Emission Lines in 290–360 nm of Highly Charged Tungsten Ions W20+–W29+
Abstract
:1. Introduction
2. Experiment
3. Emission Lines in 290–360 nm of W–W Ions
4. Theoretical Calculation for Emission Lines of W
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pütterich, T.; Neu, R.; Dux, R.; Whiteford, A.D.; O’Mullane, M.G. Modelling of measured tungsten spectra from ASDEX Upgrade and predictions for ITER. Plasma Phys. Control. Fusion 2008, 50, 085016. [Google Scholar] [CrossRef] [Green Version]
- Nakano, T.; Shumack, A.E.; Maggi, C.F.; Reinke, M.; Lawson, K.D.; Coffey, I.; Pütterich, T.; Brezinsek, S.; Lipschultz, B.; Matthews, G.F. Determination of tungsten and molybdenum concentrations from an x-ray range spectrum in JET with the ITER-like wall configuration. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 144023. [Google Scholar] [CrossRef] [Green Version]
- Chowdhuri, M.B.; Morita, S.; Goto, M.; Nishimura, H.; Nagai, K.; Fujioka, S. Line analysis of EUV Spectra from Molybdenum and Tungsten Injected with Impurity Pellets in LHD. Plasma Fusion Res. 2007, 2, S1060. [Google Scholar] [CrossRef] [Green Version]
- Clementson, J.; Beiersdorfer, P.; Magee, E.W.; McLean, H.S.; Wood, R.D. Tungsten spectroscopy relevant to the diagnostics of ITER divertor plasmas. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 144009. [Google Scholar] [CrossRef]
- Asmussen, K.; Fournier, K.B.; Laming, J.M.; Neu, R.; Seely, J.F.; Dux, R.; Engelhardt, W.; Fuchs, J.C. Spectroscopic investigations of tungsten in the EUV region and the determination of its concentration in tokamaks. Nucl. Fusion 1998, 38, 967–986. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Morita, S.; Xu, Z.; Zhang, P.F.; Zang, Q.; Duan, Y.M.; Liu, H.Q.; Zhao, H.L.; Dinga, F.; Ohishi, T.; et al. Suppression of tungsten accumulation during ELMy H-mode by lower hybrid wave heating in the EAST tokamak. Nucl. Mater. Energy 2017, 12, 774–778. [Google Scholar] [CrossRef]
- Oishi, T.; Morita, S.; Huang, X.; Zhang, H.; Goto, M. Observation of W IV–W VII line emissions in wavelength range of 495–1475 Åin the large helical device. Phys. Scr. 2016, 91, 025602. [Google Scholar] [CrossRef]
- Oishi, T.; Morita, S.; Kato, D.; Murakami, I.; Sakaue, H.A.; Kawamoto, Y.; Goto, M. Identification of forbidden emission lines from highly ionized tungsten ions in VUV wavelength range in LHD for ITER edge plasma diagnostics. Nucl. Mater. Energy 2020, 26, 100932. [Google Scholar] [CrossRef]
- Kato, D.; Goto, M.; Morita, S.; Murakami, I.; Sakaue, H.A.; Ding, X.-B.; Sudo, S.; Suzuki, C.; Tamura, N.; Nakamura, N.; et al. Observation of visible forbidden lines from highly charged tungsten ions at the large helical device. Phys. Scr. 2013, T156, 014081. [Google Scholar] [CrossRef]
- Kato, D.; Sakaue, H.A.; Murakami, I.; Fujii, K.; Goto, M.; Oishi, T.; Morita, S.; Nakamura, N.; Koike, F.; Sasaki, A.; et al. Near UV-visible line emission from tungsten highly-charged ions in Large Helical Device. NIFS-PROC 2015, 98, 43–49. [Google Scholar]
- Fujii, K.; Kato, D.; Nakamura, N.; Goto, M.; Morita, S.; Hasuo, M. Experimental evaluation of fractional abundance data for W23+–W28+. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 105002. [Google Scholar] [CrossRef]
- Feldman, U.; Indelicato, P.; Sugar, J. Magnetic dipole line from U LXXI ground-term levels predicted at 3200 Å. J. Opt. Soc. Am. B 1991, 8, 3–5. [Google Scholar] [CrossRef]
- Kato, D.; Sakaue, H.A.; Murakami, I.; Goto, M.; Oishi, T.; Tamura, N.; Funaba, H.; Morita, S. Assessment of W density in LHD core plasmas using visible forbidden lines of highly charged W ions. Nucl. Fusion 2021. [Google Scholar] [CrossRef]
- Mita, M.; Sakaue, H.A.; Kato, D.; Murakami, I.; Nakamura, N. Direct Observation of the M1 Transition between the Ground Term Fine Structure Levels of W VIII. Atoms 2017, 5, 13. [Google Scholar] [CrossRef]
- Mita, M.; Kato, D.; Murakami, I.; Sakaue, H.A.; Nakamura, N. Identication of visible lines from multiply charged W8+ and W9+ ions. Phys. Rev. A 2020, 102, 042818. [Google Scholar]
- Komatsu, A.; Sakoda, J.; Minoshima, M.; Sakaue, H.A.; Ding, X.-B.; Kato, D.; Murakami, I.; Koike, F.; Nakamura, N. Visible Transitions in Highly Charged Tungsten Ions: 365–475nm. Plasma Fusion Res. 2012, 7, 1201158. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Qiu, M.L.; Xiao, J.; Yao, K.; Brage, T.; Hutton, R.; Zou, Y. A strong visible line in the spectrum of W11+. Phys. Scr. 2016, 91, 105401. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kubota, K.; Omote, K.; Komatsu, A.; Sakoda, J.; Minoshima, M.; Kato, D.; Li, J.; Sakaue, H.A.; Murakami, I.; et al. Extreme ultraviolet and visible spectroscopy of promethiumlike heavy ions. Phys. Rev. A 2015, 92, 022510. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.Z.; Qiu, M.L.; Zhao, R.F.; Li, W.X.; Guo, X.L.; Xiao, J.; Chen, C.Y.; Zou, Y.; Hutton, R. Experimental and theoretical study of visible transitions in promethium-like tungsten. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 115004. [Google Scholar] [CrossRef]
- Murata, S.; Safronova, M.S.; Safronova, U.I.; Nakamura, N. Visible spectra of heavy ions with an open 4f shell. X-Ray Spectrom. 2020, 49, 200–203. [Google Scholar] [CrossRef]
- Li, W.; Xiao, J.; Shi, Z.; Fei, Z.; Zhao, R.; Brage, T.; Huldt, S.; Hutton, R.; Zou, Y. Investigation of M1 transitions of the ground state configuration of In-like tungsten. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 105002. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, A.; Sakoda, J.; Nakamura, N.; Sakaue, H.A.; Ding, X.-B.; Kato, D.; Murakami, I.; Koike, F. Visible spectroscopy of highly charged tungsten ions. Phys. Scr. 2011, T144, 014012. [Google Scholar] [CrossRef]
- Fei, Z.; Li, W.; Grumer, J.; Shi, Z.; Zhao, R.; Brage, T.; Huldt, S.; Yao, K.; Hutton, R.; Zou, Y. Forbidden-line spectroscopy of the ground-state configuration of Cd-like W. Phys. Rev. A 2014, 90, 052517. [Google Scholar] [CrossRef]
- Watanabe, H.; Nakamura, N.; Kato, D.; Sakaue, H.A.; Ohtani, S. Lines from highly charged tungsten ions observed in the visible region between 340 and 400 nm. Can. J. Phys. 2012, 90, 497–501. [Google Scholar] [CrossRef]
- Fei, Z.; Zhao, R.; Shi, Z.; Xiao, J.; Qiu, M.L.; Grumer, J.; Andersson, M.; Brage, T.; Hutton, R.; Zou, Y. Experimental and theoretical study of the ground-state M1 transition in Ag-like tungsten. Phys. Rev. A 2012, 86, 062501. [Google Scholar] [CrossRef]
- Minoshima, M.; Sakoda, J.; Komatsu, A.; Sakaue, H.A.; Ding, X.-B.; Kato, D.; Murakami, I.; Dong, C.-Z.; Koike, F.; Watanabe, H.; et al. Visible transitions of highly charged tungsten ions observed with a compact electron beam ion trap. Phys. Scr. 2013, T156, 014010. [Google Scholar] [CrossRef]
- Qiu, M.L.; Zhao, R.F.; Guo, X.L.; Zhao, Z.Z.; Li, W.X.; Du, S.Y.; Xiao, J.; Yao, K.; Chen, C.Y.; Hutton, R.; et al. Investigation of transitions between metastable levels of the first excited configuration of palladium-like tungsten. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 175002. [Google Scholar] [CrossRef]
- Utter, S.B.; Beiersdorfer, P.; Brown, G.V. Measurement of an unusual M1 transition in the ground state of Ti-like W52+. Phys. Rev. A 2000, 61, 030503(R). [Google Scholar] [CrossRef]
- Porto, J.V.; Kink, I.; Gillaspy, J.D. UV light from the ground term of Ti-like ytterbium, tungsten, and bismuth. Phys. Rev. A 2000, 61, 054501. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Crosby, D.; Currell, F.J.; Fukami, T.; Kato, D.; Ohtani, S.; Silver, J.D.; Yamada, C. Magnetic Dipole Transitions in Titaniumlike Ions. Phys. Rev. A 2001, 63, 042513. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, N.; Kikuchi, H.; Sakaue, H.A.; Watanabe, T. Compact electron beam ion trap for spectroscopy of moderate charge state ions. Rev. Sci. Instrum. 2008, 79, 063104. [Google Scholar] [CrossRef]
- Sakaue, H.A.; Nakamura, N.; Watanabe, E.; Komatsu, A.; Watanabe, T. A compact EBIT for spectroscopic studies of moderate charge state ions. J. Instrum. 2010, 5, C08010. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J. NIST Atomic Spectra Database (Version 5.6.1). Available online: https://physics.nist.gov/asd (accessed on 7 June 2019).
- Grumer, J.; Zhao, R.; Brage, T.; Li, W.; Huldt, S.; Hutton, R.; Zou, Y. Coronal lines and the importance of deep-core—valence correlation in Ag-like ions. Phys. Rev. A 2014, 89, 062511. [Google Scholar] [CrossRef] [Green Version]
- Penetrante, B.M.; Bardsley, J.N.; DeWitt, D.; Clark, M.; Schneider, D. Evolution of ion-charge-state distribution in an electron-beam ion trap. Phys. Rev. A 1991, 43, 4861–4872. [Google Scholar] [CrossRef]
- Kramida, A.E.; Shirai, T. Energy levels and spectral lines of tungsten, W III through W LXXIV. At. Data Nucl. Data Tables 2009, 95, 305–474. [Google Scholar] [CrossRef]
- Bar-Shalom, A.; Klapisch, M.; Oreg, J. HULLAC, an integrated computer package for atomic processes in plasmas. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 169–188. [Google Scholar] [CrossRef]
- Froese Fischer, C.; Godefroid, M.; Brage, T.; Jönsson, P.; Gaigalas, G. Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 182004. [Google Scholar] [CrossRef] [Green Version]
- Froese Fischer, C.; Gaigalas, G.; Jönsson, P.; Bieroń, J. GRASP2018—A Fortran 95 version of the General Relativistic Atomic Structure Package. Comput. Phys. Commun. 2019, 237, 184–187. [Google Scholar] [CrossRef]
- Dyall, K.G.; Grant, I.P.; Johnson, C.T.; Parpia, F.A.; Plummer, E.P. Grasp: A general-purpose relativistic atomic structure program. Comput. Phys. Commun. 1989, 55, 425–456. [Google Scholar] [CrossRef]
q | Wavelength (nm) |
---|---|
29 | 351.03(10) e |
28 | 344.57(10) |
27 | 337.76(9) , 338.15(9) |
26 | 320.97(9), 333.74(9) , 335.76(9) |
25 | 297.15(6), 304.60(7), 306.74(7), 310.59(7), 313.63(7), |
328.68(9), 334.20(9), 359.93(11) | |
24 | 287.95(7), 288.55(7), 294.79(7), 298.31(7), 300.35(7), |
306.38(7), 323.22(8), 330.14(9), 335.75(9), 341.58(10), | |
344.05(10), 349.92(10), 353.71(11) | |
23 | 287.48(7), 289.49(7), 294.00(7), 296.32(7), 298.84(7), |
322.58(8), 326.60(9), 332.02(9), 333.35(9), 339.78(10), | |
340.27(9), 341.13(10), 347.60(10), 348.68(10) | |
22 | 297.56(7), 307.98(7), 308.57(7), 328.43(8), 339.03(10), |
342.22(10), 345.30(11), 346.89(10) | |
21 | 289.89(7), 291.30(7), 291.94(7), 292.91(7), 297.91(7), |
300.51(9), 304.71(7), 309.85(7), 311.06(7), 315.14(8), | |
357.82(11) | |
20 | 331.63(9), 341.38(10), 352.59(10) |
HULLAC | DHF | SD1 | SD2 | Experiment | |
---|---|---|---|---|---|
(nm) | 343.24 | 337.86 | 346.83 | 352.13 | 351.03(10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Era, S.; Kato, D.; Sakaue, H.A.; Umezaki, T.; Nakamura, N.; Murakami, I. Emission Lines in 290–360 nm of Highly Charged Tungsten Ions W20+–W29+. Atoms 2021, 9, 63. https://doi.org/10.3390/atoms9030063
Era S, Kato D, Sakaue HA, Umezaki T, Nakamura N, Murakami I. Emission Lines in 290–360 nm of Highly Charged Tungsten Ions W20+–W29+. Atoms. 2021; 9(3):63. https://doi.org/10.3390/atoms9030063
Chicago/Turabian StyleEra, Shota, Daiji Kato, Hiroyuki A. Sakaue, Toshiki Umezaki, Nobuyuki Nakamura, and Izumi Murakami. 2021. "Emission Lines in 290–360 nm of Highly Charged Tungsten Ions W20+–W29+" Atoms 9, no. 3: 63. https://doi.org/10.3390/atoms9030063
APA StyleEra, S., Kato, D., Sakaue, H. A., Umezaki, T., Nakamura, N., & Murakami, I. (2021). Emission Lines in 290–360 nm of Highly Charged Tungsten Ions W20+–W29+. Atoms, 9(3), 63. https://doi.org/10.3390/atoms9030063