Route to Extend the Lifetime of a Discrete Time Crystal in a Finite Spin Chain without Disorder
Abstract
:1. Introduction
2. Model
3. Maximizing the DTC Lifetime
3.1. Few-Cycles Dynamics
3.2. Long-Time Dynamics
3.3. Experimental Realization
4. Summary and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DTC | Discrete Time Crystal |
TTSB | Time Translation Symmetry Breaking |
MBL | Many-Body Localization |
References
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics; Pergamon: Oxford, UK, 1980; Volume 5. [Google Scholar]
- Beekman, A.J.; Rademaker, L.; van Wezel, J. An introduction to spontaneous symmetry breaking. SciPost Phys. Lect. Notes 2019, 11, 21468. [Google Scholar] [CrossRef]
- Wilczek, F. Quantum Time Crystals. Phys. Rev. Lett. 2012, 109, 160401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Gong, Z.X.; Yin, Z.Q.; Quan, H.; Yin, X.; Zhang, P.; Duan, L.M.; Zhang, X. Space-Time Crystals of Trapped Ions. Phys. Rev. Lett. 2012, 109, 163001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, P. Impossibility of Spontaneously Rotating Time Crystals: A no-go theorem. Phys. Rev. Lett. 2013, 111, 070402. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J. The Aftermath of a Controversial Idea. Physics 2013, 6, 31. [Google Scholar]
- Nozières, P. Time Crystals: Can Diamagnetic Currents Drive a Charge Density Wave into Rotation? EPL 2013, 103, 57008. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Oshikawa, M. Absence of Quantum Time Crystals. Phys. Rev. Lett. 2015, 114, 251603. [Google Scholar] [CrossRef]
- Sacha, K. Modeling Spontaneous Breaking of Time-Translation Symmetry. Phys. Rev. A 2015, 91, 033617. [Google Scholar] [CrossRef] [Green Version]
- Khemani, V.; Lazarides, A.; Moessner, R.; Sondhi, S.L. Phase Structure of Driven Quantum Systems. Phys. Rev. Lett. 2016, 116, 250401. [Google Scholar] [CrossRef]
- Von Keyserlingk, C.W.; Khemani, V.; Sondhi, S.L. Absolute Stability and Spatiotemporal Long-Range Order in Floquet Systems. Phys. Rev. B 2016, 94, 085112. [Google Scholar] [CrossRef] [Green Version]
- Yao, N.Y.; Potter, A.C.; Potirniche, I.D.; Vishwanath, A. Discrete Time Crystals: Rigidity, Criticality, and Realizations. Phys. Rev. Lett. 2017, 118, 030401. [Google Scholar] [CrossRef]
- Else, D.V.; Bauer, B.; Nayak, C. Floquet Time Crystals. Phys. Rev. Lett. 2016, 117, 090402. [Google Scholar] [CrossRef] [Green Version]
- Else, D.V.; Bauer, B.; Nayak, C. Prethermal Phases of Matter Protected by Time-Translation Symmetry. Phys. Rev. X 2017, 7, 011026. [Google Scholar] [CrossRef] [Green Version]
- Machado, F.; Else, D.V.; Kahanamoku-Meyer, G.D.; Nayak, C.; Yao, N.Y. Long-range prethermal phases of nonequilibrium matter. Phys. Rev. X 2020, 10, 011043. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.S.; Sheng, D. Prethermal time crystals in a one-dimensional periodically driven Floquet system. Phys. Rev. B 2017, 96, 094202. [Google Scholar] [CrossRef] [Green Version]
- Buča, B.; Tindall, J.; Jaksch, D. Non-stationary coherent quantum many-body dynamics through dissipation. Nat. Commun. 2019, 10, 1730. [Google Scholar] [CrossRef] [Green Version]
- Iemini, F.; Russomanno, A.; Keeling, J.; Schirò, M.; Dalmonte, M.; Fazio, R. Boundary time crystals. Phys. Rev. Lett. 2018, 121, 035301. [Google Scholar] [CrossRef] [Green Version]
- Buča, B.; Jaksch, D. Dissipation induced nonstationarity in a quantum gas. Phys. Rev. Lett. 2019, 123, 260401. [Google Scholar] [CrossRef] [Green Version]
- Basak, S.; Dahmen, K.; Carlson, E. Period multiplication cascade at the order-by-disorder transition in uniaxial random field XY magnets. Nat. Commun. 2020, 11, 4665. [Google Scholar] [CrossRef]
- Giergiel, K.; Dauphin, A.; Lewenstein, M.; Zakrzewski, J.; Sacha, K. Topological time crystals. New J. Phys. 2019, 21, 052003. [Google Scholar] [CrossRef]
- Chew, A.; Mross, D.F.; Alicea, J. Time-crystalline topological superconductors. Phys. Rev. Lett. 2020, 124, 096802. [Google Scholar] [CrossRef] [Green Version]
- Keßler, H.; Cosme, J.G.; Hemmerling, M.; Mathey, L.; Hemmerich, A. Emergent limit cycles and time crystal dynamics in an atom-cavity system. Phys. Rev. A 2019, 99, 053605. [Google Scholar] [CrossRef] [Green Version]
- Cosme, J.G.; Skulte, J.; Mathey, L. Time crystals in a shaken atom-cavity system. Phys. Rev. A 2019, 100, 053615. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, J.; Lunt, O.; Zollitsch, C.W.; Thewalt, M.L.W.; Morton, J.J.L.; Pal, A. Signatures of discrete time crystalline order in dissipative spin ensembles. New J. Phys. 2020, 22, 085001. [Google Scholar] [CrossRef]
- Nurwantoro, P.; Bomantara, R.W.; Gong, J. Discrete time crystals in many-body quantum chaos. Phys. Rev. B 2019, 100, 214311. [Google Scholar] [CrossRef] [Green Version]
- Sacha, K.; Zakrzewski, J. Time Crystals: A Review. Rep. Prog. Phys. 2017, 81, 016401. [Google Scholar] [CrossRef]
- Else, D.V.; Monroe, C.; Nayak, C.; Yao, N.Y. Discrete Time Crystals. Annu. Rev. Condens. Matter Phys. 2020, 11, 467–499. [Google Scholar] [CrossRef] [Green Version]
- Khemani, V.; Moessner, R.; Sondhi, S. A Brief History of Time Crystals. arXiv 2019, arXiv:1910.10745. [Google Scholar]
- Sacha, K. Time Crystals; Springer Series on Atomic, Optical, and Plasma Physics; Springer: Cham, Switzerland, 2020; Volume 114. [Google Scholar]
- Watanabe, H.; Oshikawa, M.; Koma, T. Proof of the Absence of Long-range Temporal Orders in Gibbs States. J. Stat. Phys. 2020, 178, 926–935. [Google Scholar] [CrossRef] [Green Version]
- Kozin, V.K.; Kyriienko, O. Quantum Time Crystals from Hamiltonians with Long-Range Interactions. Phys. Rev. Lett. 2019, 123, 210602. [Google Scholar] [CrossRef] [Green Version]
- Öhberg, P.; Wright, E.M. Quantum Time Crystals and Interacting Gauge Theories in Atomic Bose-Einstein Condensates. Phys. Rev. Lett. 2019, 123, 250402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khemani, V.; Moessner, R.; Sondhi, S. Comment on “Quantum Time Crystals from Hamiltonians with Long-Range Interactions”. arXiv 2020, arXiv:2001.11037. [Google Scholar]
- Syrwid, A.; Kosior, A.; Sacha, K. Comment on “Quantum Time Crystals and Interacting Gauge Theories in Atomic Bose-Einstein Condensates”. Phys. Rev. Lett. 2020, 124, 178901. [Google Scholar] [CrossRef] [PubMed]
- Syrwid, A.; Kosior, A.; Sacha, K. Lack of a Genuine Time Crystal in a Chiral Soliton Model. Phys. Rev. Res. 2020, 2, 032038. [Google Scholar] [CrossRef]
- Keßler, H.; Cosme, J.G.; Georges, C.; Mathey, L.; Hemmerich, A. From a continuous to a discrete time crystal in a dissipative atom-cavity system. New J. Phys. 2020, 22, 085002. [Google Scholar] [CrossRef]
- Giergiel, K.; Tran, T.; Zaheer, A.; Singh, A.; Sidorov, A.; Sacha, K.; Hannaford, P. Creating big time crystals with ultracold atoms. New J. Phys. 2020, 22, 085004. [Google Scholar] [CrossRef]
- Yarloo, H.; Kopaei, A.E.; Langari, A. Homogeneous Floquet time crystal from weak ergodicity breaking. Phys. Rev. B 2020, 102, 224309. [Google Scholar] [CrossRef]
- Huang, B.; Wu, Y.H.; Liu, W.V. Clean Floquet time crystals: Models and realizations in cold atoms. Phys. Rev. Lett. 2018, 120, 110603. [Google Scholar] [CrossRef] [Green Version]
- Russomanno, A.; Iemini, F.; Dalmonte, M.; Fazio, R. Floquet time crystal in the Lipkin-Meshkov-Glick model. Phys. Rev. B 2017, 95, 214307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hess, P.; Kyprianidis, A.; Becker, P.; Lee, A.; Smith, J.; Pagano, G.; Potirniche, I.D.; Potter, A.C.; Vishwanath, A.; et al. Observation of a discrete time crystal. Nature 2017, 543, 217–220. [Google Scholar] [CrossRef]
- Choi, S.; Choi, J.; Landig, R.; Kucsko, G.; Zhou, H.; Isoya, J.; Jelezko, F.; Onoda, S.; Sumiya, H.; Khemani, V.; et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 2017, 543, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Hamazaki, R.; Ueda, M. Discrete time-crystalline order in cavity and circuit QED systems. Phys. Rev. Lett. 2018, 120, 040404. [Google Scholar] [CrossRef] [Green Version]
- Lazarides, A.; Roy, S.; Piazza, F.; Moessner, R. Time crystallinity in dissipative Floquet systems. Phys. Rev. Res. 2020, 2, 022002. [Google Scholar] [CrossRef] [Green Version]
- Gambetta, F.; Carollo, F.; Marcuzzi, M.; Garrahan, J.; Lesanovsky, I. Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems. Phys. Rev. Lett. 2019, 122, 015701. [Google Scholar] [CrossRef] [Green Version]
- Yao, N.Y.; Nayak, C.; Balents, L.; Zaletel, M.P. Classical discrete time crystals. Nat. Phys. 2020, 16, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Mizuta, K.; Takasan, K.; Nakagawa, M.; Kawakami, N. Spatial-translation-induced discrete time crystals. Phys. Rev. Lett. 2018, 121, 093001. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, A.; Knolle, J.; Nunnenkamp, A. Period-n discrete time crystals and quasicrystals with ultracold bosons. Phys. Rev. Lett. 2019, 123, 150601. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, A.; Knolle, J.; Nunnenkamp, A. Higher-order and fractional discrete time crystals in clean long-range interacting systems. arXiv 2019, arXiv:1910.07539. [Google Scholar]
- Zhu, B.; Marino, J.; Yao, N.Y.; Lukin, M.D.; Demler, E.A. Dicke time crystals in driven-dissipative quantum many-body systems. New J. Phys. 2019, 21, 073028. [Google Scholar] [CrossRef]
- Surace, F.M.; Russomanno, A.; Dalmonte, M.; Silva, A.; Fazio, R.; Iemini, F. Floquet time crystals in clock models. Phys. Rev. B 2019, 99, 104303. [Google Scholar] [CrossRef] [Green Version]
- Gambetta, F.; Carollo, F.; Lazarides, A.; Lesanovsky, I.; Garrahan, J.P. Classical stochastic discrete time crystals. Phys. Rev. E 2019, 100, 060105. [Google Scholar] [CrossRef] [Green Version]
- Russomanno, A.; Notarnicola, S.; Surace, F.M.; Fazio, R.; Dalmonte, M.; Heyl, M. Homogeneous floquet time crystal protected by gauge invariance. Phys. Rev. Res. 2020, 2, 012003. [Google Scholar] [CrossRef] [Green Version]
- Rovny, J.; Blum, R.L.; Barrett, S.E. Observation of discrete-time-crystal signatures in an ordered dipolar many-body system. Phys. Rev. Lett. 2018, 120, 180603. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Nishad, N.; Mahesh, T.; Sreejith, G. Temporal order in periodically driven spins in star-shaped clusters. Phys. Rev. Lett. 2018, 120, 180602. [Google Scholar] [CrossRef] [Green Version]
- Šuntajs, J.; Bonča, J.; Prosen, T.; Vidmar, L. Quantum chaos challenges many-body localization. Phys. Rev. E 2020, 102, 062144. [Google Scholar] [CrossRef]
- Kiefer-Emmanouilidis, M.; Unanyan, R.; Fleischhauer, M.; Sirker, J. Slow delocalization of particles in many-body localized phases. Phys. Rev. B 2021, 103, 024203. [Google Scholar] [CrossRef]
- Kyprianidis, A.; Machado, F.; Morong, W.; Becker, P.; Collins, K.S.; Else, D.V.; Feng, L.; Hess, P.W.; Nayak, C.; Pagano, G.; et al. Observation of a prethermal discrete time crystal. arXiv 2021, arXiv:2102.01695. [Google Scholar]
- Yu, W.C.; Tangpanitanon, J.; Glaetzle, A.W.; Jaksch, D.; Angelakis, D.G. Discrete time crystal in globally driven interacting quantum systems without disorder. Phys. Rev. A 2019, 99, 033618. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, M.; Ölschläger, C.; Sträter, C.; Prelle, S.; Eckardt, A.; Sengstock, K.; Simonet, J. Multiphoton interband excitations of quantum gases in driven optical lattices. Phys. Rev. A 2015, 92, 043621. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Feng, L.; Zhang, Z.; Chin, C. Quantum simulation of Unruh radiation. Nat. Phys. 2019, 15, 785–789. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhang, P.; Zheng, W.; Wu, Z.; Zhai, H. Many-body echo. Phys. Rev. A 2020, 102, 011301. [Google Scholar] [CrossRef]
- Lyu, C.; Choudhury, S.; Lv, C.; Yan, Y.; Zhou, Q. Eternal discrete time crystal beating the Heisenberg limit. Phys. Rev. Res. 2020, 2, 033070. [Google Scholar] [CrossRef]
- Barfknecht, R.E.; Rasmussen, S.E.; Foerster, A.; Zinner, N.T. Realizing time crystals in discrete quantum few-body systems. Phys. Rev. B 2019, 99, 144304. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.; Nichol, J.M.; Economou, S.E. Stabilization and manipulation of multispin states in quantum-dot time crystals with Heisenberg interactions. Phys. Rev. B 2019, 99, 035311. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.h.; Rossini, D.; Zhang, H.X.; Wu, J.H.; Artoni, M.; La Rocca, G. Discrete time crystal in a finite chain of Rydberg atoms without disorder. Phys. Rev. A 2020, 101, 013417. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Van Dyke, J.S.; Warren, A.; Economou, S.E.; Barnes, E. Discrete time crystal in the gradient-field Heisenberg model. Phys. Rev. B 2020, 101, 115303. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V. Current status of the dynamical Casimir effect. Phys. Scr. 2010, 82, 038105. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V. Fifty years of the dynamical Casimir effect. Physics 2020, 2, 67–104. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V.; Mendonça, J. Dynamical Casimir effect in ultra-cold matter with a time-dependent effective charge. Phys. Scr. 2014, T160, 014008. [Google Scholar] [CrossRef]
- Mendonça, J.T.; Gammal, A. Time symmetry breaking in Bose–Einstein condensates. J. Phys. A Math. Theor. 2017, 50, 355501. [Google Scholar] [CrossRef]
- Prosen, T. Exact time-correlation functions of quantum ising chain in a kicking transversal magnetic fieldspectral analysis of the adjoint propagator in heisenberg picture. Prog. Theor. Phys. Suppl. 2000, 139, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Prosen, T. General relation between quantum ergodicity and fidelity of quantum dynamics. Phys. Rev. E 2002, 65, 036208. [Google Scholar] [CrossRef] [Green Version]
- Iadecola, T.; Hsieh, T.H. Floquet supersymmetry. Phys. Rev. Lett. 2018, 120, 210603. [Google Scholar] [CrossRef] [Green Version]
- Guardado-Sanchez, E.; Brown, P.T.; Mitra, D.; Devakul, T.; Huse, D.A.; Schauß, P.; Bakr, W.S. Probing the quench dynamics of antiferromagnetic correlations in a 2D quantum Ising spin system. Phys. Rev. X 2018, 8, 021069. [Google Scholar] [CrossRef] [Green Version]
- Labuhn, H.; Barredo, D.; Ravets, S.; De Léséleuc, S.; Macrì, T.; Lahaye, T.; Browaeys, A. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 2016, 534, 667–670. [Google Scholar] [CrossRef] [Green Version]
- Schauss, P. Quantum simulation of transverse Ising models with Rydberg atoms. Quantum Sci. Technol. 2018, 3, 023001. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.; Bakr, W.S.; Ma, R.; Tai, M.E.; Preiss, P.M.; Greiner, M. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 2011, 472, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Ippoliti, M.; Kechedzhi, K.; Moessner, R.; Sondhi, S.L.; Khemani, V. Many-body physics in the NISQ era: Quantum programming a discrete time crystal. arXiv 2020, arXiv:2007.11602. [Google Scholar]
- Kyriienko, O.; Sørensen, A.S. Floquet quantum simulation with superconducting qubits. Phys. Rev. Appl. 2018, 9, 064029. [Google Scholar] [CrossRef] [Green Version]
- Lanyon, B.P.; Hempel, C.; Nigg, D.; Müller, M.; Gerritsma, R.; Zähringer, F.; Schindler, P.; Barreiro, J.T.; Rambach, M.; Kirchmair, G.; et al. Universal digital quantum simulation with trapped ions. Science 2011, 334, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Monroe, C.; Campbell, W.C.; Duan, L.M.; Gong, Z.X.; Gorshkov, A.; Hess, P.; Islam, R.; Kim, K.; Linke, N.; Pagano, G.; et al. Programmable quantum simulations of spin systems with trapped ions. arXiv 2019, arXiv:1912.07845. [Google Scholar]
- Richerme, P. How to create a time crystal. Physics 2017, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Gibney, E. The quest to crystallize time. Nature 2017, 543, 164–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estarellas, M.; Osada, T.; Bastidas, V.; Renoust, B.; Sanaka, K.; Munro, W.; Nemoto, K. Simulating complex quantum networks with time crystals. Sci. Adv. 2020, 6, eaay8892. [Google Scholar] [CrossRef]
- Sun, G.; Eckardt, A. Optimal frequency window for Floquet engineering in optical lattices. Phys. Rev. Res. 2020, 2, 013241. [Google Scholar] [CrossRef] [Green Version]
- Viebahn, K.; Minguzzi, J.; Sandholzer, K.; Walter, A.S.; Görg, F.; Esslinger, T. Suppressing dissipation in a Floquet-Hubbard system. Phys. Rev. X 2021, 11, 011057. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, S. Route to Extend the Lifetime of a Discrete Time Crystal in a Finite Spin Chain without Disorder. Atoms 2021, 9, 25. https://doi.org/10.3390/atoms9020025
Choudhury S. Route to Extend the Lifetime of a Discrete Time Crystal in a Finite Spin Chain without Disorder. Atoms. 2021; 9(2):25. https://doi.org/10.3390/atoms9020025
Chicago/Turabian StyleChoudhury, Sayan. 2021. "Route to Extend the Lifetime of a Discrete Time Crystal in a Finite Spin Chain without Disorder" Atoms 9, no. 2: 25. https://doi.org/10.3390/atoms9020025
APA StyleChoudhury, S. (2021). Route to Extend the Lifetime of a Discrete Time Crystal in a Finite Spin Chain without Disorder. Atoms, 9(2), 25. https://doi.org/10.3390/atoms9020025