Self-Organization in Cold Atoms Mediated by Diffractive Coupling
Abstract
:1. Introduction
2. Mechanism of Diffractive Coupling
2.1. Single-Mirror Feedback Schemes and the Talbot Effect
2.2. 2-Level Systems: Kerr and Saturable Nonlinearities
3. External Degrees of Freedom: Optomechanics
4. Internal Degrees of Freedom: Magnetic Ordering
4.1. Optical Pumping Nonlinearity and Irreducible Tensor Components
4.2. Dipolar Structures
4.3. Hexagon Formation and Inversion Symmetry
4.4. Quadrupole Structures
5. Light-Mediated Atomic Interaction
6. Self-Organization via Diffractive Coupling in Cavities
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 1952, 237, 37–72. [Google Scholar]
- Prigogine, I. Thermodynamics of Irreversible Processes; John Wiley & Sons: New York, NY, USA; London, UK; Sydney, Australia, 1967. [Google Scholar]
- Busse, F.H. Non-linear properties of thermal convection. Rep. Prog. Phys. 1978, 41, 1929–1967. [Google Scholar] [CrossRef]
- Meinhardt, H. Models of Biological Pattern Formation; Academic Press: London, UK, 1982. [Google Scholar]
- Cross, M.C.; Hohenberg, P.C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1993, 65, 851–1112. [Google Scholar] [CrossRef] [Green Version]
- Grynberg, G.; Bihan, E.L.; Verkerk, P.; Simoneau, P.; Leite, J.R.R.; Bloch, D.; Boiteux, S.L.; Ducloy, M. Observation of instabilities due to mirrorless four-wave mixing oscillation in sodium. Opt. Commun. 1988, 67, 363–366. [Google Scholar] [CrossRef]
- Lugiato, L.A. Transverse nonlinear optics: Introduction and review (Editorial to special issue: Nonlinear optical structures, patterns, chaos). Chaos Solitons Fractals 1994, 4, 1251–1258. [Google Scholar] [CrossRef]
- Vorontsov, M.A.; Miller, W.B. Self-Organization in Optical Systems and Application in Information Technology; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 1995; Volume 66. [Google Scholar]
- Rosanov, N.N. Transverse patterns in wide-aperture nonlinear optical systems. Prog. Opt. 1996, XXXV, 1–60. [Google Scholar]
- Lange, W.; Aumann, A.; Ackemann, T.; Büthe, E. Polarization patterns in alkaline vapors. Quantum Semiclass. Opt. 1998, 10, R23–R36. [Google Scholar] [CrossRef]
- Arecchi, F.T.; Boccaletti, S.; Ramazza, P.L. Pattern formation and competition in nonlinear optics. Phys. Rep. 1999, 318, 1–83. [Google Scholar] [CrossRef]
- Ackemann, T.; Lange, W. Optical pattern formation in alkali metal vapors: Mechanisms, phenomena and use. Appl. Phys. B 2001, 72, 21–34. [Google Scholar] [CrossRef]
- Staliunas, K.; Sánchez-Morcillo, V. Transverse Patterns; Springer Tracts in Modern Physics; Springer: Berlin, Germany, 2003; Volume 183. [Google Scholar]
- Mandel, P.; Tlidi, M. Transverse dynamics in cavity nonlinear optics (2000–2003). J. Opt. B Quantum Semiclass. Opt. 2004, 6, R60–R75. [Google Scholar] [CrossRef] [Green Version]
- Bonifacio, R.; Desalvo, L. Collective atomic recoil laser (CARL): Optical gain without inversion by collective atomic recoil and self-bunching of 2-level atoms. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Detect. Assoc. Equip. 1994, 341, 360–362. [Google Scholar] [CrossRef]
- Bonifacio, R.; Salvo, L.D.; Narducci, L.M.; D’Angelo, E.J. Exponential gain and self-bunching in a collective atomic recoil laser. Phys. Rev. A 1994, 50, 1716–1724. [Google Scholar] [CrossRef] [PubMed]
- Hemmer, P.R.; Bigelow, N.P.; Katz, D.P.; Shahriar, M.S.; DeSalvo, L.; Bonifacio, R. Self-organization, broken symmetry, and lasing in an atomic vapor: The interdependence of gratings and gain. Phys. Rev. Lett. 1996, 77, 1468–1481. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.L.; Barozzi, G.P.; Barbay, S.; Tredicce, J.R. Spontaneous Generation of a Longitudinal Atomic Density Grating in Sodium Vapor. Phys. Rev. Lett. 1996, 76, 2452. [Google Scholar] [CrossRef] [PubMed]
- Verkerk, P.; Bigelow, N.P.; De Salvo, L.; Bonifacio, R. Comment on “Spontaneous Generation of a Longitudinal Atomic Density Grating in Sodium Vapor”. Phys. Rev. Lett. 1997, 79, 3094. [Google Scholar] [CrossRef]
- Lippi, G.L.; Barbay, S.; Tredicce, J.R. Reply to comment on “Spontaneous Generation of a Longitudinal Atomic Density Grating in Sodium Vapor”. Phys. Rev. Lett. 1997, 79, 3095. [Google Scholar] [CrossRef]
- Brown, W.J.; Gardner, J.R.; Gauthier, D.J.; Vilaseca, R. Amplification of laser beams propagating through a collection of strongly driven, Doppler-broadened two-level atoms. Phys. Rev. A 1997, 55, R1601. [Google Scholar] [CrossRef] [Green Version]
- Kruse, D.; von Cube, C.; Zimmermann, C.; Courteille, P. Observation of Lasing Mediated by Collective Atomic Recoil. Phys. Rev. Lett. 2003, 91, 183601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Cube, C.; Slama, S.; Kruse, D.; Zimmermann, C.; Courteille, P.W.; Robb, G.R.M.; Piovella, N.; Bonifacio, R. Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing. Phys. Rev. Lett. 2004, 93, 083601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robb, G.R.M.; Piovella, N.; Ferraro, A.; Bonifacio, R.; Courteille, P.W.; Zimmermann, C. Collective atomic recoil lasing including friction and diffusion effects. Phys. Rev. A 2004, 69, 041403(R). [Google Scholar] [CrossRef] [Green Version]
- Domokos, P.; Ritsch, H. Collective Cooling and Self-Organization of Atoms in a Cavity. Phys. Rev. Lett. 2002, 89, 253003. [Google Scholar] [CrossRef] [Green Version]
- Black, A.T.; Chan, H.W.; Vuletic, V. Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering. Phys. Rev. Lett. 2003, 91, 203001. [Google Scholar] [CrossRef] [Green Version]
- Baumann, K.; Guerlin, C.; Brennecke, F.; Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 2010, 464, 1301–1307. [Google Scholar] [CrossRef] [Green Version]
- Nagy, D.; Kónya, G.; Szirmai, G.; Domokos, P. Dicke-Model Phase Transition in the Quantum Motion of a Bose-Einstein Condensate in an Optical Cavity. Phys. Rev. Lett. 2010, 104, 130401. [Google Scholar] [CrossRef] [Green Version]
- Mottl, R.; Brennecke, F.; Baumann, K.; Landig, R.; Donner, T.; Esslinger, T. Roton-Type Mode Softening in a Quantum Gas with Cavity-Mediated Long-Range Interactions. Science 2012, 336, 1570–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritsch, H.; Domokos, P.; Brennecke, F.; Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 2013, 85, 553–601. [Google Scholar] [CrossRef] [Green Version]
- Kirton, P.; Roses, M.M.; Keeling, J.; Dalla Torre, E.G. Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa. Adv. Quantum Technol. 2019, 2, 1800043. [Google Scholar] [CrossRef] [Green Version]
- Mivehvar, F.; Piazza, F.; Donner, T.; Ritsch, H. Cavity QED with Quantum Gases: New Paradigms in Many-Body Physics. arXiv 2021, arXiv:2102.04473v1. [Google Scholar]
- Gopalakrishnan, S.; Lev, B.L.; Goldbart, P.M. Emergent crystallinity and frustration with Bose-Einstein condensates in multimode cavities. Nat. Phys. 2009, 5, 845–850. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, S.; Lev, B.L.; Goldbart, P.M. Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration. Phys. Rev. A 2010, 82, 043612. [Google Scholar] [CrossRef] [Green Version]
- Kollar, A.J.; Papageorge, A.T.; Vaidya, V.D.; Guo, Y.; Keeling, J.; Lev, B.L. Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity. Nat. Commun. 2017, 8, 14386. [Google Scholar] [CrossRef] [Green Version]
- Léonard, J.; Morales, A.; Zupancic, P.; Esslinger, T.; Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 2017, 543, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Muradyan, G.A.; Wang, Y.; Williams, W.; Saffman, M. Absolute instability and pattern formation in cold atomic vapors. In Proceedings of the OSA Topical Meeting Technical Digest, Nonlinear Guided Waves and Their Applications, Dresden, Germany, 6–9 September 2005; Optical Society of America: Washington, DC, USA, 2005. Paper ThB29. [Google Scholar]
- Greenberg, J.A.; Schmittberger, B.L.; Gauthier, D. Bunching-induced optical nonlinearity and instability in cold atoms. Opt. Exp. 2011, 19, 22535. [Google Scholar] [CrossRef]
- Greenberg, J.A.; Gauthier, D.J. High-order optical nonlinearity at low light levels. Eur. J. Phys. 2012, 98, 24001. [Google Scholar] [CrossRef] [Green Version]
- Schmittberger, B.L.; Gauthier, D.J. Enhancing light-atom interactions via atomic bunching. Phys. Rev. A 2014, 90, 013813. [Google Scholar] [CrossRef] [Green Version]
- Schmittberger, B.L.; Gauthier, D.J. Transverse optical and atomic pattern formation. J. Opt. Soc. Am. B 2016, 33, 1543–1551. [Google Scholar] [CrossRef]
- Firth, W.J. Spatial instabilities in a Kerr medium with single feedback mirror. J. Mod. Opt. 1990, 37, 151–153. [Google Scholar] [CrossRef]
- D’Alessandro, G.; Firth, W.J. Spontaneous hexagon formation in a nonlinear optical medium with feedback mirror. Phys. Rev. Lett. 1991, 66, 2597–2600. [Google Scholar] [CrossRef]
- Labeyrie, G.; Tesio, E.; Gomes, P.M.; Oppo, G.L.; Firth, W.J.; Robb, G.R.; Arnold, A.S.; Kaiser, R.; Ackemann, T. Optomechanical self-structuring in a cold atomic gas. Nat. Phot. 2014, 8, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Tesio, E.; Robb, G.R.M.; Ackemann, T.; Firth, W.J.; Oppo, G.L. Kinetic theory for transverse opto-mechanical instabilities. Phys. Rev. Lett. 2014, 112, 043901. [Google Scholar] [CrossRef] [Green Version]
- Robb, G.R.M.; Tesio, E.; Oppo, G.L.; Firth, W.J.; Ackemann, T.; Bonifacio, R. Quantum Threshold for Optomechanical Self-Structuring in a Bose-Einstein Condensate. Phys. Rev. Lett. 2015, 114, 173903. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.C.; Walther, V.; Pohl, T. Long-Range Interactions and Symmetry Breaking in Quantum Gases through Optical Feedback. Phys. Rev. Lett. 2018, 121, 073604. [Google Scholar] [CrossRef] [Green Version]
- Camara, A.; Kaiser, R.; Labeyrie, G.; Firth, W.J.; Oppo, G.L.; Robb, G.R.M.; Arnold, A.S.; Ackemann, T. Optical pattern formation with a two-level nonlinearity. Phys. Rev. A 2015, 92, 013820. [Google Scholar] [CrossRef] [Green Version]
- Krešić, I.; Labeyrie, G.; Robb, G.R.M.; Oppo, G.L.; Gomes, P.M.; Griffin, P.; Kaiser, R.; Ackemann, T. Spontaneous light-mediated magnetism in cold atoms. Commun. Phys. 2018, 1, 33. [Google Scholar] [CrossRef]
- Krešić, I.; Robb, G.R.M.; Labeyrie, G.; Kaiser, R.; Ackemann, T. Inversion-symmetry breaking in spin patterns by a weak magnetic field. Phys. Rev. A 2019, 99, 053851. [Google Scholar] [CrossRef] [Green Version]
- Labeyrie, G.; Kresic, I.; Robb, G.R.M.; Oppo, G.L.; Kaiser, R.; Ackemann, T. Magnetic Phase Diagram of Light-mediated Spin Structuring in Cold Atoms. Optica 2018, 12, 1322–1328. [Google Scholar] [CrossRef] [Green Version]
- Tesio, E.; Robb, G.R.M.; Ackemann, T.; Firth, W.J.; Oppo, G.L. Spontaneous optomechanical pattern formation in cold atoms. Phys. Rev. A 2012, 86, 031801(R). [Google Scholar] [CrossRef] [Green Version]
- Talbot, W.H.F. Facts relating to optical science. No. IV. Philos. Mag. 1836, 9, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Ciaramella, E.; Tamburrini, M.; Santamato, E. Talbot assisted hexagonal beam patterning in a thin liquid crystal film with a single feedback mirror at negative distance. Appl. Phys. Lett. 1993, 63, 1604–1606. [Google Scholar] [CrossRef]
- Firth, W.J.; Krešić, I.; Labeyrie, G.; Camara, A.; Ackemann, T. Thick-medium model of transverse pattern formation in optically excited cold two-level atoms with a feedback mirror. Phys. Rev. A 2017, 96, 053806. [Google Scholar] [CrossRef] [Green Version]
- Firth, W.J.; Fitzgerald, A.; Pare, C. Transverse instabilities due to counterpropagation in Kerr media. J. Opt. Soc. Am. B 1990, 7, 1087–1097. [Google Scholar] [CrossRef]
- Kibble, T.W.B. Topology of cosmic domains and strings. J. Phys. A Math. Gen. 1976, 9, 1387. [Google Scholar] [CrossRef]
- Zurek, W.H. Cosmological experiments in superfluid helium? Nature 1985, 317, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Ducci, S.; Ramazza, P.L.; González-Viñas, W.; Arecchi, F.T. Order Parameter Fragmentation after a Symmetry-Breaking Transition. Phys. Rev. Lett. 1999, 83, 5210. [Google Scholar] [CrossRef] [Green Version]
- Labeyrie, G.; Kaiser, R. Kibble-Zurek Mechanism in the Self-Organization of a Cold Atomic Cloud. Phys. Rev. Lett. 2016, 117, 275701. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, R.; Eichler, H.J. Spontaneous optical pattern formation in a nematic liquid crystal with feedback mirror. Opt. Commun. 1992, 89, 289–295. [Google Scholar] [CrossRef]
- Grynberg, G.; Maître, A.; Petrossian, A. Flowerlike patterns generated by a laser beam transmitted through a rubidium cell with a single feedback mirror. Phys. Rev. Lett. 1994, 72, 2379–2382. [Google Scholar] [CrossRef]
- Grynberg, G. Drift instability and light-induced spin waves in an alkali vapor with a feedback mirror. Opt. Commun. 1994, 109, 483–486. [Google Scholar] [CrossRef]
- Ackemann, T.; Lange, W. Non- and nearly hexagonal patterns in sodium vapor generated by single-mirror feedback. Phys. Rev. A 1994, 50, R4468–R4471. [Google Scholar] [CrossRef]
- Ackemann, T.; Logvin, Y.A.; Heuer, A.; Lange, W. Transition between positive and negative hexagons in optical pattern formation. Phys. Rev. Lett. 1995, 75, 3450–3453. [Google Scholar] [CrossRef]
- Ackemann, T. Electronic pattern formation in cold Rb vapour in a single-mirror feedback system. Internal report, 2006. [Google Scholar]
- Glückstad, J.; Saffman, M. Spontaneous pattern formation in a thin film of bacteriorhodopsin with mixed absorptive-dispersive nonlinearity. Opt. Lett. 1995, 20, 551–553. [Google Scholar] [CrossRef]
- Aumann, A.; Große Westhoff, E.; Herrero, R.; Ackemann, T.; Lange, W. Interplay of dispersion and absorption in a new optical pattern-forming system. J. Opt. B 1999, 1, 166–170. [Google Scholar] [CrossRef]
- Neubecker, R.; Oppo, G.L.; Thuering, B.; Tschudi, T. Pattern formation in a liquid crystal light valve with feedback, including polarization, saturation, and internal threshold effects. Phys. Rev. A 1995, 52, 791–808. [Google Scholar] [CrossRef]
- Ackemann, T.; Aumann, A.; Große Westhoff, E.; Logvin, Y.A.; Lange, W. Polarization degrees of freedom in optical pattern forming systems: Alkali metal vapor in a single-mirror arrangement. J. Opt. B 2001, 3, S124–S132. [Google Scholar] [CrossRef]
- Le Berre, M.; Leduc, D.; Ressayre, E.; Tallet, A.; Maître, A. Simulation and analysis of the flower-like instability in the single-feedback mirror experiment with rubidium vapor. Opt. Commun. 1995, 118, 447–456. [Google Scholar] [CrossRef]
- Skupin, S.; Saffman, M.; Królikowski, W. Nonlocal Stabilization of Nonlinear Beams in a Self-Focusing Atomic Vapor. Phys. Rev. Lett. 2007, 98, 263902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackemann, T. Spontane Musterbildung in Einem Atomaren Dampf mit Optischer Rückkopplung. Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, Münster, Germany, 1996. [Google Scholar]
- Ashkin, A.; Dziedzic, J.M.; Smith, P.W. Continuous-wave self-focusing and self-trapping of light in artificial Kerr media. Opt. Lett. 1982, 7, 276–279. [Google Scholar] [CrossRef]
- Saffman, M. Self-induced dipole force and filamentation instability of a matter wave. Phys. Rev. Lett. 1998, 81, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Donner, T.; (ETH Zürich, Zürich, Switzerland). Personal communication, 2019.
- O’Dell, D.H.J.; Giovanazzi, S.; Kurizki, G. Rotons in Gaseous Bose-Einstein Condensates Irradiated by a Laser. Phys. Rev. Lett. 2003, 90, 110402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmittberger, B.L.; Gauthier, D.J. Spontaneous emergence of free-space optical and atomic patterns. New J. Phys. 2016, 18, 10302. [Google Scholar] [CrossRef]
- Smith, P.W.; Ashkin, A.; Tomlinson, W. Four-wave mixing in an artificial Kerr medium. Opt. Lett. 1981, 6, 284–286. [Google Scholar] [CrossRef]
- Man, W.; Fardad, S.; Zhang, Z.; Prakash, J.; Lau, M.; Zhang, P.; Heinrich, M.; Christodoulides, D.N.; Chen, Z. Optical Nonlinearities and Enhanced Light Transmission in Soft-Matter Systems with Tunable Polarizabilities. Phys. Rev. Lett. 2013, 111, 218302. [Google Scholar] [CrossRef] [Green Version]
- Reece, P.J.; Wright, E.M.; Dholakia, K. Experimental Observation of Modulation Instability and Optical Spatial Soliton Arrays in Soft Condensed Matter. Phys. Rev. Lett. 2007, 98, 203902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobkova, V.; Goenner, A.; Denz, C. Pattern formation in colloids driven by optical single feedback. In Proceedings of the European Quantum Electronics Conference-EQEC 2021, Virtual Conference, 21–25 June 2021. Paper EF 3.6. [Google Scholar]
- Tesio, E.; Robb, G.R.M.; Oppo, G.L.; Gomes, P.M.; Ackemann, T.; Labeyrie, G.; Kaiser, R.; Firth, W.J. Self-organization in cold atomic gases: A synchronization perspective. Phil. Trans. R. Soc. A 2014, 37, 20140002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesio, E. Theory of Self-Organisation in Cold Atoms. Ph.D. Thesis, Department of Physics, University of Strathclyde, Glasgow, UK, 2014. [Google Scholar]
- Gomes, P.M.; Krešić, I.; Ackemann, T. University of Strathclyde: Glasgow, UK, 2015; Unpublished.
- Bonifacio, R.; Cola, M.M.; Piovella, N.; Robb, G.R.M. A quantum model for collective recoil lasing. Europhys. Lett. 2005, 69, 55–60. [Google Scholar] [CrossRef]
- Andreev, A.F.; Lifshitz, I.M. Quantum theory of defects in crystals. Sov. Phys. JETP 1969, 29, 1107–1113. [Google Scholar]
- Kim, E.; Chan, M.H.W. Probable observation of a supersolid helium phase. Nature 2004, 427, 225–227. [Google Scholar] [CrossRef]
- Kim, D.Y.; Chan, M.H.W. Absence of Supersolidity in Solid Helium in Porous Vycor Glass. Phys. Rev. Lett. 2012, 109, 155301. [Google Scholar] [CrossRef] [Green Version]
- Kadau, H.; Schmitt, M.; Wenzel, M.; Wink, C.; Maier, T.; Ferrier-Barbut, I.; Pfau, T. Observing the Rosensweig instability of a quantum ferrofluid. Nature 2016, 530, 194. [Google Scholar] [CrossRef]
- Böttcher, F.; Schmidt, J.N.; Wenzel, M.; Hertkorn, J.; Guo, M.; Langen, T.; Pfau, T. Transient Supersolid Properties in an Array of Dipolar Quantum Droplets. Phys. Rev. X 2019, 9, 011051. [Google Scholar] [CrossRef] [Green Version]
- Chomaz, L.; Petter, D.; Ilzhöfer, P.; Natale, G.; Trautmann, A.; Politi, C.; Durastante, G.; van Bijnen, R.M.; Patscheider, A.; Sohmen, M.; et al. Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases. Phys. Rev. X 2019, 9, 021012. [Google Scholar] [CrossRef] [Green Version]
- Li, J.R.; Lee, J.; Huang, W.; Burchesky, S.; Shteynas, B.; Top, F.C.; Jamison, A.O.; Ketterle, W. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 2017, 543, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Robb, G.R.M.; Walker, J. University of Strathclyde: Glasgow, UK, 2019; Unpublished.
- Bespalov, V.I.; Talanov, V.I. Filamentary structure of light beams in nonlinear liquids. JETP Lett. 1966, 3, 307–310. [Google Scholar]
- Nguyen, J.H.V.; Luo, D.; Hulet, R.G. Formation of matter-wave soliton trains by modulational instability. Science 2017, 356, 422–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbi, S.C.; Mahr, H. Correlation of filaments in nitrobenzene with laser spikes. Phys. Rev. Lett. 1971, 26, 604. [Google Scholar] [CrossRef]
- Zhang, Y.; Maucher, F.; Pohl, T. Supersolidity around a Critical Point in Dipolar Bose-Einstein Condensates. Phys. Rev. Lett. 2019, 123, 015301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.C.; Walther, V.; Pohl, T. Self-bound droplet clusters in laser-driven Bose-Einstein condensates. Phys. Rev. A 2020, 103, 023308. [Google Scholar] [CrossRef]
- Kastler, A. Optical methods of atomic orientation and of magnetic resonance. J. Opt. Soc. Am. 1957, 47, 460–465. [Google Scholar] [CrossRef]
- Omont, A. Irreducible components of the density matrix. Application to optical pumping. Prog. Quantum Electron. 1977, 69, 5. [Google Scholar] [CrossRef]
- Mitschke, F.; Deserno, R.; Lange, W.; Mlynek, J. Magnetically induced optical self-pulsing in a nonlinear resonator. Phys. Rev. A 1986, 33, 3219–3231. [Google Scholar] [CrossRef]
- Krešić, I. Self-Organized Magnetization Patterns in Cold Atoms. Ph.D. Thesis, Department of Physics, University of Strathclyde, Glasgow, UK, 2017. [Google Scholar]
- Costa Boquete, A.; Baio, G.; Robb, G.R.M.; Oppo, G.L.; Griffin, P.; Ackemann, T. Spontaneous atomic crystallization via diffractive dephasing in optical cavities. J. Phys. Conf. Ser. 2021, 1919, 012014. [Google Scholar] [CrossRef]
- Sachdev, S. Quantum Phase Transitions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Dutta, A.; Aeppli, G.; Chakrabarti, B.K.; Divakaran, U.; Rosenbaum, T.F.; Sen, D. Quantum Phase Transitions in Transverse Field Spin Models; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Jozef Strečka, J.; Jaščur, M. A brief account of the Ising and Ising-like models: Mean-field, effective-field and exact results. Acta Phys. Slovaca 2015, 65, 235–367. [Google Scholar]
- Wojciechowski, A.; Corsini, E.; Zachorowski, J.; Gawlik, W. Nonlinear Faraday rotation and detection of superposition states in cold atoms. Phys. Rev. A 2010, 81, 053420. [Google Scholar] [CrossRef] [Green Version]
- Labeyrie, G.; Miniatura, C.; Kaiser, R. Large Faraday rotation of resonant light in a cold atomic cloud. Phys. Rev. A 2001, 64, 033402. [Google Scholar] [CrossRef] [Green Version]
- Gollwitzer, C.; Rehberg, I.; Richter, R. From phase space representation to amplitude equations in a pattern-forming experiment. New J. Phys. 2010, 12, 093037. [Google Scholar] [CrossRef] [Green Version]
- Aumann, A.; Büthe, E.; Logvin, Y.A.; Ackemann, T.; Lange, W. Polarized patterns in sodium vapor with single mirror feedback. Phys. Rev. A 1997, 56, R1709–R1712. [Google Scholar] [CrossRef]
- Aumann, A. Optical Patterns and Quasipatterns in an Alkali Metal Vapor with Feedback. Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, Münster, Germany, 1999. [Google Scholar]
- Aumann, A.; Große Westhoff, E.; Ackemann, T.; Lange, W. Magnetic field control over microscopic symmetry properties of an optical pattern-forming system: Experiment. J. Opt. B Quantum Semiclass. Opt. 2000, 2, 421–425. [Google Scholar] [CrossRef]
- Scroggie, A.J. Spontaneous Optical Patterns in Two-And Four Level Atomic Systems. Ph.D. Thesis, Department of Physics, University of Strathclyde, Glasgow, UK, 1995. [Google Scholar]
- Scroggie, A.J.; Firth, W.J. Pattern formation in an alkali-metal vapor with a feedback mirror. Phys. Rev. A 1996, 53, 2752–2764. [Google Scholar] [CrossRef] [PubMed]
- Aumann, A.; Ackemann, T.; Lange, W. Selection between hexagonal, square and stripe patterns in a polarization instability: An experimental investigation. Ann. Phys. 2004, 13, 379–390. [Google Scholar] [CrossRef]
- Logvin, Y.A.; Schäpers, B.; Ackemann, T. Stationary and drifting localized structures near a multiple bifurcation point. Phys. Rev. E 2000, 61, 4622–4625. [Google Scholar] [CrossRef] [Green Version]
- Leduc, D.; Le Berre, M.; Ressayre, E.; Tallet, A. Quasipatterns in a polarization instability. Phys. Rev. A 1996, 53, 1072–1080. [Google Scholar] [CrossRef]
- Sanchez-Palencia, L.; Santos, L. Bose-Einstein condensates in optical quasicrystal lattices. Phys. Rev. A 2005, 72, 053607. [Google Scholar] [CrossRef] [Green Version]
- Viebahn, K.; Sbroscia, M.; Carter, E.; Yu, J.C.; Schneider, U. Matter-Wave Diffraction from a Quasicrystalline Optical Lattice. Phys. Rev. Lett. 2019, 122, 110404. [Google Scholar] [CrossRef] [Green Version]
- Mivehvar, F.; Ritsch, H.; Piazza, F. Emergent Quasicrystalline Symmetry in Light-Induced Quantum Phase Transitions. Phys. Rev. Lett. 2019, 123, 210604. [Google Scholar] [CrossRef] [Green Version]
- Leduc, D.; Le Berre, M.; Ressayre, E.; Tallet, A. Bifurcation from 8-fold orientational order quasipattern in a polarization instability device. Opt. Commun. 1996, 130, 181–191. [Google Scholar] [CrossRef]
- Aumann, A.; Ackemann, T.; Große Westhoff, E.; Lange, W. Eight-fold quasipatterns in an optical pattern-forming system. Phys. Rev. E 2002, 66, 046220. [Google Scholar] [CrossRef]
- Le Berre, M.; Leduc, D.; Ressayre, E.; Tallet, A. Optical quasipatterns and multicriticality. Asian J. Phys. 1998, 7, 483–494. [Google Scholar]
- Herrero, R.; Große Westhoff, E.; Aumann, A.; Ackemann, T.; Logvin, Y.A.; Lange, W. Twelvefold quasiperiodic patterns in a nonlinear optical system with continuous rotational symmetry. Phys. Rev. Lett. 1999, 82, 4627–4630. [Google Scholar] [CrossRef]
- Vorontsov, M.A. Akhseals: New class of spatio-temporal instabilities of optical fields. Quantum Electron. 1993, 23, 269–271. [Google Scholar] [CrossRef]
- Pampaloni, E.; Ramazza, P.L.; Residori, S.; Arecchi, F.T. Two-dimensional crystals and quasicrystals in nonlinear optics. Phys. Rev. Lett. 1995, 74, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Große Westhoff, E.; Herrero, R.; Ackemann, T.; Lange, W. Self-organized superlattice patterns with two slightly differing wave numbers. Phys. Rev. E 2003, 67, 025293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alessandro, G.; Firth, W.J. Hexagonal spatial pattern for a Kerr slice with a feedback mirror. Phys. Rev. A 1992, 46, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Baio, G.; Robb, G.R.M.; Yao, A.M.; Oppo, G.L.; Ackemann, T. Multiple self-organized phases and spatial solitons in cold atoms mediated by optical feedback. Phys. Rev. Lett. 2021, 126, 203201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pohl, T.; Maucher, F. Phases of supersolids in confined dipolar Bose-Einstein condensates. arXiv 2021, arXiv:2103.12688. [Google Scholar]
- Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633. [Google Scholar] [CrossRef] [Green Version]
- Oppo, G.L. Complex spatial structures due to atomic coherence. J. Mod. Opt. 2010, 57, 1408–1416. [Google Scholar] [CrossRef]
- Eslami, M.; Kheradmand, R.; McArthur, D.; Oppo, G.L. Complex structures in media displaying electromagnetically induced transparency: Pattern multistability and competition. Phys. Rev. A 2014, 90, 023840. [Google Scholar] [CrossRef] [Green Version]
- Vudyasetu, P.K.; Camacho, R.M.; Howell, J.C. Storage and Retrieval of Multimode Transverse Images in Hot Atomic Rubidium Vapor. Phys. Rev. Lett. 2008, 100, 123903. [Google Scholar] [CrossRef] [Green Version]
- Shuker, M.; Firstenberg, O.; Pugatch, R.; Ron, A.; Davidson, N. Storing Images in Warm Atomic Vapor. Phys. Rev. Lett. 2008, 100, 223601. [Google Scholar] [CrossRef] [Green Version]
- Heinze, G.; Hubrich, C.; Halfmann, T. Stopped Light and Image Storage by Electromagnetically Induced Transparency up to the Regime of One Minute. Phys. Rev. Lett. 2013, 111, 033601. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.S.; Zhou, Z.Y.; Shi, B.S.; Guo, G.C. Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 2013, 4, 2527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radwell, N.; Clark, T.W.; Piccirillo, B.; Barnett, S.M.; Franke-Arnold, S. Spatially Dependent Electromagnetically Induced Transparency. Phys. Rev. Lett. 2015, 114, 123603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budker, D.; Gawlik, W.; Kimball, D.F.; Rochester, S.M.; Yashchuk, V.V.; Weis, A. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 2002, 74, 1153–1201. [Google Scholar] [CrossRef] [Green Version]
- Weis, A.; Bison, G.; Pazgalev, A.S. Theory of double resonance magnetometers based on atomic alignment. Phys. Rev. A 2006, 74, 033401. [Google Scholar] [CrossRef] [Green Version]
- Ingleby, S.J.; O’Dwyer, C.; Griffin, P.F.; Arnold, A.S.; Riis, E. Orientational effects on the amplitude and phase of polarimeter signals in double-resonance atomic magnetometry. Phys. Rev. A 2017, 96, 013429. [Google Scholar] [CrossRef] [Green Version]
- Ingleby, S.J.; O’Dwyer, C.; Griffin, P.F.; Arnold, A.S.; Riis, E. Vector Magnetometry Exploiting Phase-Geometry Effects in a Double-Resonance Alignment Magnetometer. Phys. Rev. Appl. 2018, 10, 034035. [Google Scholar] [CrossRef] [Green Version]
- Stenger, J.; Inouyre, S.; Stamper-Kurn, D.M.; Miesner, H.J.; Chikkatur, A.P.; Ketterle, W. Spin domains in ground-state Bose-Einstein condensates. Nature 1998, 396, 345–348. [Google Scholar] [CrossRef] [Green Version]
- Sadler, L.E.; Higbie, J.M.; Leslie, S.R.; Vengalattore, M.; Stamper-Kurn, D.M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate. Nature 2006, 443, 312. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Shao, L.; Corre, V.; Zibold, T.; De Sarlo, L.; Mimoun, E.; Dalibard, J.; Gerbier, F. Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates. Phys. Rev. A 2012, 86, 061601(R). [Google Scholar] [CrossRef] [Green Version]
- Pechkis, H.K.; Wrubel, J.P.; Schwettmann, A.; Griffin, P.F.; Barnett, R.; Tiesinga, E.; Lett, P. Spinor Dynamics in an Antiferromagnetic Spin-1 Thermal Bose Gas. Phys. Rev. Lett. 2013, 111, 025301. [Google Scholar] [CrossRef] [Green Version]
- Anquez, M.; Robbins, B.A.; Bharath, H.; Boguslawski, M.; Hoang, T.M.; Chapman, M.S. Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate. Phys. Rev. Lett. 2016, 116, 155301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifacio, R.; Lugiato, L.A. Optical bistability and cooperative effects in resonance fluorescence. Phys. Rev. A 1978, 18, 1129–1144. [Google Scholar] [CrossRef]
- Guerin, W.; Araújo, M.O.; Kaiser, R. Subradiance in a Large Cloud of Cold Atoms. Phys. Rev. Lett. 2016, 116, 083601. [Google Scholar] [CrossRef] [PubMed]
- Siegman, A.E. Lasers; University Science Books: Mill Valley, CA, USA, 1986. [Google Scholar]
- Lugiato, L.A.; Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 1987, 58, 2209–2211. [Google Scholar] [CrossRef]
- Tlidi, M.; Georgiou, M.; Mandel, P. Transverse patterns in nascent optical bistability. Phys. Rev. A 1993, 48, 4605–4609. [Google Scholar] [CrossRef] [PubMed]
- Firth, W.J.; Scroggie, A.J. Spontaneous Pattern Formation in an Absorptive System. Europhys. Lett. 1994, 26, 521–526. [Google Scholar] [CrossRef]
- Martin, R.; Scroggie, A.J.; Oppo, G.L.; Firth, W.J. Stabilization, selection and tracking of unstable patterns by Fourier space techniques. Phys. Rev. Lett. 1996, 77, 4007–4010. [Google Scholar] [CrossRef] [PubMed]
- Baio, G.; Robb, G.R.M.; Yao, A.M.; Oppo, G.L. Optomechanical transport of cold atoms induced by structured light. Phys. Rev. Res. 2020, 2, 023126. [Google Scholar] [CrossRef]
- Kreuzer, M.; Balzer, W.; Tschudi, T. Formation of spatial structures in bistable optical elements containing nematic liquid crystals. Appl. Opt. 1990, 29, 579–582. [Google Scholar] [CrossRef]
- Ackemann, T.; Barland, S.; Tredicce, J.R.; Cara, M.; Balle, S.; Jäger, R.; Grabherr, P.M.; Miller, M.; Ebeling, K.J. Spatial structure of broad-area vertical-cavity regenerative amplifiers. Opt. Lett. 2000, 25, 814–816. [Google Scholar] [CrossRef] [Green Version]
- Hoogland, S.; Baumberg, J.J.; Coyle, S.; Baggett, J.; Coles, M.J.; Coles, H.J. Self-organized patterns and spatial solitons in liquid-crystal microcavities. Phys. Rev. A 2002, 66, 055801. [Google Scholar] [CrossRef]
- Arnaud, J.A. Degenerate optical cavities. Appl. Opt. 1969, 8, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Huyet, G.; Martinoni, M.C.; Tredicce, J.R.; Rica, S. Spatiotemporal dynamics of lasers with a large Fresnel number. Phys. Rev. Lett. 1995, 75, 4027–4030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staliunas, K.; Slekys, G.; Weiss, C.O. Nonlinear pattern formation in active optical systems: Shocks, domains of tilted waves, and cross-roll patterns. Phys. Rev. Lett. 1997, 79, 2658–2661. [Google Scholar] [CrossRef]
- Lippi, G.L.; Ackemann, T.; Hoffer, L.M.; Lange, W. Transverse structures in a sodium-filled Fabry-Perot resonator. I. Experimental results: Symmetries and the role of the incoupling conditions. Chaos Solitons Fractals 1994, 4, 1409–1431. [Google Scholar] [CrossRef]
- Lippi, G.L.; Ackemann, T.; Hoffer, L.M.; Lange, W. Transverse structures in a sodium-filled Fabry-Perot resonator. II. Interpretation of experimental results. Chaos Solitons Fractals 1994, 4, 1433–1449. [Google Scholar] [CrossRef]
- Landini, M.; Dogra, N.; Kroeger, K.; Hruby, L.; Donner, T.; Esslinger, T. Formation of a Spin Texture in a Quantum Gas Coupled to a Cavity. Phys. Rev. Lett. 2018, 120, 223602. [Google Scholar] [CrossRef] [Green Version]
- Braverman, B.; Kawasaki, A.; Pedrozo-Peñafiel, E.; Colombo, S.; Shu, C.; Li, Z.; Mendez, E.; Yamoah, M.; Salvi, L.; Akamatsu, D.; et al. Near-Unitary Spin Squeezing in 171Yb. Phys. Rev. Lett. 2018, 122, 223203. [Google Scholar] [CrossRef] [Green Version]
- Whiting, D.J.; Sibalić, N.; Keaveney, J.; Adams, C.S.; Hughes, I.G. Single-Photon Interference due to Motion in an Atomic Collective Excitation. Phys. Rev. Lett. 2017, 118, 253601. [Google Scholar] [CrossRef] [Green Version]
- Santić, N.; Fusaro, A.; Salem, S.; Garnier, J.; Picozzi, A.; Kaiser, R. Nonequilibrium Precondensation of Classical Waves in Two Dimensions Propagating through Atomic Vapors. Phys. Rev. Lett. 2018, 120, 055301. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, Q.; Bienaimé, T.; Pigeon, S.; Giacobino, E.; Bramati, A.; Glorieux, Q. Observation of the Bogoliubov Dispersion in a Fluid of Light. Phys. Rev. Lett. 2018, 121, 183604. [Google Scholar] [CrossRef] [Green Version]
- Jäger, S.B.; Xu, M.; Schütz, S.; Holland, M.J.; Morigi, G. Semiclassical theory of synchronization-assisted cooling. Phys. Rev. A 2017, 95, 063852. [Google Scholar] [CrossRef] [Green Version]
- Jungkind, A.; Niedenzu, W.; Ritsch, H. Optomechanical cooling and self-trapping of low field seeking point-like particles. J. Opt. B 2019, 52, 165003. [Google Scholar] [CrossRef] [Green Version]
- Dawes, A.M.C.; Illing, L.; Clark, S.M.; Gauthier, D.J. All-Optical Switching in Rubidium Vapor. Science 2005, 308, 672–674. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Moore, K.L.; Murch, K.W.; Stamper-Kurn, D.M. Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion. Phys. Rev. Lett. 2007, 99, 213601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertkorn, J.; Schmidt, J.N.; Guo, M.; Böottcher, F.; Ng, K.; Graham, S.; Uerlings, P.; Langen, T.; Zwierlein, M.; Pfau, T. Pattern Formation in Quantum Ferrofluids: From Supersolids to Superglasses. arXiv 2021, arXiv:2103.13930. [Google Scholar]
- Norcia, M.A.; Politi, C.; Klaus, L.; Poli, E.; Sohmen, M.; Mark, M.J.; Bisset, R.; Santos, L.; Ferlaino, F. Two-dimensional supersolidity in a dipolar quantum gas. arXiv 2021, arXiv:2102.05555. [Google Scholar]
- Masalaeva, N.; Niedenzu, W.; Mivehvar, F.; Ritsch, H. Spin and density self-ordering in dynamic polarization gradients. Phys. Rev. Res. 2002, 3, 013173. [Google Scholar] [CrossRef]
- Gisbert, A.T.; Piovella, N. Multimode Collective Atomic Recoil Lasing. Atoms 2020, 8, 93. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ackemann, T.; Labeyrie, G.; Baio, G.; Krešić, I.; Walker, J.G.M.; Costa Boquete, A.; Griffin, P.; Firth, W.J.; Kaiser, R.; Oppo, G.-L.; et al. Self-Organization in Cold Atoms Mediated by Diffractive Coupling. Atoms 2021, 9, 35. https://doi.org/10.3390/atoms9030035
Ackemann T, Labeyrie G, Baio G, Krešić I, Walker JGM, Costa Boquete A, Griffin P, Firth WJ, Kaiser R, Oppo G-L, et al. Self-Organization in Cold Atoms Mediated by Diffractive Coupling. Atoms. 2021; 9(3):35. https://doi.org/10.3390/atoms9030035
Chicago/Turabian StyleAckemann, Thorsten, Guillaume Labeyrie, Giuseppe Baio, Ivor Krešić, Josh G. M. Walker, Adrian Costa Boquete, Paul Griffin, William J. Firth, Robin Kaiser, Gian-Luca Oppo, and et al. 2021. "Self-Organization in Cold Atoms Mediated by Diffractive Coupling" Atoms 9, no. 3: 35. https://doi.org/10.3390/atoms9030035
APA StyleAckemann, T., Labeyrie, G., Baio, G., Krešić, I., Walker, J. G. M., Costa Boquete, A., Griffin, P., Firth, W. J., Kaiser, R., Oppo, G. -L., & Robb, G. R. M. (2021). Self-Organization in Cold Atoms Mediated by Diffractive Coupling. Atoms, 9(3), 35. https://doi.org/10.3390/atoms9030035