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Abstract: The generalized dual-kinetic-balance approach for axially symmetric systems is employed
to solve the two-center Dirac problem. The spectra of one-electron homonuclear quasimolecules are
calculated and compared with the previous calculations. The analysis of the monopole approximation
with two different choices of the origin is performed. Special attention is paid to the lead and xenon
dimers, Pb82+–Pb82+–e− and Xe54+–Xe54+–e−, where the energies of the ground and several excited
σ-states are presented in the wide range of internuclear distances. The developed method provides
the quasicomplete finite basis set and allows for the construction of perturbation theory, including
within the bound-state QED.

Keywords: two-center Dirac equation; quasimolecules; heavy-ion collisions

1. Introduction

Due to the critical phenomena of the bound-state quantum electrodynamics, such
as spontaneous electron–positron pair production, quasimolecular systems emerging in
ion–ion or ion–atom collisions have attracted much interest [1–9]. While collisions of highly
charged ions with neutral atoms are presently available for experimental investigations,
in particular at the GSI Helmholtz Center for Heavy Ion Research [10–12], the upcom-
ing experiments at the GSI/FAIR [13], NICA [14], and HIAF [15] facilities might even
allow the observation of the heavy ion–ion (up to U92+–U92+) collisions. The relativistic
dynamics of the heavy-ion collisions has been investigated for decades by various meth-
ods; see, e.g., [7–9,16–22] and the references therein. The theoretical predictions of the
quasimolecular spectra are also in demand for the analysis of the experimental data in
these collisions.

Within the Born–Oppenheimer approximation, the one-electron problem is reduced
to the Dirac equation with the Coulomb potential of two nuclei at a fixed internuclear
distance D. This problem was investigated previously by a number of authors; see,
e.g., [16,21,23–38]. The majority of these works relied on the partial-wave expansion of
the two-center potential in the center-of-mass coordinate system. Alternative approaches
include, e.g., the usage of the Cassini coordinates [34] and the atomic Dirac–Sturm basis-
set expansion [36,37]. We consider the method based on the dual-kinetic-balanced finite-
basis-set expansion [39] of the electron wave function for axially symmetric systems [40].
The results for the ground state of uranium dimers with one and two electrons were
already presented in [41]. In the present work, we extend the one-electron calculations
to the lowest excited σ-states and present the results for the one-electron dimers, Pb82+–
Pb82+–e− and Xe54+–Xe54+–e−. For the ground state, we demonstrate the accuracy of
this method for the nuclear charge numbers Z from 1 to 100 at the so-called “chemical”
distances, D = 2/Z a.u. We also investigate the difference between the two-center values
and those obtained within the monopole approximation.
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The relativistic units (h̄ = 1, c = 1, me = 1) and the Heaviside charge unit (α =
e2/(4π), e < 0) are used throughout the paper.

2. Method

In heavy atomic systems, the parameter αZ (α is the fine-structure constant and Z is
the nuclear charge number), which measures the coupling of electrons with nuclei, is not
small. Therefore, the calculations for these systems should be performed within the fully
relativistic approach, i.e., to all orders in αZ. With this in mind, we start with the Dirac
equation for the two-center potential,[

~α · ~p + β + V(~r)
]
Ψn(~r) = EnΨn(~r), (1)

V(~r) = VA
nucl(|~r− ~R1|) + VB

nucl(|~r− ~R2|). (2)

Here,~r and ~R1,2 are the coordinates of the electron and nuclei, respectively, VA,B
nucl(r) is

the nuclear potential at the distance r generated by the nucleus with the charge ZA,B, and~α
and β are the standard 4× 4 Dirac matrices:

β =

(
I 0
0 −I

)
, ~α =

(
0 ~σ
~σ 0

)
, (3)

where~σ is a vector of the Pauli matrices.
In the following, we consider the identical nuclei, i.e., ZA = ZB, with the Fermi model

of the nuclear charge distribution:

Vnucl(r) = −4παZ
∞∫

0

ρ(r′)
max(r, r′)

r′2 dr′, ρ(r) =
ρ0

1 + exp (r− c)/a
, (4)

where ρ0 is the normalization constant, a is the skin thickness constant, and c is the half-
density radius. For more details, see, e.g., [42].

The solution of Equation (1) is obtained within the dual-kinetic-balance (DKB) ap-
proach, which allows one to solve the problem of “spurious” states. These non-physical
states occur in the spectrum upon solving the Dirac equation using the finite basis set [43].
Originally, this approach was implemented for spherically symmetric systems, such as
atoms [39], using the finite basis set constructed from the B-splines [44,45]. Later, authors
of [40] generalized it to the case of axially symmetric systems (A-DKB): they considered the
atom in an external homogeneous field. This case was also considered within this method
in [46–48] to evaluate the higher-order contributions to the Zeeman splitting in highly
charged ions. In [41], we adapted the A-DKB method to diatomic systems, which also
possess axial symmetry. Below, we provide a brief description of the calculation scheme.

The system under consideration is rotationally invariant with respect to the z-axis
directed along the internuclear vector ~D = ~R2 − ~R1. Therefore, the z-projection of the total
angular momentum with the quantum number mJ is conserved, and the electronic wave
function can be written as,

Ψ(r, θ, ϕ) =
1
r


G1(r, θ)ei(mJ− 1

2 )ϕ

G2(r, θ)ei(mJ+
1
2 )ϕ

iF1(r, θ)ei(mJ− 1
2 )ϕ

iF2(r, θ)ei(mJ+
1
2 )ϕ

 . (5)
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The (r, θ)-components of the wave function are represented using the finite-basis-set
expansion:

Φ(r, θ) =
1
r


G1(r, θ)
G2(r, θ)
F1(r, θ)
F2(r, θ)

 ∼= 4

∑
u=1

Nr

∑
ir=1

Nθ

∑
iθ=1

Cu
ir ,iθ ΛBir (r)Qiθ (θ)eu , (6)

where
{

Bir (r)
}Nr

ir=1 are B-splines,
{

Qiθ
}Nθ

iθ=1 are Legendre polynomials of the argument

2θ/π − 1, and
{

eu
}4

u=1 are the standard four-component basis vectors:

e1 =


1
0
0
0

, e2 =


0
1
0
0

, e3 =


0
0
1
0

, e4 =


0
0
0
1

 . (7)

The Λ-matrix:

Λ =

(
I − 1

2 DmJ

− 1
2 DmJ I

)
, (8)

DmJ = (σz cos θ + σx sin θ)

(
∂

∂r
− 1

r

)
+

1
r
(σx cos θ − σz sin θ)

∂

∂θ
+

1
r sin θ

(
imJσy +

1
2

σx

)
, (9)

imposes the dual-kinetic-balance conditions on the basis set. With the given form of Φ
and the finite basis set, one can find the corresponding Hamiltonian matrix Hij and the
so-called basis function overlap matrix Sij (for more details, see [40]). The eigenvalues
and eigenfunctions are found numerically by solving the generalized eigenvalue problem
∑j HijCj = ∑j ESijCj via the standard DSYGV subroutine from LAPACK. As a result, we
obtain a quasicomplete finite set of wave functions and electronic energies for the two-
center Dirac equation. Ground and several lowest excited states are reproduced with
high accuracy while the higher excited states effectively represent the infinite remain-
der of the spectrum. The negative-energy continuum is also represented by the finite
number of the negative-energy eigenvalues. This quasicomplete spectrum can be used
to construct the Green function, which is needed for the perturbation theory calculations.
So far, the leading non-trivial QED corrections—self-energy, vacuum polarization, and
two-photon exchange—have been calculated [41] only within the so-called monopole ap-
proximation (see Equation (10) below). In order to evaluate these contributions on the basis
of the two-center Dirac equation, the corresponding Green function has to be constructed,
e.g., within the finite-basis-set approach presented in this paper.

3. Results

Relativistic calculations of the binding energies of heavy one-electron quasimolecules
were presented, in particular, in [21,29,32,34,36,37]. Reference [37] provided nearly the
most accurate up-to-date values for the very broad range of Z and taking into account
the finite nuclear size. Therefore, we use these data for comparison with our results: see
Table 1, where the ground-state energies are presented for Z = 1, . . . , 100 at the so-called
“chemical” distances, D = 2/Z a.u. We observe that the results are in good agreement,
the relative deviation varying from 2× 10−6 for hydrogen to 5× 10−5 for Z = 100. This
deviation is consistent with our own estimation of the numerical uncertainty, which is
evaluated by inspecting the convergence of the results with respect to the size of the basis
set. In this calculation, up to Nr = 320 B-splines and Nθ = 54 Legendre polynomials are
used. For heavy nuclei, this number of basis functions ensures the uncertainty, which
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is comparable to or smaller than the uncertainty of the finite nuclear size effect at all
internuclear distances from 0 to 2/Z a.u.

Table 1. Comparison of the ground-state energies (in a.u.) of one-electron quasimolecular systems
with Z = 1, . . . , 100 at the internuclear distance D = 2/Z a.u.

Z This Work Dirac–Sturm [37]

1 −1.1026433 −1.102641581032
2 −4.4106607 −4.410654714140
10 −110.33722 −110.3371741499
20 −442.23969 −442.2392996469
30 −998.4194 −998.4214646525
40 −1783.5479 −1783.563450815
50 −2804.5304 −2804.571434254
60 −4070.971 −4071.036267926
70 −5595.889 −5595.926978290
80 −7397.003 −7397.028800116
90 −9498.452 −9498.588788490
92 −9957.567 −9957.775519122

100 −11,935.89 −11,936.41770218

Next, we present the obtained one-electron spectra of the Pb82+–Pb82+–e− and Xe54+–
Xe54+–e− quasimolecules in the wide range of the internuclear distances from a few tens
of fermi up to the “chemical” distances.

In the present figures, only σ-states (mJ = ± 1
2 ) are shown. The precise quantum

numbers are mJ and parity, g (gerade) or u (ungerade). In addition, we determine the
quantum numbers of the “merged atom”, i.e., the state of the system with the internuclear
distance D → 0, and put it to the left of the molecular term symbol, e.g., the ground state is
1s1/2σg.

In Figure 1, the energies of the ground (n = 1) and first nine (n = 2, . . . , 10) excited
states of the Pb82+–Pb82+–e− system as functions of the internuclear distance are shown.
Here, n has no connection with the atomic principal quantum number; it simply enumerates
the σ-states. To visually compare the data obtained with the ones by Soff et al., in Figure 2,
we zoom the second plot from Figure 1 to match the scale of the corresponding figure
from [16]. Although we cannot compare the numerical results, the plots for all the states
under consideration appear to be in very good agreement: all the states are identified
correctly, and all the crossings and avoided crossings appear at the same internuclear
distances. The similar results for xenon, i.e., the energies of the ground (n = 1) and first
nine (n = 2, . . . , 10) excited states of the Xe54+–Xe54+–e− system are shown in Figure 3.

Furthermore, in Tables 2 and 3, we compare the ground-state binding energies ob-
tained within our approach for the two-center (TC) potential with those for the widely
used monopole approximation (MA), where only the spherically symmetric part of the
two-center potential is considered:

Vmono(r) =
1
2

π∫
0

dθ sin θ[VA
nucl(|~r− ~R1|) + VB

nucl(|~r− ~R2|)]. (10)

The corresponding results are obtained within the DKB approach [39]. Within the
MA, the potential and all the results depend on where to place the origin of the coordinate
system (c.s.). At the same time, for the TC potential, the results should be identical within
the numerical error bars. We compare two different placements of the c.s. origin: (1) at the
center of mass of the nuclei and (2) at the center of one of the nuclei; see Figure 4.
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Figure 1. Electronic terms of the one-electron Pb82+–Pb82+ quasimolecule.
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Figure 2. Electronic terms of the one-electron Pb82+–Pb82+ quasimolecule. Energies of states with
n = 6, . . . , 9 (scaled).
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Figure 3. Electronic terms of the one-electron Xe54+–Xe54+ quasimolecule.

Table 2. Ground-state binding energy E1σg (in eV) of the Pb82+–Pb82+–e− quasimolecule for the two-center potential (TC)
and for the monopole-approximation potential (MA), with the coordinate system origin at the center of mass of the nuclei
(1) and at the one of the nuclear centers (2).

D, fm TC(1) TC(2) MA(1) MA(2) |TC(1)−MA(1)| |MA(1)−MA(2)|
40 −646,254 −646,254 −637,032 −598,564 9222 38,468
50 −614,504 −614,504 −604,643 −568,188 9861 36,455
80 −550,575 −550,575 −539,861 −506,742 10,714 33,119

100 −521,373 −521,373 −510,350 −478,423 11,023 31,927
200 −433,348 −433,347 −421,146 −392,345 12,202 28,801
250 −405,450 −405,450 −392,687 −365,185 12,763 27,502
500 −319,773 −319,769 −304,337 −283,510 15,436 20,827

1/Z [a.u.] ' 645 −289,068 −289,067 −272,212 −255,389 16,856 16,823
700 −279,462 −279,464 −262,095 −246,756 17,367 15,339

1000 −238,887 −238,873 −218,905 −211,937 19,982 6968
2/Z [a.u.] ' 1291 −212,020 −212,003 −189,652 −190,174 22,368 522

Table 3. Ground-state binding energy E1σg (in eV) of the Xe54+–Xe54+–e− quasimolecule. The notations are the same as in
Table 2.

D, fm TC(1) TC(2) MA(1) MA(2) |TC(1)−MA(1)| |MA(1)−MA(2)|
40 −192,031 −192,031 −191,860 −190,033 171 1827
50 −190,845 −190,845 −190,607 −188,314 238 2293
80 −187,217 −187,216 −186,775 −183,199 442 3576

100 −184,805 −184,805 −184,228 −179,895 577 4333
200 −173,425 −173,425 −172,190 −165,031 1235 7159
250 −168,242 −168,242 −166,695 −158,621 1547 8074
500 −146,803 −146,802 −143,860 −133,919 2943 9941
700 −133,710 −133,710 −129,828 −120,118 3882 9710

1/Z [a.u.] ' 980 −119,414 −119,413 −114,421 −105,971 4993 8450
1000 −118,529 −118,528 −113,464 −105,233 5065 8231

2/Z [a.u.] ' 1960 −89,269 −89,276 −81,433 −79,488 7836 1945
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Figure 4. Two different coordinate systems considered. Left: (1) the origin is at the center-of-mass of
the system; right: (2) the origin is at the center of one of the nuclei.

The agreement between TC(1) and TC(2) within the anticipated numerical uncertainty
serves as a non-trivial self-test of the method, since the basis-set expansion (6) is essen-
tially different for the two cases. In fact, due to the lower symmetry of the second c.s.,
the uncertainty of the TC(2) values is much larger and completely determines the difference
between TC(1) and TC(2). The differences between the TC(1) and MA(1) results, presented
in the second-to-last column, can be interpreted as the inaccuracy of the MA. In the last
column, the differences between the MA(1) and MA(2) results are given, a kind of “inherent
inconsistency” of the MA.

As one can see from these data, |MA(1)−MA(2)| is roughly comparable to |TC(1)−
MA(1)|. In other words, in case the TC values are unknown, one can estimate the magni-
tude of |TC(1)−MA(1)| from |MA(1)−MA(2)|, except for the regions where the latter is
anomalously small due to the sign change. This observation can be used to quantify the
inaccuracy of the MA results for the various quantities evaluated within the MA, but not
yet within the rigorous TC approach, which is generally much more demanding. In par-
ticular, this is the case of the self-energy, vacuum-polarization, and two-photon-exchange
contributions calculated for heavy quasimolecules in the MA within the DKB approach,
e.g., in [41].

4. Summary

In this work, the two-center Dirac equation is solved within the dual-kinetic-balance
method [39,40]. The energies of the ground and several excited σ-states in such heavy di-
atomic systems as Pb82+–Pb82+–e− and Xe54+–Xe54+–e− are plotted as a function of the in-
ternuclear distance D. The ground-state energies at the “chemical” distances (D = 2/Z a.u.)
are presented for one-electron dimers with Z = 1, . . . , 100. The obtained data are compared
with the available previous calculations, and a good agreement is observed. The com-
parison of the results for different origin placement of the coordinate system is used as a
self-test of the method. The values obtained within the monopole approximation are also
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presented. It is shown that their dependence on the origin placement can serve to estimate
the deviation from the two-center results, at least by the order of the magnitude.

The developed method, in addition to the energies and wave functions of the ground
and lowest excited states, provides the quasicomplete finite spectrum. The Green function
computed on the basis of this spectrum gives access, in particular, to the evaluation of the
Feynman diagrams within the bound-state QED.
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