Analysis of Multipolar Linear Paul Traps for Ion–Atom Ultracold Collision Experiments
Abstract
:1. Introduction
2. Microscopic Detail of Ultracold Ion–Atom Collision
3. Ion Trap Configurations
4. Virial Theorem for 2k-Pole Traps
5. Equivalence of Trajectory Calculations and Virial Results
Dynamics of an Ion in a 2k-Pole Trap
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 1990, 62, 531–540. [Google Scholar] [CrossRef]
- Major, F.G.; Gheorghe, V.N.; Werth, G. Charged Particle Traps, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Grier, A.T.; Cetina, M.; Oručević, F.; Vuletić, V. Observation of Cold Collisions between Trapped Ions and Trapped Atoms. Phys. Rev. Lett. 2009, 102, 223201. [Google Scholar] [CrossRef]
- Zipkes, C.; Palzer, S.; Sias, C.; Köhl, M. A trapped single ion inside a Bose–Einstein condensate. Nature 2010, 464, 388–391. [Google Scholar] [CrossRef] [Green Version]
- Hall, F.; Aymar, M.; Bouloufa, N.; Dulieu, O.; Willitsch, S. Light-Assisted Ion-Neutral Reactive Processes in the Cold Regime: Radiative Molecule Formation versus Charge Exchange. Phys. Rev. Lett. 2011, 107, 243202. [Google Scholar] [CrossRef] [PubMed]
- Ravi, K.; Lee, S.; Sharma, A.; Werth, G.; Rangwala, S.A. Cooling and stabilization by collisions in a mixed ion–atom system. Nat. Commun. 2012, 3, 1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivarajah, I.; Goodman, D.S.; Wells, J.E.; Narducci, F.A.; Smith, W.W. Evidence of sympathetic cooling of Na+ ions by a Na magneto-optical trap in a hybrid trap. Phys. Rev. A 2012, 86, 63419. [Google Scholar] [CrossRef] [Green Version]
- Cetina, M.; Grier, A.T.; Vuletić, V. Micromotion-induced limit to atom-ion sympathetic cooling in Paul traps. Phys. Rev. Lett. 2012, 109. [Google Scholar] [CrossRef]
- Hall, F.H.J.; Eberle, P.; Hegi, G.; Raoult, M.; Aymar, M.; Dulieu, O.; Willitsch, S. Ion-neutral chemistry at ultralow energies: Dynamics of reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap. Mol. Phys. 2013, 111, 2020–2032. [Google Scholar] [CrossRef] [Green Version]
- Härter, A.; Denschlag, J.H. Cold atom–ion experiments in hybrid traps. Contemp. Phys. 2014, 55, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Meir, Z.; Pinkas, M.; Sikorsky, T.; Ben-shlomi, R.; Akerman, N.; Ozeri, R. Direct Observation of Atom-Ion Nonequilibrium Sympathetic Cooling. Phys. Rev. Lett. 2018, 121, 53402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, M.; Marler, J.P.; Herskind, P.F.; Dantan, A.; Drewsen, M. Collective strong coupling between ion Coulomb crystals and an optical cavity field: Theory and experiment. Phys. Rev. A 2012, 85, 023818. [Google Scholar] [CrossRef]
- Rouse, I.; Willitsch, S. Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas. Phys. Rev. Lett. 2017, 118, 143401. [Google Scholar] [CrossRef] [Green Version]
- Schmid, S.; Härter, A.; Denschlag, J.H. Dynamics of a Cold Trapped Ion in a Bose-Einstein Condensate. Phys. Rev. Lett. 2010, 105, 133202. [Google Scholar] [CrossRef]
- Smith, W.W.; Goodman, D.S.; Sivarajah, I.; Wells, J.E.; Banerjee, S.; Côté, R.; Michels, H.H.; Mongtomery, J.A.; Narducci, F.A. Experiments with an ion-neutral hybrid trap: Cold charge-exchange collisions. Appl. Phys. B 2014, 114, 75–80. [Google Scholar] [CrossRef]
- Schowalter, S.J.; Dunning, A.J.; Chen, K.; Puri, P.; Schneider, C.; Hudson, E.R. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions. Nat. Commun. 2016, 7, 12448. [Google Scholar] [CrossRef]
- Ray, T.; Jyothi, S.; Ram, N.B.; Rangwala, S.A. A thin wire ion trap to study ion–atom collisions built within a Fabry–Perot cavity. Appl. Phys. B 2014, 114, 267–273. [Google Scholar] [CrossRef]
- Jyothi, S.; Ray, T.; Ram, B.; Rangwala, S. Hybrid Ion, Atom and Light Trap; IOS Press: Amsterdam, The Netherlands, 2015; Volume 189, pp. 269–278. [Google Scholar]
- Tomza, M.; Jachymski, K.; Gerritsma, R.; Negretti, A.; Calarco, T.; Idziaszek, Z.; Julienne, P.S. Cold hybrid ion-atom systems. Rev. Mod. Phys. 2019, 91. [Google Scholar] [CrossRef] [Green Version]
- Dieterle, T.; Berngruber, M.; Hölzl, C.; Löw, R.; Jachymski, K.; Pfau, T.; Meinert, F. Transport of a Single Cold Ion Immersed in a Bose-Einstein Condensate. Phys. Rev. Lett. 2021, 126, 33401. [Google Scholar] [CrossRef] [PubMed]
- Zipkes, C.; Ratschbacher, L.; Palzer, S.; Sias, C.; Köhl, M. Hybrid quantum systems of atoms and ions. J. Phys. Conf. Ser. 2011, 264, 12019. [Google Scholar] [CrossRef]
- Ravi, K.; Lee, S.; Sharma, A.; Werth, G.; Rangwala, S.A. Combined ion and atom trap for low-temperature ion–atom physics. Appl. Phys. B 2012, 107, 971–981. [Google Scholar] [CrossRef] [Green Version]
- Gerlich, D. Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions; John Wiley & Sons, Inc.: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Douglas, D.J.; Frank, A.J.; Mao, D. Linear ion traps in mass spectrometry. Mass Spectrom. Rev. 2005, 24, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Asvany, O.; Brünken, S.; Kluge, L.; Schlemmer, S. COLTRAP: A 22-pole ion trapping machine for spectroscopy at 4 K. Appl. Phys. B 2014, 114, 203–211. [Google Scholar] [CrossRef]
- Tian, Y.; Decker, T.K.; McClellan, J.S.; Bennett, L.; Li, A.; De la Cruz, A.; Andrews, D.; Lammert, S.A.; Hawkins, A.R.; Austin, D.E. Improved Miniaturized Linear Ion Trap Mass Spectrometer Using Lithographically Patterned Plates and Tapered Ejection Slit. J. Am. Soc. Mass Spectrom. 2018, 29, 213–222. [Google Scholar] [CrossRef]
- Schwartz, J.C.; Senko, M.W.; Syka, J.E.P. A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659–669. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, H.B.; Guo, L.; Tan, W.L.; De, A.; Marquardt, F.; Pagano, G.; Monroe, C. Many-Body Dephasing in a Trapped-Ion Quantum Simulator. Phys. Rev. Lett. 2020, 125, 120605. [Google Scholar] [CrossRef]
- Ragg, S.; Decaroli, C.; Lutz, T.; Home, J.P. Segmented ion-trap fabrication using high precision stacked wafers. Rev. Sci. Instrum. 2019, 90, 103203. [Google Scholar] [CrossRef]
- Bermudez, A.; Schaetz, T.; Plenio, M.B. Dissipation-Assisted Quantum Information Processing with Trapped Ions. Phys. Rev. Lett. 2013, 110, 110502. [Google Scholar] [CrossRef] [Green Version]
- Dantan, A.; Herskind, P.; Marler, J.P.; Albert, M.; Drewsen, M. Collective strong coupling with ion Coulomb crystals in an optical cavity. In Proceedings of the CLEO/Europe—EQEC 2009—European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, Munich, Germany, 14–19 June 2009; p. 1. [Google Scholar] [CrossRef]
- Sterk, J.D.; Luo, L.; Manning, T.A.; Maunz, P.; Monroe, C. Photon collection from a trapped ion-cavity system. Phys. Rev. A 2012, 85, 062308. [Google Scholar] [CrossRef] [Green Version]
- Ewald, N.V.; Feldker, T.; Hirzler, H.; Fürst, H.A.; Gerritsma, R. Observation of Interactions between Trapped Ions and Ultracold Rydberg Atoms. Phys. Rev. Lett. 2019, 122, 253401. [Google Scholar] [CrossRef] [Green Version]
- Major, F.G.; Dehmelt, H.G. Exchange-Collision Technique for the rf Spectroscopy of Stored Ions. Phys. Rev. 1968, 170, 91–107. [Google Scholar] [CrossRef]
- Karpa, L.; Bylinskii, A.; Gangloff, D.; Cetina, M.; Vuletić, V. Suppression of Ion Transport due to Long-Lived Subwavelength Localization by an Optical Lattice. Phys. Rev. Lett. 2013, 111, 163002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Raithel, M.D.G.; Denschlag, J.H. Optical control of atom-ion collisions using a Rydberg state. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 134005. [Google Scholar] [CrossRef] [Green Version]
- Ben-shlomi, R.; Vexiau, R.; Meir, Z.; Sikorsky, T.; Akerman, N.; Pinkas, M.; Dulieu, O.; Ozeri, R. Direct observation of ultracold atom-ion excitation exchange. Phys. Rev. A 2020, 102, 31301. [Google Scholar] [CrossRef]
- Schmidt, J.; Lambrecht, A.; Weckesser, P.; Debatin, M.; Karpa, L.; Schaetz, T. Optical Trapping of Ion Coulomb Crystals. Phys. Rev. X 2018, 8, 21028. [Google Scholar] [CrossRef] [Green Version]
- Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime. Phys. Rev. Lett. 2018, 120, 153401. [Google Scholar] [CrossRef] [Green Version]
- Wester, R. Cold Molecular Ions in Traps. In Trapped Charged Particles; Advanced Textbooks in Physics; World Scientific (Europe): London, UK, 2015; pp. 321–334. [Google Scholar] [CrossRef]
- Debatin, M.; Kröner, M.; Mikosch, J.; Trippel, S.; Morrison, N.; Reetz-Lamour, M.; Woias, P.; Wester, R.; Weidemüller, M. Planar multipole ion trap. Phys. Rev. A 2008, 77, 33422. [Google Scholar] [CrossRef]
- Prestage, J.D.; Tjoelker, R.L.; Maleki, L. Mercury-ion clock based on linear multi-pole ion trap. In Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052), Kansas City, MO, USA, 9 June 2000; pp. 706–710. [Google Scholar] [CrossRef]
- Pedregosa-Gutierrez, J.; Champenois, C.; Houssin, M.; Kamsap, M.R.; Knoop, M. Correcting symmetry imperfections in linear multipole traps. Rev. Sci. Instrum. 2018, 89, 123101. [Google Scholar] [CrossRef] [Green Version]
- Härter, A.; Krükow, A.; Brunner, A.; Hecker Denschlag, J. Long-term drifts of stray electric fields in a Paul trap. Appl. Phys. B 2014, 114, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Otto, R.; Hlavenka, P.; Trippel, S.; Mikosch, J.; Singer, K.; Weidemüller, M.; Wester, R. How can a 22-pole ion trap exhibit 10 local minima in the effective potential? J. Phys. B At. Mol. Opt. Phys. 2009, 42. [Google Scholar] [CrossRef]
- Todd, J.F.J.; March, R. Practical Aspects of Trapped Ion Mass Spectrometry, Volume V: Applications of Ion Trapping Devices, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Dahl, D.M. SIMION (R) 8.1 User Manual; Adaptas Solutions, LLC: Palmer, MA, USA, 2008. [Google Scholar]
- Thompson, R.C. Ion Coulomb crystals. Contemp. Phys. 2015, 56, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Lee, S. The Study of Trapped Ion Collisions with Cold Atoms and Cold Molecules. Ph.D. Thesis, Raman Research Institute, Bangalore, India, 2014. [Google Scholar]
- Mihalcea, B.M.; Giurgiu, L.C.; Stan, C.; Vişan, G.T.; Ganciu, M.; Filinov, V.; Lapitsky, D.; Deputatova, L.; Syrovatka, R. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions. J. Appl. Phys. 2016, 119, 114303. [Google Scholar] [CrossRef] [Green Version]
Quadrupole Trap | Hexapole Trap | Octupole Trap | Do-Decapole Trap | |
---|---|---|---|---|
Ideal Potential | ||||
: Theory | 1 | 1.5 | 2 | 3 |
: using ideal potential | 1.00 ± 0.05 | 1.50 ± 0.07 | 2.01 ± 0.09 | 3.00 ± 0.17 |
: using SIMION potential | 0.99 ± 0.03 | 1.48 ± 0.07 | 2.03 ± 0.08 | 1.01 ± 0.20 |
: with constant damping | 1.10 ± 0.06 | 1.55 ± 0.08 | 1.98 ± 0.09 | 3.04 ± 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niranjan, M.; Prakash, A.; Rangwala, S.A. Analysis of Multipolar Linear Paul Traps for Ion–Atom Ultracold Collision Experiments. Atoms 2021, 9, 38. https://doi.org/10.3390/atoms9030038
Niranjan M, Prakash A, Rangwala SA. Analysis of Multipolar Linear Paul Traps for Ion–Atom Ultracold Collision Experiments. Atoms. 2021; 9(3):38. https://doi.org/10.3390/atoms9030038
Chicago/Turabian StyleNiranjan, M., Anand Prakash, and S. A. Rangwala. 2021. "Analysis of Multipolar Linear Paul Traps for Ion–Atom Ultracold Collision Experiments" Atoms 9, no. 3: 38. https://doi.org/10.3390/atoms9030038
APA StyleNiranjan, M., Prakash, A., & Rangwala, S. A. (2021). Analysis of Multipolar Linear Paul Traps for Ion–Atom Ultracold Collision Experiments. Atoms, 9(3), 38. https://doi.org/10.3390/atoms9030038