %
50 4 0 3 4 0 2.2582420E+02 2.7330000E-01 1.1910000E+10 2 7 30 454 %
50 4 0 3 4 0 2.3171380E+02 1.9730000E-01 8.1690000E+09 3 7 30 454 %
50 4 0 3 4 0 2.4845700E+02 3.1050000E-01 1.1180000E+10 4 7 30 454 %
50 4 0 3 4 0 3.8631020E+02 1.4800000E-03 2.2060000E+07 5 7 30 454 %
50 4 0 3 4 0 2.2265070E+02 3.4070000E-01 9.1680000E+09 3 8 30 454 %
50 4 0 3 4 0 2.3806620E+02 7.8830000E-01 1.8560000E+10 4 8 30 454 %
50 4 0 3 4 0 3.6175990E+02 1.2440000E-01 1.2680000E+09 5 8 30 454 %
50 4 0 3 4 0 2.0084360E+02 2.0630000E-02 6.8230000E+08 3 9 30 454 %
50 4 0 3 4 0 2.1330280E+02 2.0500000E-01 6.0100000E+09 4 9 30 454 %
50 4 0 3 4 0 3.0751030E+02 8.4760000E-01 1.1960000E+10 5 9 30 454 %
50 4 0 3 4 0 1.7136220E+02 2.6040000E-03 5.9150000E+08 3 10 30 454 %
50 4 0 3 4 0 2.4339670E+02 3.8770000E-01 4.3650000E+10 5 10 30 454 %
50 4 0 3 4 0 2.9315000E+02 0.0000000E+00 9.5940000E+00 1 4 30 454 %

Figure 3. Excerpt of file d454t050 of the XSTAR database listing the radiative transitions with upper
level k ≤ 10 (data type dt = 50 and rate type rt = 4) in Mg-like Zn XIX (ion = 454).

Data type dt = 86, listing the radiative and Auger widths of K-vacancy levels, is also
an interesting case as it involves transitions between different ion-charge states (Figure 4).
The floating-point tuple (E(kN), Aa(kN), Aa(kN , iN−1), Ar(kN)) lists: the energy E(kN) (in
eV relative to the ionization threshold) and total Auger width Aa(kN) (s−1) of the kN level
of the N-electron ion (ionN = 454); the partial Auger width Aa(kN , iN−1) (s−1) leaving
the (N − 1)-electron ion (ionN−1 = 455) in the iN−1 level; and the total radiative width
Ar(kN) (s−1) of the kN level of the N-electron ion. The second integer tuple then specifies
(iN−1, kN , Z, ionN−1, ionN). In this example, the (N − 1)-electron ion is assumed to end
up in its ground state (iN−1 = 1) after the Auger transition; however, this is not always
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the case as the Auger transition may involve an excited end level of the (N − 1)-electron
ion. Such partial Auger widths are not determined in some structure codes (e.g., HFR [55])
and in the R-matrix scattering method [56,57], the latter including radiative and Auger
damping through an optical model potential [58].

86 4 0 4 5 0 9.0309903E+03 1.1100000E+15 1.1100000E+15 1.1600000E+15 1 25 30 455 454 %
86 4 0 4 5 0 9.0317903E+03 1.1000000E+15 1.1000000E+15 1.1800000E+15 1 26 30 455 454 %
86 4 0 4 5 0 9.0364904E+03 1.1000000E+15 1.1000000E+15 1.1600000E+15 1 27 30 455 454 %
86 4 0 4 5 0 9.0397903E+03 1.0800000E+15 1.0800000E+15 1.2900000E+15 1 28 30 455 454 %

Figure 4. Content of file d454t086 of the XSTAR database listing the radiative and Auger widths (data
type dt = 86 and rate type rt = 4) of Mg-like Zn XIX (ion = 454).

Table A1 in Appendix B tabulates the number of levels for each ionic species (Z; N).
It may be seen that most neutral and, in many cases, the singly ionized systems are not
well represented, indicating that XSTAR is mainly destined to model photoionized plasmas
for which such species have negligible fractions. The number of levels in the ion models is
never above 1000 to enable practical runtimes when modeling (see Section 6.1), and the
most relevant elements in the astronomical soft X-ray band—N, O, Ne, Fe, and Ni—are
especially well treated.

As fully described in the original paper on the XSTAR database [2], atomic datasets
have been collected from a myriad of individual sources and data compilations such as
the NIST Atomic Spectra Database (https://www.nist.gov/pml/atomic-spectra-database)
[59], TOPbase (http://cdsweb.u-strasbg.fr/topbase/topbase.html) [60], CHIANTI (https:
//www.chiantidatabase.org/) [61], ADAS (https://www.adas.ac.uk/), Iron Project (http://
cdsweb.u-strasbg.fr/topbase/testop/TheIP.html) [62], and PP95 (https://ned.ipac.caltech.
edu/level5/Pradhan/Pradhan_contents.html) [63]. Major upgrades have been mainly
concerned with the radiative recombination (RR) and dielectronic recombination (DR) data
from the AMDPP tabulations (http://amdpp.phys.strath.ac.uk/tamoc/DATA/) [64,65]
and from the systematic computations of atomic data for K-line diagnostics summarized in
the next Section 3. A complete data provenance list is given in Appendix C.

3. Computation of Atomic Data for K-Line Diagnostics

Since XSTAR is widely used for spectral modeling in X-ray astrophysics, we have dedi-
cated a systematic effort to compute the atomic data to characterize K-lines in ionic species
with Z ≤ 30—namely, valence and K-vacancy level energies, transition wavelengths, A-
values, radiative and Auger widths, and photoionization cross-sections [5–29]. Due to the
lack of spectroscopic data to validate most ionic models, a multi-code methodology was
implemented right from the outset to compute the data and estimate their accuracy. Struc-
ture data were computed with the multiconfiguration codes HFR (Pauli Hamiltonian) [55],
AUTOSTRUCTURE (Breit–Pauli Hamiltonian) [66,67], and GRASP92 (Dirac–Coulomb–Breit
Hamiltonian) [68], and the photoionization cross-sections with the Breit–Pauli R-matrix
suite of codes [56,57] and AUTOSTRUCTURE. Due to the large target models for species in
isoelectronic sequences with electron number 19 ≤ N ≤ 26, the latter code was used to
compute their photoionization cross-sections in the distorted-wave approximation. Ini-
tial priority was given to ions from the oxygen, nitrogen, and iron isonuclear sequences
and then from even-Z elements, but those from odd-Z and trace elements have been
recently completed.

In the calculations of accurate atomic data for K-line diagnostics, two key effects
must be considered in detail: radiative and Auger damping and orbital relaxation. In
Sections 3.1 and 3.2, we briefly outline these two processes and the methods to include
them in structure and scattering calculations.

https://www.nist.gov/pml/atomic-spectra-database
http://cdsweb.u-strasbg.fr/topbase/topbase.html
https://www.chiantidatabase.org/
https://www.chiantidatabase.org/
https://www.adas.ac.uk/
http://cdsweb.u-strasbg.fr/topbase/testop/TheIP.html
http://cdsweb.u-strasbg.fr/topbase/testop/TheIP.html
https://ned.ipac.caltech.edu/level5/Pradhan/Pradhan_contents.html
https://ned.ipac.caltech.edu/level5/Pradhan/Pradhan_contents.html
http://amdpp.phys.strath.ac.uk/tamoc/DATA/
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3.1. Radiative and Auger Damping

Let us consider an ion, say, with electron number N ≤ 10. When a photon promotes a
K-shell electron to an excited Rydberg state,

hν + 1s22sλ2pµ −→ 1s2sλ2pµnp , (2)

it subsequently decays via the radiative and Auger manifold
1s2sλ2pµnp Kn−→ 1s22sλ2pµ + hνn (3)

Kα−→ 1s22sλ2pµ−1np + hνα (4)

KLn−→
{

1s22sλ2pµ−1 + e−

1s22sλ−12pµ + e−
(5)

KLL−→


1s22sλ2pµ−2np + e−

1s22sλ−12pµ−1np + e−

1s22pµ−2np + e−
(6)

dominated by Kα radiative decay (Equation (4)) and KLL Auger spectator-electron ion-
ization (Equation (6)). Such channeling causes a damping effect (see Figure 5) since the
1s2sλ2pµnp resonances have broad and symmetric widths almost independent of n, which
must be taken into account when devising plasma diagnostics. In the R-matrix method, it
is computationally intractable to treat this channel array from first principles as it would
involve target states with np orbitals in an ever increasing close-coupling expansion. There-
fore, for the higher Rydberg resonances, damping is neatly accounted for via an additional
imaginary potential Vopt = −i(Γr + Γa)/2 involving the total radiative width Γr—as devel-
oped in the Hickman–Robicheaux formalism [69,70] (which is essentially equivalent to the
Davies–Seaton formalism [71,72])—and adapted to include the total Auger width Γa [58].

Figure 5. Photoabsorption cross-section of the 1s22s22p6 1S ground state of Ne-like Fe XVII in the
K-edge region. Top panel: undamped cross-section. Bottom panel: damped (radiation and Auger)
cross-section.

Due to their diagnostic importance, Kα lines in the XSTAR database are treated as
bound–bound transitions and assigned wavelengths and A-values, but the upper K-
vacancy states also display Auger widths that lead to autoionization (see Figures 2–4).
However, the K resonances also appear in the photoabsorption cross-sections, as shown in
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Figure 5, smearing the edge due to their peculiarly symmetric and constant line profiles.
As a result, the Kα resonances must be trimmed out from the partial photoionization
cross-sections that are used to derive the rates so as not to count them twice. However, it is
more complicated to carry out this trimming procedure in the L-edge region due to the
piling up of a large number of resonances converging to closely spaced thresholds; thus
some degree of double counting is practically unavoidable, making the L-edge less useful
to devise plasma diagnostics.

As shown in Figure 6, damping leads to a significant difference between photoab-
sorption and photoionization, and in the XSTAR code, both are needed: the former to
determine opacities and the latter to derive the photoionization rates. However, the
database essentially stores partial photoionization cross-sections, i.e., cross-sections leaving
the photoionized (N − 1)-electron system in specific states, and consequently, the differ-
ence between the total photoabsorption and photoionization cross-sections is assigned to
superlevel_[K] (see level i = 30 in Figure 2).

Figure 6. K-edge photoabsorption (full curve) and photoionization (dotted curve) cross-sections
of Ca XV (C-like) as a function of photon energy. The dashed curve gives the photoabsorption
cross-section convolved with a Gaussian of 0.001 width. Reproduced from Figure 3 of [18] with
permission of the AAS.

Due to the large number of target levels in ions with electron number N > 18, their
photoionization cross-sections were computed using the simpler distorted-wave method
implemented in AUTOSTRUCTURE [29]. The level numbers for such ionic systems tabulated
in Table A1 (Appendix B) underwent considerable trimming to comply with the modeling
specifications of XSTAR and, hence, do not represent the extent of the actual collisional
targets. In AUTOSTRUCTURE, photoabsorption is conveniently treated as the sum of two
separate processes: photoionization and photoexcitation. However, the complicated decay
routes of K-vacancy states delineated in Equations (3)–(6) must be explicitly included
in the photoexcitation process, and were thus computed in LS coupling. Since XSTAR

requires fine-structure partial photoionization cross-sections to determine rates, we decided
to obviate the phototexcitation process in ions with Z 6= 26 and 21 ≤ N ≤ 26, thus
underestimating their opacities, although the radiative and Auger decays of the Lα, β and
Kα, β lines from these systems will be respectively taken into account in data types 50 and
86 (see Figures 3 and 4).
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3.2. Orbital Relaxation

As shown in [55,73], the photoionization of an inner-shell electron leads to a relaxation
of the outer electrons of the ionized state due to a reduced screening of the atomic nuclear
potential by the reduced inner electron cloud; i.e., an increased effective charge Zeff. For
example, in the inner-shell photoionization of O I 1s22s22p4 to O II 1s2s22p4, the effective
charge experienced by a 2p electron in the initial and final states is a complicated average
screening including the other equivalent 2p electrons. Nevertheless, by using hydrogenic
considerations, it is found that the electron orbital energy (En ∼ −ER Z2

eff/n2) is more
tightly bound for the relaxed 2p electron, and the electron density is concentrated closer to
the nucleus (rn ∼ a0 n2/Zeff).

To illustrate this phenomenon, we show in Figure 7 the outer 2p orbital in both neutral
oxygen and its K-vacancy ionized daughter obtained from single-configuration Hartree–
Fock calculations [74,75]. Clearly, the relaxed 2p orbital of the ionized O II inner-shell state
differs significantly from the neutral O I 2p orbital, a difference that needs to be accounted
for to compute more accurate atomic transition properties.
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Figure 7. Probability density of the Hartree–Fock 2p orbital in the initial O I 1s22s22p4 ground state
compared to the 2p orbital in the final O II 1s2s22p4 K-vacancy state. The 2p electrons of the latter are
screened from the nucleus by one fewer inner-shell 1s electron and are therefore “relaxed” to more
tightly bound orbitals.

In our HFR and AUTOSTRUCTURE structure calculations, orbital relaxation was taken
into account by adopting different non-orthogonal orbital bases for each configuration. In
most photoionization calculations, however, an orthonormal orbital basis is used because of
the relative simplicity in computing transition and energy matrix elements. Relaxation then
requires a substantial multi-configurational wave-function description including additional
orbitals to account for the significant differences between initial- and final-state orbitals.
Thus, additional care must be taken in computing inner-shell photoionization cross-sections
when compared to outer-shell photoionization, as discussed more fully in [23]. Due to
these difficulties, most large-scale computations of photoabsorption and photoionization
cross-sections do not include orbital relaxation effects unless otherwise indicated.

4. Photoabsorption Cross-Section Benchmarks

Table A2 in Appendix C lists the reference sources for the computations of the photoab-
sorption cross-sections. Measurement of K absorption in the laboratory and ISM enables
useful benchmarks of the theoretical cross-sections to improve spectral accuracy. In the
following sections, we give a summary of these procedures.
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4.1. Carbon Sequence

Calculations of the atomic data to model the K-shell photoabsorption by carbon
ions were performed by [21], and a benchmark was obtained using Chandra X-ray high-
resolution spectra [37]. The C II Kα “triplet” as well as the C III Kα and Kβ lines were
identified in the X-ray spectra of four super-soft sources. C I was not modeled due to the
presence of instrumental features at ∼43.6 Å.

4.2. Oxygen Sequence

K-shell photoabsorption cross-sections for O I–O VII were computed by [11], and
comparisons of the theoretical resonance positions with astronomical observations and
laboratory measurements were carried out by [32,33]. It was found that, due to a suspect
experimental energy calibration scale, the X-ray astronomical observations provided a
more reliable reference to perform the benchmark of the atomic data. For O I, the K-edge
cross-section was re-examined in detail to yield a substantially improved version for the
XSTAR atomic database [23].

In this exhaustive study, the Kα (1s → 2p) resonance in O I was examined with R-
matrix and Multi-Configuration Hartree–Fock (MCHF) calculations, existing laboratory
spectroscopic data, and several X-ray observational assessments (see Table 1). While prac-
tical R-matrix calculations for multi-electron systems are better tailored for computing
scattering and atomic transition rates, they are less reliable in predicting the energy dif-
ferences between atomic states as compared to limited bound-state structure calculations.
(R-matrix calculations necessarily include all quasi-bound and continuum final states, lim-
iting a practical improvement of the basis description.) The R-matrix Kα energy was found
to be ∼0.3 eV higher than the final assessed observational value of 527.37 eV [23]. More
complex MCHF calculations, which were focused only on the initial 1s22s22p4 state and
final 1s2s22p5 state, converged downward to a value of 527.49 eV, in good agreement with
the observations. On the other hand, the experiments performed at the Advanced Light
Source (ALS) were reporting a value of 526.79 eV [76], a discrepancy of almost −0.6 eV.
Considering the reliability of the observational calibration and the convergence trend of
the MCHF calculations, the X-ray observation was unconventionally chosen instead of the
laboratory measurement as the final resonance position in the atomic absorption model.

Table 1. Comparison of astronomically observed, laboratory measured, and computed O I Kα and Kβ line energies (eV).

Method Source E(1s − 2p) E(1s − 3p) ∆E

Astronomical observations XMM-Newton, Mrk 421 [23] 527.30(5) 541.95(28) 14.65(33)
Chandra, 7 sources [23] 527.44(9) 541.72(18) 14.28(21)

Chandra, shifted [23] 527.26(9)
Chandra, 11 sources [77] 527.39(2)
Chandra, 6 sources [78] 527.41(18) 541.77(40) 14.36(58)

Laboratory measurements HZB [52] 527.26(4) 541.645(12)
ALS [79,80] 526.79(4) 541.19(4) 14.40(8)

ALS [76] 526.79(4) 541.20(4) 14.41(8)
WSRC [81] 527.85(10) 541.27(15) 13.41(25)

Auger spectroscopy [82] 527.20(30)
MCHF converged result MCHF [23] 527.49

A further consideration in assessing the reliability of the ALS measurements was that
the absolute energy calibration relied on earlier molecular measurements with uncertainty
estimates that seemed questionable. Since the O I study by [23], new laboratory measure-
ments have been performed using an electron beam ion trap (EBIT) to determine the Kα
resonance position at 527.26± 0.04 eV [52], in good agreement with the observations and
the converged MCHF result. This new measurement suggests a recalibration of the ALS
reference spectrum.
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4.3. Neon

For neon, the XSTAR atomic database includes the photoabsorption cross-sections
by [13]. A benchmark for Ne II and Ne III was performed with Chandra and XMM-
Newton observations of the bright low-mass X-ray binaries (LMXBs) Cygnus X–2 and
XTE J1817-330 [35]. Column densities were obtained for the cold (Ne I) and warm (Ne II,
Ne III) components of the ISM.

4.4. Magnesium

New photabsorption cross-sections for Mg species were computed by [25]. X-ray
XMM-Newton spectra of the LMXB GS 1826-238 were used to perform a benchmark of the
data. The resulting ionization fractions indicate that Mg is predominantly ionized rather
than in neutral form, as also shown by UV observations.

4.5. Silicon

High-resolution Chandra spectra in the Si K-edge region (6–7 Å) from 16 LMXBs
were analyzed by [39]. The Si model included the Si I photoabsorption cross-sections
computed by Gorczyca et al. (2020, in preparation), while those for the ionized species
were taken from [18]. The absorption features identified in the spectra agreed with the
theoretical atomic data, even though the individual resonances of the Kα “triplet” could
not be resolved. Although a model without the dust component was used, good data fits
were obtained, highlighting the need for accurate modeling of the gaseous component
before attempting to address the solid component [39].

5. High-Density Effects on Atomic Parameters

XSTAR needs to address spectra from high-density sources such as the X-ray reflection
from the inner region of the accretion disks around compact objects (electron temperature
Te ∼ 105–107 K and density ne ∼ 1018–1022 cm−3) [51,83]. This requires taking into account
a series of atomic processes usually neglected in plasma photoionization models, which
have been fully discussed by [46] and recently implemented in the code. We discuss in
Sections 5.1 and 5.2 two of these processes—continuum lowering and DR suppression—
since they led to significant modifications of the database design and implementation.

5.1. Continuum Lowering

The density effects on the atomic thresholds (ionization potential and K edge), Kα
wavelengths and A-values, and Auger rates of oxygen and iron ions have been studied
by [40–45]. The atom is assumed to be embedded in a weakly coupled plasma repre-
sented in the Multi-Configuration Dirac–Fock (MCDF) method with a time-independent
Debye–Hückel screened Dirac–Coulomb Hamiltonian:

HDH
DC = ∑

i
c~αi · ~pi + βic2 − Z

ri
e−µri + ∑

i>j

1
rij

e−µrij , (7)

where rij = |~ri −~rj| and the plasma screening parameter µ (inverse of the Debye shielding
length λD) is given in atomic units (λD in Bohr radius a0; ne in a−3

0 ; and kTe in Hartree) by

µ =
1

λD
=

√
4πne

kTe
. (8)

As shown in Figure 8, the density effects mainly cause a threshold lowering that
increases with µ, which for the ionization potential can be approximated in eV by the
universal formula [45] in terms of the effective charge Zeff = Z− N + 1

∆E0 = (−26.30± 0.08)µZeff . (9)
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Figure 8. Ionization potential lowering in Fe IX–Fe XXV as a function of effective charge Zeff = Z− N + 1
obtained with the MCDF method using a Debye–Hückel screening potential. Red circles: µ = 0.1 a.u.
Black circles: µ = 0.25 a.u. Triangles: Debye–Hückel limit ∆EDH

0 = −27.2116 µZeff eV. Reproduced from
Figure 1 of [43] with permission from Astronomy & Astrophysics, ©ESO.

In XSTAR continuum lowering leads to density-dependent targets with reduced num-
bers of levels, which must be derived at each density point causing a severe overhead at
runtime. This bottleneck can be mitigated by pre-computing a µ grid of atomic databases
but at the price of increasing the database volume significantly (∼10 GB), thus hampering
the standard package downloading procedure. Consequently, deployment strategies are
being considered in terms of cloud virtual machines and containers.

5.2. DR Suppression

Rigorous collisional–radiative plasma modeling shows that DR is suppressed at high
densities [84]. As mentioned in Section 2, RR and DR rates are treated separately in the
XSTAR database using the AMDPP tabulation [64,65], which allows an estimate of the DR-
rate density attenuation using the analytic formulae by [48,49]. The highly approximate
value of the DR suppression factors has nevertheless been stressed by [49], as well as
the need for detailed collisional–radiative calculations. The intermediate density range
(10 ≤ log ne ≤ 18 cm−3) is expected to be the most susceptible since, at the higher densities
(log ne > 18 cm−3), DR is practically negligible.

It is worth mentioning that in the unified treatment of electron–ion recombination [85,86],
where the total recombination rate is obtained directly from a Maxwellian average of the
photoionization cross-section through the Milne relation, it would be more difficult to
evaluate the DR density effects. It would imply a rigorous approach to introduce plasma
interactions in the Hamiltonian, such as those described for continuum lowering (see
Section 5.1), followed by large-scale computations of photoionization cross-sections and
fitting procedures to obtain a set of interpolation formulae.

To characterize the plasma effects caused by DR suppression, we have compared the
heating and cooling rates in the ionization-parameter–temperature plane:

− 3 ≤ log(ξ) ≤ 3 erg cm s−1 and 3.5 ≤ log(T) ≤ 7.5 K (10)

for XSTAR models with and without metal DR. We assume a power-law spectrum, density
ne = 1010 cm−3, and luminosity L = 1032 erg s−1 (see Figure 9). The larger temperature
differences occur in the interval 1 ≤ log(ξ) ≤ 3, where T is lower by as much as 40% when
DR is excluded, and are caused by increases in the Fe average charge at log(ξ) ≈ 1.3 and
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log(ξ) ≈ 2.5. As shown in Figure 9 (right panel), the DR/noDR heating-rate ratio reaches
a maximum at (log(ξ), log(T)) ≈ (1, 6.3), where the dominant species with and without
DR are Fe XIII and Fe XVII, respectively. On the other hand, the cooling-rate ratio reaches a
maximum at (log(ξ), log(T)) ≈ (−1, 5.4), caused by a higher oxygen average charge when
DR is excluded.

Figure 9. Cooling- and heating-rate ratios with and without DR obtained from an XSTAR model with solar abundances, a
power-law spectrum, density ne = 1010 cm−3, and luminosity L = 1032 erg s−1. Black dotted curve: thermal temperature
with DR. Red dotted curve: thermal temperature without DR.

Concerning the Fe anomalous overabundance derived from the reflection spectra
of accretion disks [51], we have computed the X-ray spectra reflected from an optically
thick atmosphere using the XILLVER code [87,88]. The atmosphere is assumed to have
plane-parallel geometry and a constant gas density of log(ne) = 18 cm−3. The ioniza-
tion parameter is set to ξ = 4π Fx/ne = 32 erg cm s−1 implying an illuminating flux of
Fx = 3× 1018 erg cm−2 s−1. The ionization balance is calculated self-consistently using the
routines and atomic data from XSTAR, setting all elemental abundances to their solar values.
It is found that metal DR suppression leads to significant changes in the ionization state
of the gas resulting in more ionized species. As shown in Figure 10, there is a strong
enhancement of the Fe XVII L lines and Fe XVIII K lines.
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Figure 10. Reflected X-ray spectrum from an optically thick atmosphere modeled using XILLVER with and without DR.
A plane-parallel atmosphere with solar abundances and density log(ne) = 18 cm−3 was assumed.

It is worth mentioning that continuum lowering is not taken into account in this
XILLVER test calculation since it is expected to have a noticeable impact only at densities
ne > 1019 cm−3. The calculation was performed at ne = 1018 cm−3 to show that DR effects
become conspicuous at lower densities. Further characterization of high-density effects are
reported in [46].
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Density effects on DR and the high-n levels through continuum lowering are taken
into account in the XSTAR database via the rates into one or two superlevels for each ion.
The recombination rate onto the superlevel is tabulated on a density–temperature grid and
stored in data types 70 and 99 (see Appendix A). For the former, rates are tabulated on a log
scale, while for the latter, they are tabulated directly. The total recombination rate onto the
ion is the sum of the rate onto the superlevels plus the rates onto the other levels that are
treated explicitly; these are called the “spectroscopic levels”. The recombination rates onto
the superlevels are chosen such that, when they are used to calculate a recombination rate
and all the rates are summed up, the total recombination rate for the superlevel(s) plus the
spectroscopic levels is equal to the total rate taken from one of the AMDPP compilations [64]
where available or from [89] otherwise. We apply density-dependent suppression factors to
the recombination rates onto the superlevel to take into account density effects on radiative
and dielectronic recombination. They are derived from a general formula that depends on
the isoelectronic sequence, charge, density, and temperature [48,49].

The superlevels decay directly to the ground level without the emission of any observable
cascade radiation for ions with three or more electrons. The exception is the decay of members
of the H and He isoelectronic sequences, for which we use explicitly calculated cascade
matrix calculations to treat the decay of the superlevels to the spectroscopic levels [90,91]. The
superlevels are chosen to have energies close to the continuum. We include both radiative and
collisional transitions to the ground level (and other levels in the case of H- and He-like ions).

6. Database Curation

The recent inclusion in the XSTAR database of atomic parameters for odd-Z elements,
Z = (9, 11, 15, 17, 19), and trace elements with Z = (21–25, 27, 29, 30) [26–29] practically
doubled the database volume when compared with previous versions that used hydrogenic
scaling for these elements, bringing to the fore a series of curatorial problems. The database
upgrade was thus lengthy and demanding in detail. In Sections 6.1–6.4, we give a brief
account of some the issues encountered and steps taken to solve them.

6.1. Atomic Models

As shown in Table 9 of [26], the target models for ions with atomic numbers
Z = (21–25, 27, 29, 30) and electron number 19 ≤ N ≤ Z − 2 include levels from the
valence configurations µ = 3dx4sy and the L- and K-vacancy configurations 3p−1µ+1,
2p−1µ+1, and 1s−1µ+1. The total number of target levels in each of these species is larger
than 500 and in some cases (e.g., N = 23) close to 2000. It was found that to model
astrophysical plasmas in XSTAR with such large atomic representations was impractical
and with little tangible gains. We thus excluded the levels belonging to µ configura-
tions containing 4s orbitals—specifically, y = 0 in µ for N > 19. This decision led to a
reduction in the number of target levels to a few hundreds and implied extensive level
renumbering for these sequences.

6.2. Metastable Levels

As discussed in Section 2, the XSTAR atomic models display occasional low-lying
metastable levels (e.g., the 3s1.3p1.3P_0 level in Mg-like ions) with no radiative decay
transitions. Since metastable lavels in low valence-shell configurations are astrophysically
important, alternative decay mechanisms such as collisional de-excitation must be specified
for such levels. For instance, we computed a large number of distorted-wave collision
strengths with AUTOSTRUCTURE for transitions within the valence-shell configurations of
trace-element ions (see record with ID = mb01 and code = 1150 in Table A2). However, for
ions with electron number N > 19 and ground configuration 3dx, atomic models with a
few hundred levels must be considered (see Section 6.1), which leads to the appearance
of unexpected metastable levels in the 3p−1 configuration at fairly high energies. Most of
these levels were detected by running the code to look for levels with anomalously large
populations, which were then removed by hand followed by level reordering.
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6.3. Database Pointers

As previously mentioned, the raw XSTAR database consists of a list of ASCII files
labeled diont0dt, where ion is the ion identifier and dt the data type. When the package is
released, these files are read into three one-dimensional arrays (integer, real, and character
variables) and a set of pointers to be finally structured into the FITS file atdb.fits. At
runtime, these arrays are read into main memory to be accessed according to the user
model. This data structure arrangement is efficient when uploading from disk and during
processing, but can be cumbersome in database updating when new record types are
created. Proficient nursing and testing are required before the new version is released.

6.4. Metadata

The XSTAR database compiles atomic data computed to order and from a myriad of
other data sources. The data provenance of the first release was detailed in [2], but since
then, the database has undergone several major upgrades that have not been formally
registered within its file structure. One of the aims of the present paper is to create
an up-to-date data provenance blueprint to be included in the database using the FITS
metadata facilities.

In Table A2 of Appendix C, we have tabulated an up-to-date list of data source
references including the original four- and five-letter mnemonics used for identification
in [2] and a new four-integer code to be inserted in every database record. For this
purpose, we will adopt the third integer (currently displaying a zero) of the record header
(dt, rt, 0, Nflt, Nint, Nchr) described in Section 2 to denote this data provenance code.

6.5. Relational Integrity

As described in Section 2, the data in each diont0dt file are self-contained to simplify
and speed up the calculation of a wide variety of rates at runtime, but as a result, this
scheme obviates the relational integrity of the database. For instance, the wavelengths
displayed in file diont050 (see Figure 3) are not automatically recalculated if level energies
are updated in file diont006 (Figure 2). The level attributes specified in the latter file are
also repeated in several other data types, e.g., the K-vacancy level energy in file diont086
(Figure 4). The extent of this complication is further illustrated in the list of data types
in Appendix A. Data type 14 lists the ionization potential for every ionic species, but this
datum is also contained in the floating-point tuple of every level in data type 06. Some of
the level integer attributes of the latter data type are included in data types dealing with
the effective ion charge (57), photoionization cross-sections (49, 53, 85, and 88), superlevel
recombination rates (70 and 99), and satellite-level autoionization rates (72).

This database model can therefore make updating an involved and error-prone process,
which can be mitigated by adopting an SQL-based relational database engine and devising
a utility to perform the transcription to the atdb.fits file. Despite the wide variety of data
types (see Appendix A) and record lengths, this is possible as shown by the development
of the uaDB database (see Section 8). However, this scheme would hamper the generation
of new data types, which is central to the XSTAR data curation strategy (see Section 2), and
also lead to a more voluminous atdb.fits file. This proposition is being considered in the
XSTAR development roadmap.

6.6. Atomic Data Accuracy

As astronomical observations become ever more accurate (see, for example, Figure 1),
the reliability of the atomic data used in spectral modeling is under recurrent scrutiny, and
hence, data assessment activities are key. In this respect, we have seen three schemes: by a
reputed institution such as NIST [92]; by appointed review panels (e.g., VAMDC [93]), and
by an open community of both data producers and users (e.g., AtomPy [94]). Our research
group comprises both computational atomic physicists and astrophysical modelers, so
we favor the latter. However, it has not been easy to determine accuracy ratings in our
datasets for K-line diagnostics (Section 3) due to the lack of laboratory measurements and
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despite adopting a multi-code computational strategy. As described in Section 4, we have
pursued benchmarks of the photoabsorption cross-sections using astronomical observations
of ISM K absorption, but they led to a polemic between laboratory spectroscopists and
observational astronomers that was fortunately settled.

We have mentioned in Section 2 that our main concern regarding the XSTAR database
upgrade has been the complete datasets for K-shell processes in ions with Z ≤ 30, at the
expense of neglecting those for the valence-shell that in general imply data collection
rather than new computations. It may be seen in Appendix C that most of the current
datasets for valence-shell transitions go back to the original version [2] then demanding
an extensive overhaul. This is one of our main priorities in the database curation.

7. ISMabs

Although the main components of the ISM are neutral ionic species, the also perceived
existence of charged ions prompted us to develop a new ISM X-ray absorption model
referred to as ISMabs [35]. It includes atomic data for singly and doubly ionized species of
cosmically abundant elements, namely H, He, C, N, O, Ne, Mg, Si, S, Ar, Ca, and Fe, in
addition to the neutral systems. This model allows ion column densities to be determined
directly, and the inclusion of ionized species has led to improved spectral fits as compared
to those only considering neutral systems. The completeness and accuracy of the relevant
atomic data are crucial to avoid misidentification and misinterpretation of the absorption
features detected in analyses of ISM X-ray absorption spectra relying on fits of Gaussian
profiles. We have performed with this model a detailed study of X-ray absorption in the
local ISM by analyzing spectra from 24 Galactic sources. We have estimated the fractions of
neutral and singly and doubly ionized species of O, Ne, and Fe, confirming the dominance
of the cold component and a pervasive low degree of ionization [36].

8. Universal Atomic Database (uaDB)

The collection of atomic data in XSTAR is comprised of data in many different formats
from many different sources. To assist in disseminating these data to the larger community
and to account for the addition of new data, the Universal Atomic Database (uaDB) was
developed. The uaDB is a mySQL database hosted at NASA/GSFC, accessed via its website
(https://heasarc.gsfc.nasa.gov/uadb/index.php), and data can be queried based on a
number of properties such as ion and data type. The web page also contains tools to help
assess what data are available across ions or data types. One such tool displays the type of
data available on a grid of element vs. ion (see Figure 11) while another displays all atomic
lines present in a given wavelength range.

The main features of uaDB are:

• Each dataset contains a reference to the source paper(s);
• Data are stored in the original format and units as published;
• Multiple entries can exist for the same quantity (e.g., theoretical vs. measured

energy levels);
• The coupling scheme of atomic states is built into the database structure;
• Data collections exist that define a complete model; no duplicate data exist within

a collection.

All data in uaDB have a reference to the data source. The reference consists of a link to
the journal article where the data were obtained and to its entry in NASA/ADS. The user
is never more than a couple mouse clicks away from reading the source article. Data are
entered into uaDB in the same format and with the same units as published. This means that,
for example, some energy levels are stored in eV and others in cm−1. The uaDB understands
these units and can internally convert them for data querying in an energy range. The
uaDB can also convert between quantities that differ by a statistical weight (e.g., f -values
and g f -values) since it understands the level structure. We do not modify published data
in order to be as true as possible to the original source and to help identify transcription

https://heasarc.gsfc.nasa.gov/uadb/index.php
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errors. However, this can make it more difficult to compare data from different sources. To
help compare data, tools are developed that can perform the necessary conversions.

Figure 11. Grid tool in uaDB.

When compiling a set of atomic data for modeling purposes, it is important to have
coverage; that is, for each state included in the model, a full set of data connecting that
state with other states is necessary. If there are data allowing the population of a state to
increase but no data to decrease it, then the model as a whole will be flawed. Furthermore,
if the atomic model encompasses a large set of ions, it is difficult to obtain atomic data
from the literature of equal quality. We often need to combine level-resolved data with
term-resolved data to achieve coverage for an ion. To help with these difficulties, uaDB has
different coupling schemes built into its structure and is aware of how different coupling
schemes relate. Thus, when combining LS states with LSJ, uaDB can detect if any states
are being double-counted. There are also routines for converting data from one coupling
scheme to another based on simple statistical weighting.

The uaDB currently contains the complete set of data included in XSTAR as well as the
level data from CHIANTI. To assist in distinguishing these data, uaDB defines collections.
A collection is a dataset where there is no duplication of values for the same quantity.
Currently, in uaDB the collection is just a label that can be used to constrain a query,
but in the future collections could be created dynamically to construct a custom model.
Collections are not part of the XSTAR development program, but have been widely used in,
for instance, the PyNeb Python package to model emission lines in gaseous nebulae and,
more recently, to assess atomic data accuracy [95,96].

9. Discussion and Conclusions

The present report describes in detail the updated version of the underlying atomic
database of the XSTAR photoionization code to replace the original implementation of [2].
We include complete lists of the current rate types, data types (Appendix A), ionic models
(Appendix B), and source references (Appendix C). We summarize the systematic calcula-
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tions performed to characterize the metal K-lines for astronomical X-ray spectral modeling
and recent extensions of the database, namely continuum lowering and dielectronic re-
combination suppression, to deal with high-density (ne ≤ 1022 cm−3) plasmas. We have
tried to convey the intricacies in the development and maintenance of an application-based
atomic database, which go way beyond the compilation of the data and lead to curatorial
and integrity problems caused by the ever-increasing dataset volumes.

An important finding is that the atomic models used to compute the data are not
necessarily suitable for plasma modeling, particularly for ionic species with electron
number N > 19. Level-number trimming was necessary to implement functional atomic
representations for such systems, although their soundness in non-LTE modeling deserves
further attention as the appearance of unexpected metastable levels becomes an issue.

A further point worth emphasizing is that the XSTAR atomic database and output
files are structured under the FITS format specifications, which has been established as
the standard for astronomical datasets associated to the new generation of telescopes. We
believe that this compliance will reduce user stress in intense data processing, which is
bound to take place at the data repositories rather than locally.

We have briefly recounted two projects that have emerged from the XSTAR database,
namely the ISMabs absorption model and the uaDB database. The former has become
an important initiative as it has led to benchmarks of the atomic data with observations
and laboratory measurements; however, it has not been a smooth process as unexpected
inaccuracies in the calibration of the laboratory wavelength scale were detected and finally
resolved [23,52]. This outcome has given us some confidence in the identification of the
spectral features and the accuracy of our atomic data. The uaDB database model will
be helpful in future projects to disseminate the larger atomic data volumes required in
non-LTE modeling.

A question that remains unanswered is whether our efforts to ensure accuracy and
completeness for the XSTAR database are sufficient to exploit the high resolution and
sensitivity expected from the microcalorimeter-based spectrometers aboard the new X-
ray space telescopes. The encouraging fit of the showcase HITOMI spectrum of Figure 1
required basic data manipulation, but at least it was conclusive. Therefore, we envision
further database refinement in the near future, especially improved datasets for valence-
shell processes, to provide a reliable modeling platform for high-resolution spectroscopy in
the new era. In this respect more laboratory benchmarks would be welcome.
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Appendix A. Data Types

This appendix lists the data types of the XSTAR database. Unless otherwise stated,
the temperature T is given in 104 K units. The record attributes are: r1, r2, . . . for the real
variables; i1, i2, . . . for the integer variables; and s1, s2, . . . for the character strings. The
following notation is used: ion is the ion identifier; Z the atomic number; N the electron
number; E(∞) the ionization potential; E(i) the ith level energy; n the principal quantum
number; ν the effective quantum number; S the total spin quantum number; L the total
orbital angular momentum quantum number; J the total angular momentum quantum
number; λ the radiative transition wavelength; g f (i, k) the weighted oscillator strength;
and A(k, i) the transition rate.

01. Radiative recombination rate coefficient of N-electron recombined ion [89,97]:
r1 = Arad (cm3 s−1); r2 = η; i1 = ionN .

02. H0 charge exchange rate coefficient of N-electron recombined ion [98]: r1 = a
(10−9 cm3 s−1); r2 = b; r3 = c; r4 = d; r5 = T1 (K); r6 = T2 (K); r7 = ∆E/k
(104 K); i1 = ionN ; s1 = recombining ion identifier.

06. Data attributes of the ith level of N-electron ion: r1 = E(i) (eV); r2 = (2J + 1);
r3 = ν (effective quantum number); r4 = E(∞) (eV); i1 = n; i2 = (2S + 1); i3 = L;
i4 = Z; i5 = i; i6 = ionN ; s1 = level assignment (electron configuration and
spectroscopic term).

07. Dielectronic recombination rate coefficient of N-electron recombined ion [89,97]:
r1 = Adi (cm3 s−1 K3/2); r2 = Bdi; r3 = T0; r4 = T1; i1 = ionN .

14. Ionization potential of N-electron ion: r1 = E(∞) (eV); i1 = Z − N + 1; i2 = Z;
i3 = ionN ; s1 = ion identifier.

22. Dielectronic recombination rate coefficient of the N-electron recombined ion [99]:
r1 = a; r2 = b; r3 = c; r4 = d; r5 = f ; i1 = ionN .

30. Total radiative recombination rate (hydrogenic) for N-electron recombined ion [100]:
i1 = Z; i2 = ionN .

38. Total radiative recombination rate coefficient of N-electron recombined ion [http:
//amdpp.phys.strath.ac.uk/tamoc/DATA/RR/]: r1 = A (cm3 s−1); r2 = B; r3 =
T0 (K); r4 = T1 (K); r5 = C; r6 = T2 (K); i1 = Z; i2 = N − 1; i3 = M; i4 = W;
i5 = ionN .

http://amdpp.phys.strath.ac.uk/tamoc/DATA/RR/
http://amdpp.phys.strath.ac.uk/tamoc/DATA/RR/
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39. Total dielectronic recombination rate coefficient of N-electron recombined ion [http:
//amdpp.phys.strath.ac.uk/tamoc/DATA/DR/]: r1−rjmax = (C(j), j = 1, jmax)
(cm3 s−1 K3/2); rjmax+1−rj2∗max = (T(j), j = 1, jmax) (K); i1 = Z; i2 = N − 1;
i3 = M; i4 = W, i5 = ionN .

49. Partial photoionization cross-section of iNth level of the N-electron ion leaving the
(N− 1)-electron ion in the kN−1th level: r1−rj2∗max = (E(j), σ(E(j)), j = 1, jmax) (En-
ergy in Ryd relative to E(∞), cross-section in Mb); i1 = n; i2 = L; i3 = 2J; i4 = Z;
i5 = kN−1; i6 = ionN−1; i7 = iN ; i8 = ionN .

50. Line (k − i) radiation rates of N-electron ion: r1 = λ (Å); r2 = g f (i, k); r3 =

A(k, i) (s−1); i1 = i (lower level); i2 = k (upper level); i3 = Z; i4 = ionN .
51. Electron-impact effective collision strength for the k− i transition of N-electron ion

(CHIANTI fit [61,101]): r1 = ∆E (Ryd); r2 = C; r3−r7 = (Υred(j), j = 1, 5) (reduced
effective collision strength); i1 = it (transition type); i2 = i (lower level); i3 = k
(upper level); i4 = Z; i5 = ionN .

53. TOPbase partial photoionization cross-section (resonance averaged) of iNth level of
the N-electron ion leaving the (N − 1)-electron ion in the kN−1th level: r1−rj2∗max =
(E(j), σ(E(j)), j = 1, jmax) (Energy in Ryd relative to E(∞), cross-section in Mb);
i1 = n; i2 = L; i3 = 2J; i4 = Z; i5 = kN−1; i6 = ionN−1; i7 = iN ; i8 = ionN .

54. Radiative transition probability Aki for the k− i transition of N-electron ion computed
by quantum defect theory (or hydrogenic): r1 = 0.0E+0; i1 = i (lower level); i2 = k
(upper level); i3 = Z; i4 = ionN .

56. Electron-impact effective collision strengths for the k− i transition of N-electron ion:
r1−rjmax = (log Te(j), j = 1, jmax) (K); rj(max+1)−rj(2∗max) = (Υ(Te(j)), j = 1, jmax)
(effective collision strength); i1 = i (lower level); i2 = k (upper level); i3 = Z;
i4 = ionN .

57. Effective ion charge for ith level of N-electron ion used in collisional ionization rates:
r1 = Zeff; i1 = n; i2 = L; i3 = 2J; i4 = i; i5 = ionN

59. Partial photoionization cross-section of iNth level of the N-electron ion leaving the
(N − 1)-electron ion in the kN−1th level [102]: r1 = E(th) (eV); r2 = E(0) (eV); r3 =
σ(0) (Mb); r4 = y(a); r5 = P; r6 = y(w); i1 = N; i2 = n (shell principal quantum
number); i3 = l (subshell orbital quantum number); i4 = kN−1; i5 = ionN−1;
i6 = iN ; i7 = ionN ; s1 = shell–ion identifier.

60. Analytic fits for effective collision strengths in H-like ions [103]: r1−rjmax = coefficients;
i1 = i (lower level); i2 = k (upper level); i3 = nphot; i4 = ionN ; s1 = Transition.

62. Analytic fits for effective collision strengths in H-like ions [103]: r1−rjmax = coefficients;
i1 = i (lower level); i2 = k (upper level); i3 = 1; i4 = ionN ; s1 = Transition.

63. Collisional transition probability Cik for N-electron ion computed by quantum defect
theory (or hydrogenic): i1 = 1 i2 = i (lower level); i3 = k (upper level); i4 = Z;
i5 = ionN .

66. Fits to fine-structure collision strengths for He-like ions [104]: r1−rjmax = coefficients;
i1 = i (lower level); i2 = k (upper level); i3 = Z; i4 = ionN .

67. Analytic fits for effective collision strengths in He-like ions [105]: r1−rjmax = coeffi-
cients; i1 = i (lower level); i2 = k (upper level); i3 = Z; i4 = ionN .

68. Analytic fits for effective collision strengths in He-like ions [106]: r1−rjmax = coeffi-
cients; i1 = i (lower level); i2 = k (upper level); i3 = Z; i4 = ionN .

69. Fits to LS collision strengths for He-like ions [104]: r1−rjmax = coefficients; i1 = i
(lower level); i2 = k (upper level); i3 = Z; i4 = ionN .

70. Coefficients for recombination and photoionization cross-sections of superlevels:
r1−rjnd = (ne(j), j = 1, jnd) (cm−3); rjnd+1−rjnd+nt = (Te(j), j = 1, jnt); rjnd+nt+1−
rjnd+nt+nt∗nd = ((log α(j, j′), j = 1, jnt), j′ = 1, j′nd); rjnd+nt+nt∗nd+1−
rjnd+nt+nt∗nd+2∗nx = (E(j), σ(j), j = 1, jnx) (Ryd, Mb); i1 = nd; i2 = nt; i3 = nx;
i4 = n; i5 = L; i6 = 2S + 1; i7 = Z; i8 = kN−1; i9 = ionN−1; i10 = iN ; i11 = ionN .

71. Radiative transition rates from superlevels to spectroscopic levels: r1−rjnd = (ne(j),
j = 1, jnd) (cm−3); rjnd+1−rjnd+nt = (Te(j), j = 1, jnt); rjnd+nt+1−rjnd+nt+nt∗nd =

http://amdpp.phys.strath.ac.uk/tamoc/DATA/DR/
http://amdpp.phys.strath.ac.uk/tamoc/DATA/DR/
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((A(j, j′), j = 1, jnt), j′ = 1, j′nd) (s−1); rnd+nt+nt∗nd+1 = λ (Å); i1 = nd; i2 = nt;
i3 = i (lower level); i4 = k (upper level); i5 = Z; i6 = ionN .

72. Autoionization rates for satellite levels: r1 = Aa(k, i) (s−1); r2 = E(k) (eV above
ionization limit); r3 = (2J + 1); i1 = (2S + 1); i2 = L; i3 = k (level); i4 = i
(continuum level); i5 = Z; i6 = ionN ; s1 = level configuration.

73. Fit to effective collision strengths for satellite levels of He-like ions [107]: r1−r7 = fit
coefficients; i1 = i (lower level); i2 = j (upper level); i3 = Z; i4 = ionN .

74. Delta functions to add to photoionization cross-sections to match ADAS DR rates:
r1 = E(∞) (Ryd); r2−rjm+1 = (E(j), j = 1, jm) (Ryd); rjm+2−rj2∗m+1 = ( f (j), j =
1, jm) (cm2); i1 = n; i2 = L; i3 = 2S + 1; i4 = Z; i5 = kN−1; i6 = ionN−1; i7 = iN ;
i8 = ionN .

75. Autoionization rates for Fe XXIV satellites [5]: r1 = Aa(k, i) (s−1); r2 = E(k) (eV
above ionization limit); i1 = ionN , i2 = kN ; i3 = ionN−1; i4 = iN−1; i5 = ionN .

76. Two-photon radiation rate for (k− i) transition of N-electron ion: r1 = A(k, i) (s−1);
i1 = i (lower level); i2 = k (upper level); i3 = N; i4 = ionN ; s1 = transition.

77. Collision transition rates from superlevels to spectroscopic levels: r1−rjnd = (ne(j),
j = 1, jnd) (cm−3); rjnd+1−rjnd+nt = (Te(j), j = 1, jnt); rjnd+nt+1−rjnd+nt+nt∗nd =
((C(j, j′), j = 1, jnt), j′ = 1, j′nd) (s−1); rjnd+nt+nt∗nd+1 = λ (Å); i1 = nd; i2 = nt;
i3 = i (lower level); i4 = k (upper level); i5 = Z; i6 = ionN .

81. Collision strengths for Fe XIX [108]: r1 = Υ(k, i); i1 = i (lower level); i2 = k (upper
level); i3 = Z; i4 = ionN .

82. Decay rates for Fe UTA [109]: r1 = λ (Å); r2 = E(k) (eV); r3 = g f (i, k); r4 =

Ar(k, i) (s−1); r5 = Aa(k, i) (s−1); i1 = i (lower level); i2 = k (upper level); i3 = ionN .
83. Level data for Fe UTA [109]: r1 = E(i) (eV); r2 = (2J + 1); r3 = 0.0; r4 = 0.0; i1 = 1;

i2 = i (level); i3 = ionN ; s1 = level configuration assignment.
85. Photoionization cross-sections for Fe ions obtained by summation of resonances near

the K edge [3]: r1 = Zeff; r2 = Eth (Ryd); r3 = f ; r4 = γ; r5 = scaling factor; i1 = n;
i2 = L; i3 = 2J; i4 = Z; i5 = kN−1; i6 = ionN−1; i7 = iN ; i8 = ionN .

86. Auger and radiative widths of kNth K-vacancy level: r1 = E(kN) (eV, relative to
E(∞)); r2 = Aa(kN) (s−1); r3 = Aa(kN , iN−1) (s−1); r4 = Ar(kN) (s−1); i1 = iN−1;
i2 = kN ; i3 = Z; i4 = ionN−1; i5 = ionN .

88. Photoionization cross-section damped excess of iNth level of the N-electron ion leav-
ing the (N − 1)-electron ion in superlevel_[K] kN−1: r1−rj2∗max = (E(j), σ(E(j)), j =
1, jmax) (Energy in Ryd relative to E(∞), cross-section in Mb); i1 = n; i2 = L; i3 = 2J;
i4 = Z; i5 = kN−1; i6 = iN ; i7 = ionN .

91. APED line (k− i) radiation rates [110]: r1 = λ (Å); r2 = 0.0; r3 = A(k, i) (s−1); i1 = i
(lower level); i2 = k (upper level); i3 = Z; i4 = ionN .

92. APED collision strengths [110]: r1 = Te(1) (K); r2 = Te(jmax) (K); r3−rjmax+2 =
(Te(j), j = 1, jmax) (K); rjmax+3−rj2∗max+2 = (Υ(j), j = 1, jmax); i1 = i (lower level);
i2 = k (upper level); i3 = 113; i4 = Z; i5 = ionN .

95. Collisional ionization rates for N-electron ion [111]: r1 = E(th) (eV); r2 = T0 (K);
r3−rjmax+2 = (ρ(j), j = 1, jmax) (effective collision strength); i1 = i (level); i5 = ionN .

98. Electron-impact effective collision strengths for the k− i transition of the N-electron
ion (CHIANTI fit [61,101]): r1 = ∆E (Ryd); r2 = C; r3−rjmax+2 = (Υred(j),
j = 1, jmax) (reduced effective collision strength); i1 = i; i2 = k; i3 = it (transi-
tion type); i4 = ionN .

99. Coefficients for recombination and photoionization cross-sections of superlevels:
r1−rjnd = (ne(j), j = 1, jnd) (cm−3); rjnd+1−rjnd+nt = (Te(j), j = 1, jnt); rjnd+nt+1
−rjnd+nt+nt∗nd = ((α(j, j′), j = 1, jnt), j′ = 1, j′nd); rjnd+nt+nt∗nd+1−
rjnd+nt+nt∗nd+2∗nx = (E(j), σ(j), j = 1, jnx) (Ryd, Mb); i1 = nd; i2 = nt; i3 = nx;
i4 = n; i5 = L; i6 = 2S + 1; i7 = Z; i8 = kN−1; i9 = ionN−1; i10 = iN ; i11 = ionN .
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Appendix B. Ion Models

Table A1. Number of energy levels included in the XSTAR ion models.

N
Z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
2 46 32 32 32 56 58 241 52 54 52 58 52 58 52
3 3 3 3 26 43 43 22 43 22 43 22 43 22
4 3 3 22 53 53 43 79 43 79 43 79 43
5 3 22 58 163 53 163 53 163 53 163 53
6 8 61 79 53 79 53 79 53 79 53
7 82 34 34 34 34 34 63 34 34
8 19 3 19 19 19 57 19 19
9 3 118 7 7 7 7 7

10 4 3 46 46 46 50
11 3 24 4 60 42
12 3 4 57 31
13 3 18 55
14 3 3
15 3

N
Z 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
2 58 52 38 52 46 52 52 52 52 52 50 52 43 52 52
3 43 22 43 22 43 22 22 22 22 22 52 22 53 22 22
4 79 43 79 43 79 43 43 43 43 43 199 43 79 43 43
5 163 53 163 53 163 53 53 53 53 53 551 53 163 53 53
6 79 53 53 53 53 53 53 53 53 53 623 53 53 53 53
7 34 34 34 34 34 34 34 34 34 34 744 34 34 34 34
8 19 19 19 19 29 19 19 19 19 19 639 19 67 19 19
9 7 7 7 7 7 7 7 7 7 7 340 7 117 7 7

10 46 50 72 50 78 50 50 50 50 50 276 50 98 50 50
11 60 42 208 42 208 42 42 42 42 42 85 42 216 42 42
12 53 31 153 31 149 31 31 31 31 31 146 31 171 31 31
13 76 55 208 55 208 55 55 55 55 55 55 55 235 55 55
14 82 71 249 71 249 71 71 71 71 71 68 71 269 71 71
15 31 55 211 55 211 55 55 55 55 55 78 55 219 55 55
16 3 3 143 31 143 31 31 31 31 31 70 31 145 31 31
17 3 62 10 62 10 10 10 10 10 62 10 63 10 10
18 3 3 3 54 54 54 54 54 31 54 40 54 54
19 3 5 221 221 221 221 221 170 221 143 221 221
20 3 32 258 258 258 258 54 258 258 258 258
21 3 84 441 441 441 55 441 441 441 441
22 3 3 537 537 33 537 537 537 537
23 3 163 463 70 463 463 463 463
24 3 160 73 295 295 295 295
25 3 197 128 128 128 128
26 3 3 40 40 40
27 3 3 3 3
28 3 3 3
29 3 3
30 3
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Appendix C. Atomic Data Provenance

Table A2. Data provenance including the CHIANTI [61], PP95 [63], and AMDPP [64,65] compilations.
rt = rate type. dt = data type.

ID Code rt dt (Z; N) References

ac81 1000 3 56 (8; 1) [112]
ac92 1001 3 56 (2; 1) [113]
ak91 1002 3 56 (6; 1) [114]

ak91a 1003 3 56 (10; 1) [115]
ak92 1004 3 56 (14; 1) [116]

ak92a 1005 3 56 (20; 1) [117]
ak93 1006 3 56 (26; 1) [118]
ba00 1007 4 50 (28; 2) [91]
bm98 1008 3 56 (26; 15) [119], CHIANTI ([120,121])
bn00 1009 3 56 (26; 20) [122], CHIANTI ([123])
bp98 1010 3 56 (26; 25) [90]
ch00 1011 3 51 (10; 7), (20; 8), (26; 16), (28; 14) CHIANTI
ch00 1012 4 50 (6, 7, 8; 4), (12, 14; 5),(20; 8), CHIANTI

(26; 6, 12, 14−18), (28; 14)
ch01 1013 3 51 (6, 7; 3) CHIANTI ([124])
ch01 1014 4 50 (6, 7; 3) CHIANTI ([125,126])
ch02 1015 4 50 (8, 10, 12, 14, 16, 18, 20, 26, 28; 3) CHIANTI ([126,127])
ch02 1016 3 51 (8, 10, 12, 14, 16, 18, 20, 28; 3) CHIANTI ([127])
ch04 1017 3 51 (6; 4) CHIANTI ([128,129])
ch04 1018 4 50 (10, 12, 16; 4) CHIANTI ([130–132])
ch05 1019 3 51 (7; 4) CHIANTI ([133])
ch05 1020 4 50 (14, 18, 26; 4) CHIANTI, CHIANTI ([131])
ch06 1021 3 51 (8; 4) CHIANTI ([132,134])
ch06 1022 4 50 (20, 28; 4) CHIANTI ([130,132])
ch07 1023 3 51 (10, 12, 14, 16, 18, 20, 26, 28; 4) CHIANTI ([131,132])
ch07 1024 4 50 (6; 5) CHIANTI ([135–137]), NIST
ch08 1025 3 51 (6; 5) CHIANTI ([138])
ch08 1026 4 50 (7; 5) CHIANTI ([139,140])
ch09 1027 4 50 (8, 10; 5) CHIANTI ([135])
ch09 1028 3 51 (7; 5) CHIANTI ([141,142])
ch10 1029 4 50 (16, 18, 20; 5) CHIANTI ([135,143])
ch10 1030 3 51 (8, 10, 12, 14, 16, 18, 20, 26; 5) CHIANTI ([144])
ch11 1031 3 51 (28; 5) CHIANTI ([145])
ch11 1032 4 50 (26; 5) CHIANTI ([145])
ch12 1033 4 50 (28; 5) CHIANTI ([135,143,145])
ch12 1034 3 51 (7; 6) CHIANTI ([141,142])
ch13 1035 4 50 (7; 6) CHIANTI, CHIANTI ([146])
ch13 1036 3 51 (8; 6) CHIANTI ([147–150])
ch14 1037 4 50 (8; 6) CHIANTI ([149])
ch14 1038 3 51 (10; 6) CHIANTI ([150–152])
ch15 1039 4 50 (10, 12, 14; 6) CHIANTI ([152,153])
ch15 1040 3 51 (12; 6) CHIANTI ([154])
ch16 1041 3 51 (14; 6) CHIANTI ([152,153]
ch16 1042 4 50 (16; 6) CHIANTI ([155])
ch17 1043 4 50 (18; 6) CHIANTI ([156]
ch17 1044 3 51 (16; 6) CHIANTI ([155,157])
ch18 1045 3 51 (18; 6) CHIANTI ([156])
ch18 1046 4 50 (20; 6) CHIANTI ([158])
ch19 1047 3 51 (20; 6) CHIANTI ([159,160])
ch19 1048 4 50 (12, 14, 16, 18, 20; 7) CHIANTI ([161])
ch20 1049 4 50 (26; 7) CHIANTI ([162])
ch20 1050 3 51 (26; 6) CHIANTI ([163,164])
ch21 1051 4 50 (14, 16, 18; 8) CHIANTI ([165])
ch21 1052 3 51 (8; 7) CHIANTI ([166])
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ch22 1053 3 51 (12, 14, 16, 18, 20; 7) CHIANTI ([161])
ch22 1054 4 50 (26; 8) CHIANTI ([167])
ch23 1055 3 51 (26; 7) CHIANTI ([161,162])
ch24 1056 4 50 (12, 14, 16, 20; 9) CHIANTI ([168]), NIST
ch24 1057 3 51 (10, 12; 8) CHIANTI ([169])
ch25 1058 3 51 (14, 16, 18; 8) CHIANTI ([165])
ch25 1059 4 50 (26, 28; 9) CHIANTI ([168,170,171]), NIST
ch26 1060 4 50 (14; 10) CHIANTI ([172])
ch26 1061 3 51 (26; 8) CHIANTI ([167])
ch27 1062 4 50 (16; 10) CHIANTI ([173])
ch27 1063 3 51 (10; 9) CHIANTI ([174])
ch28 1064 3 51 (12; 9) CHIANTI ([174,175])
ch28 1065 4 50 (18, 20, 28; 10) CHIANTI ([173,176])
ch29 1066 4 50 (26; 10) CHIANTI ([177])
ch29 1067 3 51 (14; 9) CHIANTI ([174,178])
ch30 1068 3 51 (16; 9) CHIANTI ([174,179])
ch30 1069 4 50 (12, 14, 16, 18, 20, 26, 28; 11) CHIANTI ([125,180])
ch31 1070 4 50 (14; 12) CHIANTI, CHIANTI ([181])
ch31 1071 3 51 (20, 26; 9) CHIANTI ([174,182])
ch32 1072 3 51 (14; 10) CHIANTI ([172])
ch32 1073 4 50 (16, 18, 20, 28; 12) CHIANTI ([183]), NIST
ch33 1074 4 50 (14; 13) CHIANTI, CHIANTI ([184])
ch33 1075 3 51 (16; 10) CHIANTI ([185])
ch34 1076 4 50 (16; 13) CHIANTI ([186,187])
ch34 1077 3 51 (18, 20, 28; 10) CHIANTI ([176])
ch35 1078 3 51 (26; 10) CHIANTI ([177])
ch35 1079 4 50 (26; 13) CHIANTI ([188])
ch36 1080 4 50 (26; 19) CHIANTI ([189,190]), NIST
ch36 1081 3 51 (12, 14, 16, 18, 20, 28; 11) CHIANTI ([180])
ch37 1082 3 51 (14; 12) CHIANTI ([191])
ch37 1083 4 50 (26; 20) CHIANTI ([192])
ch38 1084 3 51 (16, 18, 20, 28; 12) CHIANTI ([183])
ch39 1085 3 51 (14; 13) CHIANTI ([193])
ch40 1086 3 51 (16; 13) CHIANTI ([186,187,194])
ch41 1087 3 51 (26; 18) CHIANTI ([195,196])
ch42 1088 3 51 (26; 19) CHIANTI ([189,197])
ch43 1089 3 51 (26; 14) CHIANTI ([196,198])
cj94 1090 3 56 (1; 1) [103,199]
cp99 1091 4 50 (26; 21) [200]
cp99 1092 3 56 (26; 21) [200]
eg99 1093 3 56 (26; 11) [180,201]
ei99 1094 3 56 (26; 12) CHIANTI, [202]
fe01 1095 4 50 (26; 25) [203–206]
fe10 1096 3 56 (26; 17) CHIANTI, [207]
fe24 1097 3 56 (26; 3) [127,208]
gr58 1098 4 50 (26; 23) [209]
im 1099 3 63 (7, 12, 16, 18, 28; 1), (7; 2) Impact parameter method

kh84 1100 4 50 (2; 2) [210]
km87 1101 3 56 (10, 14, 16; 2) [105–107,211]
kn89 1102 3 69 (6; 2) [104]

kn89b 1103 3 69 (2, 8, 12, 20; 2) [104,107,211]
kn89c 1104 3 69 (26; 2) [104–107,211]
mg05 1105 4 50 (12; 8) PP95 ([212]), [213,214]
ne01 1106 4 50 (10; 7) CHIANTI, PP95 ([212,215])
ne02 1107 4 50 (10; 8) CHIANTI, PP95 ([212,214])
np96 1108 4 50 (26; 24) [216]
ny01 1109 4 50 (7; 7) [217–219]
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ox01 1110 4 50 (8; 6) PP95 ([212,220]), CHIANTI ([149])
ox02 1111 4 50 (8; 7) CHIANTI, PP95 ([212,215])
ox03 1112 4 50 (8; 8) [218,219], PP95 ([212,214]
pb95 1113 3 56 (18, 20; 17) [207]
pp01 1114 4 50 (6; 6) PP95 ([136,212,213])
pp01 1115 3 56 (6; 6) PP95 ([221–223])
pp02 1116 3 56 (7; 7) PP95 ([224,225])
pp03 1117 3 56 (8; 8) PP95 ([225,226])
pp04 1118 3 56 (16; 14) PP95 ([214])
pp05 1119 4 50 (18, 20; 16) PP95 ([212,214])
pp05 1120 3 56 (18; 14), (20; 19) PP95 ([214])
pp06 1121 3 56 (18; 15) PP95 ([227])
pp06 1122 4 50 (10; 9), (20; 17) PP95 ([212])
pp07 1123 3 56 (18, 20; 16) PP95 ([228])
pp07 1124 4 50 (16; 14) PP95 ([212,229,230])
pp08 1125 4 50 (18; 15) PP95 ([212,231])
pp09 1126 4 50 (18; 17) PP95 ([214])
pp10 1127 4 50 (20; 19) PP95 ([232])
pp11 1128 4 50 (18; 14) PP95 ([187,212])
rb96 1129 3 56 (16; 15) [233], CHIANTI ([234])
sm00 1130 3 51 (26; 13) [235]
ss01 1131 4 50 (16; 15) CHIANTI
ss96 1132 3 56 (18, 20; 13) [236]
tb93 1133 4 50 (6, 7, 8, 10, 12, 14, 16, 18, 20, 26; 2) [60]
zh96 1134 3 56 (26; 24) [237]
zp97 1135 3 56 (26; 23) [238]
zs87 1136 3 56 (18, 28; 2) [106]

bm01 1137 3 56 (26; 3) [5]
bm01 1138 4 50 (26; 3) [5]
bm02 1139 3 56 (26; 4−10) [8]
pm01 1140 4 50 (26; 2−9) [6]
pm02 1141 4 50 (26; 18−25) [7]
mk01 1142 4 50 (26; 10−17) [9]
gm01 1143 4 50 (8; 2−8) [11]
gk01 1144 4 50 (7; 1−7) [17]
pm03 1145 4 50 (16; 2−16) [14]
pq01 1146 4 50 (10, 12, 14, 16, 18, 20; 2−Z) [15]
pq02 1147 4 50 (28; 2−27) [16]
pq03 1148 4 50 (14; 2−13) [22]
pq04 1149 4 50 (9, 11, 15, 17, 19; 2−(Z− 1)) [26]

(21−25, 27, 29, 30; 2−(Z− 1))
mb01 1150 3 56 (9, 11, 15, 17, 19, 21−25, 27; 3−(Z− 2)), Unpublished

(28; 19−26), (29, 30; 3−26)
fj01 1151 3 56 (26; 2, 3) [110]
fj01 1152 4 50 (26; 2, 3) [110]

gu01 1153 4 50 (26; 11−21) [109]
gu01 1154 13 6 (26; 11−21) [109]
kf01 1155 5 25 (3−5, 21, 29, 30; 2), [98]

(6−8, 16; (Z− 3)−Z),
(10, 12, 14, 16, 18; (Z− 2)−Z),

(26, 28; (Z− 2)−Z),
(20; (Z− 1)−Z)

bb01 1156 5, 15 95 (1−30; 1−Z) [111]
tb01 1157 7 53 (1−30; 1), (21−25, 27−30; 2), Hydrogenic

(28; 3−10, 21−26, 28)
tb02 1158 7 53 (2−20, 26; 2) [239]
tb03 1159 7 53 (6, 7, 8, 10, 12, 14, 16, 18, 20, 26; 3) [240]
tb04 1160 7 53 (6, 7, 8, 10, 12, 14, 16, 18, 20, 26; 4) [241]
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tb05 1161 7 53 (6, 7, 8, 10, 12, 14, 16, 18, 20, 26; 5) [242]
tb06 1162 7 53 (6, 7, 8, 10, 12, 14, 16, 18, 20, 26; 6) [243]
tb07 1163 7 53 (7, 8, 10, 12, 14, 16, 18, 20, 26; 7) [60]
tb08 1164 7 53 (8, 10, 12, 14, 16, 18, 20, 26; 8) [60]
tb09 1165 7 53 (10, 12, 14, 16, 18, 20, 26; 9) [60]
tb10 1166 7 53 (10, 12, 14, 16, 18, 20, 26; 10) [244]
tb11 1167 7 53 (14, 18, 20, 26; 11) [60]
tb12 1168 7 53 (26; 12) [245]
tb13 1169 7 53 (26; 13) [246]
tb14 1170 7 53 (14, 26; 14) [60,247]
tb15 1171 7 53 (16; 16), (18; 18), (26; 15−21) [60]
tb16 1172 7 53 (26; 22) [248]
tb17 1173 7 53 (26; 23) [249]
tb18 1174 7 53 (26; 24) [250]
tb19 1175 7 53 (26; 25) [251]
tb20 1176 7 53 (26; 26) [252]
tb21 1177 7 53 (28; 27) [218]
vy01 1178 1, 7 59 (3, 4, 5, 9, 11, 15, 17, 19, 21−25; 1−Z), [102]

(27, 29, 30; 1−Z), (13; 1, 2, 12, 13),
(14; 14), (16; 16), (18; 18),

(20; 18, 19, 20), (26; 19−25), (28; 21−28)
kp01 1179 7 53 (26; 3−26) [3,5,8,10]
gg01 1180 7 53 (6; 3−6) [21,37]
gm01 1181 7 53 (8; 3−8) [11]
gg02 1182 7 49 (8; 6−8) [23,32,33]
gk01 1183 7 53 (7; 3−7) [17]
wk01 1184 7 49 (10, 12, 14, 16, 18, 20; 3−10) [18]
gg03 1185 7 49 (10; 8−10) [13,35,253]
wk02 1186 7 49 (12, 14, 16, 18, 20; 11−17) [19]
gg04 1187 7 49 (12; 3−12) [25]
wk03 1188 7 49 (13; 3−11) [24]
wk04 1189 7 49 (28; 3−20) [20]
tr01 1190 7 49 (9, 11; 3−(Z− 2)), (15, 17, 19; 3−11) [27]

(21−25, 27, 29, 30; 3−11)
tr02 1191 7 49 (15, 17, 19; 12−(Z− 2)), [28]

(21−25, 27, 29, 30; 12−18)
tr03 1192 7 49 (21−25, 27; 19−(Z− 2)), [29]

(28; 21−26), (29, 30; 19−26)
ap01 1193 8 1 (3−30; 2), (15−30; 14−Z) [89,97]
ap01 1194 8 7 (3−5; 2−Z), (7, 21, 29, 30; 2), [89,97]

(13−25, 27−30; 13−Z)
ad01 1195 8 38 (3−12; 3−Z), (13−30; 3−13) AMDPP ([65])
ad01 1196 8 39 (3−13; 3−Z), (14−30; 3−12), AMDPP ([64])

(26, 28; 13−20), (26; 21−26)
ns01 1197 8 22 (13; 13), (14; 13, 14) [99]
gt01 1198 8 30 (1−30; 1) [100]
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