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Abstract: We consider the redistribution of the Rydberg state population resulting from multistep
cascade transitions induced by radiation with a continuous spectrum. The population distribution is
analyzed within the space of quantum numbers n and l. The dynamics of the system are studied
using both the numerical solution of kinetic equations and the diffusion approximation based on the
Fokker–Planck equation. The main path of the redistribution process is determined.
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1. Introduction

Interest in the diffusion-like redistribution of the Rydberg state population induced by
radiation has been aroused by experimental observation of microwave ionization of hydro-
gen Rydberg states [1–3]. This process has been described within the framework of classical
chaotic motion theory [4–8] or, alternatively, in terms of quantum diffusion [9]. This de-
scription of the process has accordingly been termed “diffusion ionization” (alternative
terms are “stochastic“ or “diffusive” ionization).

Diffusion ionization occurs when an incident radiation photon has insufficient energy
to induce photoionization from the initial state. The mechanism of diffusion ionization
can be described as follows: multistep cascade transitions translate an atomic electron
to a highly excited state from which an electron ionizes. This mechanism is referred to
as diffusion ionization because multistep transitions can be effectively described as the
diffusion of the population in energy space.

In the present study, we focus on the first stage of the described process, i.e., the
diffusive redistribution of the Rydberg state population induced by radiation.

The earlier studies on this process [4–9] considered the case of monochromatic radi-
ation in line with the experimental conditions [1]. In this case, the radiation should be
sufficiently strong to induce significant Stark splitting [9] and broadening [10] of atomic
levels, because it was necessary to provide a sufficient number of transitions in the atomic
spectrum with the same frequency as that of the incident radiation.

In the present study, we consider radiation with a continuous spectrum. Thus, a strong
perturbation of the atomic spectrum is not necessary to produce multistep transitions,
which can instead be induced by less intense radiation. In general, the study of continuous-
spectrum radiation effect on Rydberg states began more than four decades ago with the
pioneering work by Gallagher and Cooke [11] and continued in many experimental and
theoretical works concerning interaction of the Rydberg states with the blackbody radiation,
for example [12–15]. However, long multistep transitions in this case have been much less
studied than in the monochromatic radiation case. The results of experimental studies [16]
have shown the significant impact of cascade processes on the ionization probability, but
these processes have not been systematically investigated. Preliminary estimates of the
diffusion ionization of the Rydberg states induced by blackbody radiation were provided
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in [17] but there were no continuations. Galvez et al. [18] investigated cascade transitions
between Rydberg states of Na induced by blackbody radiation, but they considered mainly
two- and three-step transitions. Furthermore, Beterov et al. experimentally measured the
ionization rate of the Rydberg states of alkali metals induced by blackbody radiation [19]
and performed corresponding theoretical calculations [20–22] taking cascade processes into
account; however, the number of steps in the considered cascades again did not exceed four.

Multistep cascade processes can play an important role in some astrophysical ap-
plications. In particular, these processes can contribute to non-LTE (NLTE, LTE: Local
Thermodynamical Equilibrium) corrections to the population distribution for thin stellar
atmospheres and nebulae. Generally, statistical balance equations are to be solved to
compute these corrections. However, a high number of steps in the cascade drastically
increases the number of states included in these equations [23]. This problem can be
solved by using the Fokker–Planck equation to transform the discrete representation of the
process to a continuous representation, which is the diffusion approximation. A similar
approach is actively used to describe collisional processes [24–28] but is less developed for
radiative ones.

Our previous work [29] focused on the diffusion ionization of the sodium atom
induced by continuous-spectrum radiation. The redistribution of the population was
analyzed using both kinetic equations and the Fokker–Planck equation. The numerical
solution to the kinetic equations confirmed the validity of the diffusion approximation.
However, the population for sodium mostly only spread within s- and p-states because of
the large quantum defects of these states. The similar effect was experimentally obtained
for sodium in [30].

In the present study, the redistribution of the population is considered within the
space of quantum numbers n and l of the hydrogen atom. In Section 2, the case of
incident radiation with a rectangular spectrum is considered, and the results for an arbitrary
continuous spectrum are presented in Section 3.

Atomic units are used throughout. In particular, for the time the atomic unit is
approximately equal to 2.419× 10−17 s, and correspondingly, for the angular frequency ω
it is approximately 4.134× 1016 rad/s.

2. Diffusion throughout States Induced by Radiation with a Rectangular Spectrum

The radiation is assumed to be stochastic, whereby the kinetic equations can be used
to describe the electron transitions

dNnl
dt

= ∑
n′ l′

V(n′l′ → nl)Nn′ l′ − Nnl

(
∑
n′ l′

V(nl → n′l′) + Wi(nl)

)
. (1)

Here, Nnl is the population of the state (nl), i.e., the occupation number of the state (nl). Nnl
is equal to 0 if the state (nl) is not populated and is equal to 1 if it is completely populated.
V(nl → n′l′) is the rate of the transition nl → n′l′ equal to the sum of rates of induced and
spontaneous transitions

V(nl → n′l′) = Vind(nl → n′l′) + Vsp(nl → n′l′).

Wi(nl) is the rate of the photoionization. The initial state of the electron is denoted
by (n0, l0).

In this section, the spectral density ρ(ω) of the incident radiation is assumed to be
distributed in a limited frequency range between the boundary values of the frequencies
ωmin and ωmax, i.e., ρ(ω) = 0 for ω < ωmin or ω > ωmax. For certainty, we also assume
ρ(ω) to be constant in this range, i.e., ρ(ω) = ρ = const for ωmin ≤ ω ≤ ωmax. In other
words, we consider in this section the case of the radiation with a rectangular spectrum. It
is an abstract one and is taken here to simplify the qualitative analysis and show general
features of the population redistribution process. Specific values of ωmin, ωmax and ρ used
in the simulation do not represent the spectrum of any real source and are chosen so that to
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get a clear visual representation of the process. (In Section 3 we generalize the analysis and
consider the effect of the radiation with arbitrary spectrum.)

The system is simulated by numerically solving the kinetic Equation (1). Figure 1
shows the simulated distribution of the population in coordinates n, l at two particular
moments in time. In line with the simulations results, two main stages in the dynamics of
the population redistribution can be identified:

• Figure 1a: The population propagates along the straight (red) line.
• Figure 1b: The population spreads over a region approximately constrained by well-

defined boundaries (red, green and black lines). The form of these boundaries is
discussed below.

𝑂 𝑂

𝑀

𝑄

(𝑎) (𝑏)

𝑡 = 5 ∙ 109𝑎. 𝑢. 𝑡 = 1010𝑎. 𝑢.

Figure 1. (Color online) The redistribution of the population in the space of quantum numbers n and
l. The initial state is 8f. The incident radiation has a rectangular spectrum with ωmin = 2× 10−4,
ωmax = 3× 10−3 and a spectral density ρ = 4× 10−14; (a) t = 5× 109 a.u., (b) t = 1010 a.u. The
magnitude of the population is shown in color. The boundaries (5), (7) and (9) are shown by red, green
and black curves, respectively; the main path (36) is shown by a blue line. Point O corresponds to the
initial state, point Q corresponds to ωn ≈ ωmin (6), (8), and point M is the point of deflection (31) of
the main path from the red line.

2.1. The Boundaries of the Population Distribution Region

Incident radiation with a frequency ω induces a dipole transition with the following
changes in the energy and orbital moment:

∆E = ±ω, ∆l = ±1. (2)

Considering the Bethe rule [31], the most likely transitions have the same signs of
∆E and ∆l, i.e., if ∆E = ω, then ∆l = 1, and if ∆E = −ω, then ∆l = −1. That is, these
transitions occur for ∆E/∆l = ω. Hence, if the radiation has a continuous spectrum and
contains frequencies in the range ωmin ≤ ω ≤ ωmax, then

ωmin ≤
∆E
∆l
≤ ωmax. (3)

Thus, if only the transitions satisfying the Bethe rule are considered, then the pop-
ulation does not redistribute throughout all states but only those within the boundaries
defined by the inequality (3).

The right side of (3) corresponds to transitions with frequencies ω = ωmax and
∆l = 1. The cascade of these transitions from the initial state defines the path satisfying the
following equation:

l =
1

ωmax
(E− E0) + l0. (4)
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Taking into account E = −1/2n2, the equation can be written in coordinates n, l
as follows:

l =
1

ωmax

(
− 1

2n2 +
1

2n2
0

)
+ l0. (5)

This path is the lower boundary of the population distribution region. This boundary is
shown by a black line in Figure 1b.

Now, let us consider the left part of (3). It can be refined in the following way. The
frequency of the induced transition cannot be lower than the difference of energies between
the adjacent levels ωn = En+1 − En. Accordingly, if ωn exceeds ωmin, ωn replaces ωmin
in (3). As a result, the upper boundary in Figure 1b is composite. The upper boundary
consists of a segment for ωn > ωmin, which is shown as a red line, and a segment for
ωn < ωmin, which is shown as a green line. The intersection of the two segments is denoted
by the point Q. At this point, ωn ≈ ωmin. An approximate estimate for the corresponding
value of the principal quantum number is given below.

nQ = ω−1/3
min (6)

The red line corresponds to the path along which ω = ωn, i.e., the cascade of transi-
tions with ∆n = 1. The corresponding equation is

l = n− n0 + l0. (7)

This equation can be used to obtain an explicit formula for lQ:

lQ = nQ − n0 + l0. (8)

The green line indicates the cascade of transitions with ω = ωmin from the state
(nQ, lQ). The corresponding equation can be written as

l =
1

ωmin

(
− 1

2n2 +
1

2n2
Q

)
+ lQ. (9)

As previously mentioned, this analysis is simplified. As the Bethe rule is not strict,
states outside the described boundaries may also be populated. However, as the simulation
shows, the majority of the population is located within the described boundaries.

Furthermore, Figure 1b shows that the population does not propagate uniformly
within these boundaries. The population mostly propagates along a main path. Initially,
the population spreads along the red line shown in Figure 1b. The population then deflects
from the red line at the point denoted by M and spreads along the blue line. The segment
OM and the blue line are then collectively referred to as the “main path”. This path
is discussed in the following section. To determine the location of the path precisely, a
more sophisticated analysis using the diffusion approximation is needed. This analysis is
presented below.

2.2. The Main Path

According to [24,32], the Fokker–Planck equation is obtained from (1) (see Appendix A):

∂N
∂t

= − ∂

∂n
AnN − ∂

∂l
Al N +

∂2

∂n2 BnnN + 2
∂2

∂n∂l
Bnl N +

∂2

∂l2 Bll N − (Wi + Wq)N, (10)
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where the coefficients of drift A and diffusion B are defined as follows:

An = ∑
n′ l′

Vind(nl → n′l′)(n′ − n), (11)

Al = ∑
n′ l′

Vind(nl → n′l′)(l′ − l), (12)

Bnn =
1
2 ∑

n′ l′
Vind(nl → n′l′)(n′ − n)2, (13)

Bnl =
1
2 ∑

n′ l′
Vind(nl → n′l′)(n′ − n)(l′ − l), (14)

Bll =
1
2 ∑

n′ l′
Vind(nl → n′l′)(l′ − l)2, (15)

and Wq is the rate of spontaneous decay

Wq = ∑
n′ l′

Vsp(nl → n′l′). (16)

Speaking simplistically, the drift terms in (10) correspond to the population transfer
due to asymmetry of the probabilities Vind(nl → n′l′): if Vind(nl → n + ∆n, l + ∆l) �
Vind(nl → n−∆n, l−∆l) then the population moves in the direction (∆n, ∆l). On the other
hand, the diffusion terms in (10) correspond to the population transfer due to unevenness
of the population distribution: if Nnl � Nn′ l′ then Nnl decreases and Nn′ l′ rises.

Numerical simulation of the kinetic equation shows that the redistribution of Rydberg
state population is determined mainly by the diffusion terms: the drift terms are much
smaller than the diffusion ones, and the photoionization and the spontaneous decay cause
the population depletion of all the Rydberg states in general, so they do not change the main
path of the process. Thus, further we consider the reduced version of the Fokker–Planck
Equation (10):

∂N
∂t

=
∂2

∂n2 BnnN + 2
∂2

∂n∂l
Bnl N +

∂2

∂l2 Bll N. (17)

Let us consider an auxiliary Cauchy problem for (17). Let at a moment t all population
located at an arbitrary state (n, l), not necessarily (n0, l0), and try to find the population at
some (n′, l′) for t′ > t. If ∆t = t′ − t is sufficiently small, then the coefficients Bnn, Bll , Bnl
can be assumed approximately constant, and this auxiliary problem has solution

N ∼ exp

[
− 1

4∆t

(
Bll∆n2 + 2Bnl∆n∆l + Bnn∆l2

BnnBll − B2
nl

)]
,

where ∆n = n′ − n, ∆l = l′ − l.
The corresponding diffusion front (the set of all points with the same exponent)

is elliptical:
Bll∆n2 + 2Bnl∆n∆l + Bnn∆l2 = 4∆t(BnnBll − B2

nl).

and is hereafter referred to as the local diffusion ellipse (Figure 2a). Hence, the diffusion
in a sufficiently small environment of (n, l) will mainly occur along the main axis of this
ellipse. In other words, if at a some moment of time the electron arrives in a state (n, l),
then in a next moment it will most probably go along this main axis. This direction is
given by

cot α =
Bnn − Bll +

√
(Bll − Bnn)2 + 4B2

nl

2Bnl
. (18)

Accordingly, this direction at each point of the plane n, l defines the vector field of the
population flow (see Figure 2b), i.e., the population mainly propagates along this vector
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field streamlines, which are determined by the equation

dn
dl

= cot α. (19)

Hence, the main path presented in the previous section is the streamline passing through
the point (n0, l0).

(𝑎)

𝛼

(𝑏)

𝐞

Figure 2. (Color online) (a) Local diffusion ellipse. The main diffusion direction e corresponds to
the main axis of this ellipse and forms an angle α to the n axis. (b) The vector field e. The blue line
corresponds to the streamline of this field. The initial state n0, l0 is shown by the red point.

Let us review the form of the main path. For the initial segment OM of the path,
cot α ≈ 1. Taking into account (18), this expression is equivalent to the relation between the
diffusion coefficients:

Bnn − Bll � Bnl (20)

However, Bnn − Bll increases with n. As a result, the main path deflects from the red
line at point M. Thus, the relation

Bnn − Bll ≈ Bnl (21)

can be used to define the deflection point M. In order to obtain the (n, l)-coordinates of the
point M explicitly, consider the expressions for the diffusion coefficients in details.

Considering the Bethe rule and assuming transitions occur at a similar rate in the
directions of both increasing and decreasing l, the diffusion coefficients (13)–(15) can be
recast as follows:

Bnn ≈
∆nmax

∑
∆nmin

Vind(nl → n + ∆n, l + 1)∆n2, (22)

Bnl ≈
∆nmax

∑
∆nmin

Vind(nl → n + ∆n, l + 1)∆n, (23)

Bll ≈
∆nmax

∑
∆nmin

Vind(nl → n + ∆n, l + 1). (24)

Here,

∆nmin ≈ max(1, ωminn3), (25)

∆nmax ≈ ωmaxn3 (26)

correspond to the minimal and maximal changes in n, respectively, that are allowed for.
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To calculate the sums (22)–(24), it is necessary to know the form of the dependence
of Vind(nl → n + ∆n, l + 1) on ∆n. This form can be obtained using the quasiclassical
approximation assuming n, l � ∆n [33]:

Vind(nl → n + ∆n, l + 1) = ρ f (n, l)
(

n′n
n2 − n′2

)3

≈ 1
8

ρ f (n, l)
( n

∆n

)3
, (27)

where f (n, l) is a slowly varying function of n and l given in [33].
Substituting (27) into (22)–(24) enables the diffusion coefficients to be expressed as the

sums of harmonic series:

Bnn ≈ f (n, l)n3ρ
∆nmax

∑
∆nmin

1
∆n

, (28)

Bnl ≈ f (n, l)n3ρ
∆nmax

∑
∆nmin

1
∆n2 , (29)

Bll ≈ f (n, l)n3ρ
∆nmax

∑
∆nmin

1
∆n3 . (30)

Using the Euler–Maclaurin formula to estimate the sums (28)–(30) and substituting (25)
and (26) into these sums yields an explicit formula for the principal quantum number of
the point M from the condition (21):

nM ≈ min
[
ω−1/3

min , (ξωmax)
−1/3

]
, (31)

where ξ = [exp(π2

6 − γ + ζ3)]
−1 ≈ 0.1. Here, γ ≈ 0.58 is the Euler constant, and ζ3 ≈ 1.2

is the Apéry constant.
Accordingly, if ωmax . 10 ωmin, then nM ≈ ω−1/3

min = nQ and point M coincides with
point Q. However, if ωmax & 10 ωmin, then nM ≈ (0.1 ωmax)−1/3 and point M is located to
the left of point Q (Figure 1b).

Furthermore, using (7) lM can be determined

lM = nM − n0 + l0. (32)

Now, the segment of the main path corresponding to the blue line (n > nM) can be
considered. In this case, one can assume Bnn � Bnl � Bll . Therefore,

cot α ≈ Bnn

Bnl
=

∆nmax
∑

∆nmin

1/∆n

∆nmax
∑

∆nmin

1/∆n2

≈ 1
2

ln
∆nmax

∆nmin

(
1

∆nmin
− 1

∆nmax

)−1
. (33)

Substituting (25) and (26) into (33) and using (19) yields the equation for the main path:

dn
dl

= Ωn3, (34)

where

Ω =
1
2

ln
∆nmax

∆nmin

(
1

∆nmin
− 1

∆nmax

)−1
. (35)

The solution to (34), given the initial conditions n = nM, l = lM, can be written
as follows:

l − lM =
1
Ω

(
1

n2
M
− 1

n2

)
. (36)
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Thus, Ω can be interpreted as the effective frequency of transitions. It is easy to show that
ωmin ≤ Ω ≤ ωmax.

3. Diffusion throughout the States Induced by Radiation with an Arbitrary Spectrum

The redistribution of the population induced by radiation with an arbitrary continuous
spectrum is considered below, assuming only that most (not necessarily all) of the radiation
intensity is concentrated within a bounded frequency range. In this case, the main features
of the redistribution process are generally the same as for the rectangular spectrum, but the
boundaries (5), (7) and (9) become more blurry. The main path remains the straight line (7)
for n < nM, and the curve (36) for n > nM. However, the formulas for nM and Ω in (36)
must include now the frequency dependence of the spectral density ρ. The corresponding
derivation is given below.

First, we obtain expressions for the diffusion coefficients. The Euler–Maclaurin for-
mula can be used to estimate the sums (28)–(30), which can be combined with the approxi-
mation ∆n = ωn3 to recast (22)–(24) as

Bnn ≈ f (n, l)n3
∫ ∞

1/n3

ρ(ω)

ω
dω, (37)

Bnl ≈ f (n, l)
∫ ∞

1/n3

ρ(ω)

ω2 dω, (38)

Bll ≈ f (n,l)
n3

∫ ∞

1/n3

ρ(ω)

ω3 dω. (39)

Next, substituting the relations (37)–(39) into (21) yields the equation for nM:

∫ ∞

1/n3
M

ρ(ω)

(
n3

M
ω
− 1

ω2 −
1

n3
Mω3

)
dω = 0. (40)

Finally, the effective frequency Ω is estimated. Substituting (37) and (38) into (33)
enables the frequency to be written as follows:

Ω =
〈ω−1〉
〈ω−2〉 , (41)

where
〈ω−1〉 =

∫ ∞

0
ρ(ω)ω−1dω, 〈ω−2〉 =

∫ ∞

0
ρ(ω)ω−2dω.

Figure 3 shows the redistribution of the population induced by blackbody radiation. The
calculated main paths are also shown. The red segment of the main path is determined by (7),
and the blue segment of the main path is determined by (36), where Ω is defined by (41). The
intersection of the segments is determined by (40). One can see that the calculated paths
are in good agreement with the simulation results.
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𝑂

𝑂

𝑀

(𝑎) (𝑏)

𝑡 = 6 ∙ 109𝑎. 𝑢.
𝑛0 = 7, 𝑙0 = 2
𝑇 = 1000 𝐾

𝑡 = 2 ∙ 109𝑎. 𝑢.
𝑛0 = 11, 𝑙0 = 4
𝑇 = 1000 𝐾

𝑀

(𝑐)

𝑡 = 2 ∙ 1010 𝑎. 𝑢.
𝑛0 = 7, 𝑙0 = 2
𝑇 = 600 𝐾

𝑂

(𝑑)

𝑡 = 8 ∙ 109𝑎. 𝑢.
𝑛0 = 11, 𝑙0 = 4
𝑇 = 600 𝐾

𝑂

𝑀

Figure 3. (Color online) The redistribution of the population within the space of quantum numbers n
and l due to blackbody radiation. The magnitude of the population is shown in color, the red line is
given by (7) and the blue line is given by (36) with Ω defined by (41). Point O indicates the initial
state, and point M is the point of deflection (40) of the main path from the line (7).

4. Conclusions

We considered diffusion-like redistribution of population between the Rydberg states
in an atom due to a multistep cascade of transitions induced by a continuous-spectrum
radiation. The study is based on numeric simulation of the kinetic equations and its
qualitative analysis in the space of quantum numbers n, l. Explicit expressions for approxi-
mate boundaries of the redistribution region are derived as well as for the main path of
the process.

Comparison of the simulation with its qualitative analysis suggests that the main
features of the redistribution process are mainly independent on the intensity of competing
processes such as spontaneous transitions into the ground state and the photoionization.
Indeed, the simulation included both spontaneous transitions and photoionization, whereas
the qualitative analysis does not include them. Nevertheless, the derived boundaries of the
redistribution region and the main path presented at Figures 1 and 3 are in good agreement
with the simulation.

In our model, we assume the concentrations sufficiently low, therefore we do not
account for collisional transitions. In addition, we do not consider the change of m due to
transitions. We plan to include collisional effects and a rigorous analysis of m-mixing in
our next work following the approaches used in, for example, [14,24–28,34]).

However, it must be noted that m-changing transitions do not significantly change
main features of the redistribution process as represented in (n, l)-plane in the present
paper. Indeed, m-changing transitions change only the absolute values of transition rates
V(nl → n′l′) but do not change general structure of the kinetic Equation (1) as well as
the diffusion approximation which we outline here. Particularly, the boundaries of the
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populated area (red, green and black lines in Figure 1b) determined by the Bethe rule
obviously remain the same.

The rates of the redistribution and corresponding timescales also should be the objects
of further investigation.

We believe that proposed approach can be of use in analyzing laboratory experiments
and astrophysical data. In particular, it probably can be useful for analysis of “Rydberg
ladder”—such as multistep cascades of radiative transitions in stellar atmospheres [35–38]
and nebulae, where high values of the principal quantum number n ∼ 1000 [39] and great
number of involved states make the direct simulation rather difficult.
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Funding: This research was funded by Russian Scientific Foundation grant number 19-12-00095
(algorithm and simulation of stochastic diffusion) and Russian Foundation for Basic Research grant
number 19-32-90204 (estimations for the coefficients of diffusion).

Data Availability Statement: Not applicable.

Acknowledgments: Authors thank V.E. Chernov and V.I. Naskidashvili for fruitful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Derivation of the Fokker-Planck Equation

Let us describe the transition from the system of kinetic Equation (1) to the Fokker–
Planck Equation (10) following [24,32].

The spontaneous and induced transitions are considered separately, hence the system
of Equation (1) can be re-written as follows

dNnl
dt

= ∑
n′ l′

Vind(n′l′ → nl)Nn′ l′

− Nnl

(
∑
n′ l′

Vind(nl → n′l′) + Wi(nl) + ∑
n′ l′

Vsp(nl → n′l′)

)
. (A1)

It is known that the probability of induced transition Vind(nl → n′l′) rapidly decreases
with the growth of absolute values of ∆n and ∆l. Insofar the expansion into the Taylor
series is valid

Vind(n′l′ → nl)Nn′ l′ ≈ f (n, l) + ∆n
∂

∂n
f (n, l) + ∆l

∂

∂l
f (n, l)

+
1
2

∆n2 ∂2

∂n2 f (n, l) + ∆n∆l
∂2

∂n∂l
f (n, l) +

1
2

∆l2 ∂2

∂l2 f (n, l), (A2)

where f (n, l) = Vind(nl → n− ∆n, l − ∆l)Nnl .
Substituting (A2) into (A1) after some routine work gives finally the Fokker–Planck

Equation (10) with the coefficients (11)–(16).
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