On the Feasibility of Rovibrational Laser Cooling of Radioactive RaF+ and RaH+ Cations
Abstract
:1. Introduction
2. Current Prospects for Experiments on RaF
3. Computational Methods
3.1. X2C Quasirelativistic Calculations
3.2. Scalar-Relativistic ECP Calculations
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Safronova, M.S.; Budker, D.; DeMille, D. Search for new physics with atoms and molecules. Phys. Mod. Phys. 2018, 90, 025008. [Google Scholar] [CrossRef] [Green Version]
- Isaev, T.A.; Hoekstra, S.; Berger, R. Laser-cooled RaF as a promising candidate to measure molecular parity violation. Phys. Rev. A 2010, 82, 052521. [Google Scholar] [CrossRef] [Green Version]
- Isaev, T.A.; Berger, R. Electron correlation and nuclear charge dependence of parity-violating properties in open-shell diatomic molecules. Phys. Rev. A 2012, 86, 062515. [Google Scholar] [CrossRef] [Green Version]
- Auerbach, N.; Flambaum, V.V.; Spevak, V. Collective T- and P-odd electromagnetic moments in nuclei with octupole deformations. Phys. Rev. Lett. 1996, 76, 4316–4319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaffney, L.P.; Butler, P.A.; Scheck, M.; Hayes, A.B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Bönig, S.; et al. Studies of pear-shaped nuclei using accelerated radioactive beams. Nature 2013, 497, 199–204. [Google Scholar] [CrossRef]
- Garcia Ruiz, R.F.; Berger, R.; Billowes, J.; Binnersley, C.L.; Bissell, M.L.; Breier, A.A.; Brinson, A.J.; Chrysalidis, K.; Cocolios, T.E.; Cooper, B.S.; et al. Spectroscopy of short-lived radioactive molecules. Nature 2020, 581, 396–400. [Google Scholar] [CrossRef]
- Flanagan, K.T.; Lynch, K.M.; Billowes, J.; Bissell, M.L.; Budinčević, I.; Cocolios, T.E.; de Groote, R.P.; De Schepper, S.; Fedosseev, V.N.; Franchoo, S.; et al. Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes. Phys. Rev. Lett. 2013, 111, 212501. [Google Scholar] [CrossRef] [Green Version]
- Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G.J.; Gharsa, T.P.; Giles, T.J.; Grenard, J.L.; Locci, F.; Martins, P.; et al. The ISOLDE facility. J. Phys. Nucl. Part. Phys. 2017, 44, 094002. [Google Scholar] [CrossRef] [Green Version]
- Udrescu, S.; Brinson, A.; Ruiz, R.G.; Gaul, K.; Berger, R.; Billowes, J.; Binnersley, C.; Bissell, M.; Breier, A.; Chrysalidis, K.; et al. Isotope Shifts of Radium Monofluoride Molecules. Phys. Rev. Lett. 2021, 127, 033001. [Google Scholar] [CrossRef]
- de Groote, R.P.; Billowes, J.; Binnersley, C.L.; Bissell, M.L.; Cocolios, T.E.; Goodacre, T.D.; Farooq-Smith, G.J.; Fedorov, D.V.; Flanagan, K.T.; Franchoo, S.; et al. Measurement and microscopic description of odd–even staggering of charge radii of exotic copper isotopes. Nat. Phys. 2020, 16, 620–624. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.; Moore, I.; Pearson, M. Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 2016, 86, 127–180. [Google Scholar] [CrossRef]
- Mané, E.; Billowes, J.; Blaum, K.; Campbell, P.; Cheal, B.; Delahaye, P.; Flanagan, K.T.; Forest, D.H.; Franberg, H.; Geppert, C.; et al. An ion cooler-buncher for high-sensitivity collinear laser spectroscopy at ISOLDE. Eur. Phys. J. 2009, 42, 503–507. [Google Scholar] [CrossRef] [Green Version]
- Nieminen, A.; Huikari, J.; Jokinen, A.; Äystö, J.; Campbell, P.; Cochrane, E. Beam cooler for low-energy radioactive ions. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2001, 469, 244–253. [Google Scholar] [CrossRef]
- Barquest, B.; Bollen, G.; Mantica, P.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2017, 866, 18–28. [Google Scholar] [CrossRef]
- Fedosseev, V.; Chrysalidis, K.; Goodacre, T.D.; Marsh, B.; Rothe, S.; Seiffert, C.; Wendt, K. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE. J. Phys. Nucl. Part. Phys. 2017, 44, 084006. [Google Scholar] [CrossRef]
- Hutzler, N.R.; Lu, H.I.; Doyle, J.M. The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules. Chem. Rev. 2012, 112, 4803–4827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manai, I.; Horchani, R.; Lignier, H.; Pillet, P.; Comparat, D.; Fioretti, A.; Allegrini, M. Rovibrational Cooling of Molecules by Optical Pumping. Phys. Rev. Lett. 2012, 109, 183001. [Google Scholar] [CrossRef] [PubMed]
- Viteau, M.; Chotia, A.; Allegrini, M.; Bouloufa, N.; Dulieu, O.; Comparat, D.; Pillet, P. Optical Pumping and Vibrational Cooling of Molecules. Science 2008, 321, 232–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofikitis, D.; Weber, S.; Fioretti, A.; Horchani, R.; Allegrini, M.; Chatel, B.; Comparat, D.; Pillet, P. Molecular vibrational cooling by optical pumping with shaped femtosecond pulses. New J. Phys. 2009, 11, 055037. [Google Scholar] [CrossRef]
- Hamamda, M.; Pillet, P.; Lignier, H.; Comparat, D. Ro-vibrational cooling of molecules and prospects. J. Phys. Atomic Mol. Opt. Phys. 2015, 48, 182001. [Google Scholar] [CrossRef] [Green Version]
- Stollenwerk, P.R.; Antonov, I.O.; Venkataramanababu, S.; Lin, Y.W.; Odom, B.C. Cooling of a Zero-Nuclear-Spin Molecular Ion to a Selected Rotational State. Phys. Rev. Lett. 2020, 125, 113201. [Google Scholar] [CrossRef]
- Tarbutt, M.R.; Sauer, B.E.; Hudson, J.J.; Hinds, E.A. Design for a fountain of YbF molecules to measure the electron’s electric dipole moment. New J. Phys. 2013, 15, 053034. [Google Scholar] [CrossRef]
- Baron, J.; Campbell, W.C.; DeMille, D.; Doyle, J.M.; Gabrielse, G.; Gurevich, Y.V.; Hess, P.W.; Hutzler, N.R.; Kirilov, E.; Kozyryev, I.; et al. Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron. Science 2013, 343, 269–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreev, V.; Ang, D.G.; DeMille, D.; Doyle, J.M.; Gabrielse, G.; Haefner, J.; Hutzler, N.R.; Lasner, Z.; Meisenhelder, C.; O’Leary, B.R.; et al. Improved limit on the electric dipole moment of the electron. Nature 2018, 562, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Liu, W. Ideas of relativistic quantum chemistry. Mol. Phys. 2010, 108, 1679–1706. [Google Scholar] [CrossRef]
- Saue, T. Relativistic Hamiltonians for Chemistry: A Primer. ChemPhysChem 2011, 12, 3077–3094. [Google Scholar] [CrossRef]
- Lim, I.; Stoll, H.; Schwerdtfeger, P. Relativistic small-core energy-consistent pseudopotentials for the alkaline-earth elements from Ca to Ra. J. Chem. Phys. 2006, 124, 034107. [Google Scholar] [CrossRef]
- Saue, T.; Bast, R.; Gomes, A.S.P.; Jensen, H.J.A.; Visscher, L.; Aucar, I.A.; Remigio, R.D.; Dyall, K.G.; Eliav, E.; Fasshauer, E.; et al. The DIRAC code for relativistic molecular calculations. J. Chem. Phys. 2020, 152, 204104. [Google Scholar] [CrossRef]
- Isaev, T.A.; Hoekstra, S.; Willmann, L.; Berger, R. Ion neutralisation mass-spectrometry route to radium monofluoride (RaF). arXiv 2013, arXiv:1310.1511. [Google Scholar]
- Isaev, T.A.; Berger, R. Lasercooled radium monofluoride: A molecular all-in-one probe for new physics. arXiv 2013, arXiv:1302.5682. [Google Scholar]
- Fleig, T.; Olsen, J.; Visscher, L. The generalized active space concept for the relativistic treatment of electron correlation. II. Large-scale configuration interaction implementation based on relativistic 2- and 4-spinors and its application. J. Chem. Phys. 2003, 119, 2963–2971. [Google Scholar] [CrossRef]
- Werner, H.; Knowles, P. An efficient internally contracted multiconfiguration reference configuration-interaction method. J. Chem. Phys. 1988, 89, 5803–5814. [Google Scholar] [CrossRef]
- Abu el Kher, N.; Zeid, I.; El-Kork, N.; Korek, M. Electronic structure of the SrH+ and BaH+ molecules with dipole moment and rovibrational calculations. J. Comput. Sci. 2021, 51, 101264. [Google Scholar] [CrossRef]
- Aymar, M.; Dulieu, O. The electronic structure of the alkaline-earth-atom (Ca, Sr, Ba) hydride molecular ions. J. Phys. Atomic Mol. Opt. Phys. 2012, 45, 215103. [Google Scholar] [CrossRef]
RaF | RaH | ||||||
---|---|---|---|---|---|---|---|
T | T | ||||||
0 | 0 | −0.0002 | 0.0002 | 0 | 0 | 0.0023 | −0.0023 |
0 | 114 × 10 | −0.0243 | 0.0243 | 0 | 55 × 10 | −0.0119 | 0.0119 |
1 | 114 × 10 | 0.9768 | 0.0232 | 1 | 55 × 10 | 0.0103 | 0.9897 |
0 | 114 × 10 | 0.0236 | −0.0236 | 0 | 58 × 10 | 0.0163 | −0.0163 |
2 | 118 × 10 | 0.9998 | 1.0002 | 2 | 64 × 10 | 1.0055 | 0.9945 |
1 | 118 × 10 | 0.0003 | 0.9997 | 2 | 66 × 10 | 2.0030 | −0.0030 |
2 | 125 × 10 | −0.0215 | 2.0215 | 1 | 66 × 10 | 1.2694 | −0.2694 |
RaF | RaH | SrH | BaH | |||||
---|---|---|---|---|---|---|---|---|
State | X() | A() | X() | A() | X() | A() | X() | A() |
R | 2.20 | 17.98 | 2.32 | 2.98 | 2.073 | 2.608 | 2.177 | 2.913 |
1.97 | 2.47 | 2.079 | 2.719 | |||||
1251 | 542 | 1264 | 678 | 1353 | 515 | |||
T | 21,791 | 24,027 | 23,365 | |||||
23,972 |
State | N | Occ | RaF | N | Occ | RaH |
---|---|---|---|---|---|---|
X () | 8.1 | 2.0 | (0.44482 + 0.43291)(F) | 5.1 | 2.0 | (−0.34524s + 0.32983s)(Ra) + (0.31941s)(H) |
A () | 8.1 | 1.5 | (0.26669)(Ra) + (0.46247 + 0.46855)(F) | 5.1 | 1.5 | (0.42396s)(H) |
9.1 | 0.5 | (0.34216s − 0.32604s − 0.60611s + 0.98934s)(Ra) | 6.1 | 0.5 | (0.32950s − 0.31464s − 0.56286s + 0.99801s)(Ra) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaev, T.A.; Wilkins, S.G.; Athanasakis-Kaklamanakis, M. On the Feasibility of Rovibrational Laser Cooling of Radioactive RaF+ and RaH+ Cations. Atoms 2021, 9, 101. https://doi.org/10.3390/atoms9040101
Isaev TA, Wilkins SG, Athanasakis-Kaklamanakis M. On the Feasibility of Rovibrational Laser Cooling of Radioactive RaF+ and RaH+ Cations. Atoms. 2021; 9(4):101. https://doi.org/10.3390/atoms9040101
Chicago/Turabian StyleIsaev, Timur A., Shane G. Wilkins, and Michail Athanasakis-Kaklamanakis. 2021. "On the Feasibility of Rovibrational Laser Cooling of Radioactive RaF+ and RaH+ Cations" Atoms 9, no. 4: 101. https://doi.org/10.3390/atoms9040101
APA StyleIsaev, T. A., Wilkins, S. G., & Athanasakis-Kaklamanakis, M. (2021). On the Feasibility of Rovibrational Laser Cooling of Radioactive RaF+ and RaH+ Cations. Atoms, 9(4), 101. https://doi.org/10.3390/atoms9040101