Calculation of the Lowest Resonant States of H− and Li by the Complex Absorbing Potential Method
Abstract
:1. Introduction
2. Theory
3. Calculation Method
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jolicard, G.; Austin, E.J. Optical potential stabilization method for predicting resonance levels. Chem. Phys. Lett. 1985, 121, 106–110. [Google Scholar] [CrossRef]
- Jolicard, G.; Austin, E.J. Optical potential method of calculating resonance energies and widths. Chem. Phys. 1986, 103, 295–302. [Google Scholar] [CrossRef]
- Jolicard, G.; Perrin, M.Y. A perturbational treatment of the resonance eigenvalue problem using the optical potential model. Chem. Phys. 1987, 116, 1–10. [Google Scholar] [CrossRef]
- Jolicard, G.; Humbert, J. Study of the one-channel resonance states. Method without a stabilization procedure in the framework of the optical potential model. Chem. Phys. 1987, 118, 397–405. [Google Scholar] [CrossRef]
- Jolicard, G.; Leforestier, C.; Austin, E.J. Resonance states using the optical potential model. Study of Feshbach resonances and broad shape resonances. J. Chem. Phys. 1988, 88, 1026–1031. [Google Scholar] [CrossRef]
- Rom, N.; Lipkin, N.; Moiseyev, N. Optical potentials by the complex coordinate method. Chem. Phys. 1991, 151, 199–204. [Google Scholar] [CrossRef]
- Riss, U.V.; Meyer, H.D. Calculation of resonance energies and widths using the complex absorbing potential method. J. Phys. B At. Mol. Opt. Phys. 1993, 26, 4503–4536. [Google Scholar] [CrossRef]
- Riss, U.V.; Meyer, H.D. Reflection-free complex absorbing potentials. J. Phys. B At. Mol. Opt. Phys. 1995, 28, 1475–1493. [Google Scholar] [CrossRef]
- Reinhardt, W.P. Complex coordinates in the theory of atomic and molecular structure and dynamics. Ann. Rev. Phys. Chem. 1982, 33, 223–255. [Google Scholar] [CrossRef]
- Sommerfeld, T.; Riss, U.V.; Meyer, H.D.; Cederbaum, L.S. Metastable C22− dianion. Phys. Rev. Lett. 1997, 79, 1237–1240. [Google Scholar] [CrossRef]
- Sommerfeld, T.; Riss, U.V.; Meyer, H.D.; Cederbaum, L.S.; Engels, B.; Suter, H.U. Temporary anions—Calculation of energy and lifetime by absorbing potentials: The resonance. J. Phys. B At. Mol. Opt. Phys. 1998, 31, 4107–4122. [Google Scholar] [CrossRef]
- Sommerfeld, T.; Cederbaum, L.S. Long-lived states of . Phys. Rev. Lett. 1998, 80, 3723–3726. [Google Scholar] [CrossRef]
- Dreuw, A.; Sommerfeld, T.; Cederbaum, L.S. Possible long-lived quartet resonance states of CO−. Theor. Chem. Acc. 1998, 100, 60–64. [Google Scholar] [CrossRef]
- Ingr, M.; Meyer, H.D.; Cederbaum, L.S. Potential energy curve of the X resonance state of computed by CAP/CI. J. Phys. B At. Mol. Opt. Phys. 1999, 32, L547–L556. [Google Scholar] [CrossRef]
- Santra, R.; Cederbaum, L.S.; Meyer, H.D. Electronic decay of molecular clusters: Non-stationary states computed by standard quantum chemistry methods. Chem. Phys. Lett. 1999, 303, 413–419. [Google Scholar] [CrossRef]
- Sahoo, S.; Ho, Y.K. The complex absorbing potential method (CAP) to study the Stark effect in hydrogen and lithium. J. Phys. B At. Mol. Opt. Phys. 2000, 33, 2195–2206. [Google Scholar] [CrossRef]
- Sommerfeld, T. FCN− and FNC− radical anions. Phys. Chem. Chem. Phys. 2001, 3, 2394–2399. [Google Scholar] [CrossRef]
- Sommerfeld, T.; Santra, R. Efficient method to perform CAP/CI calculations for temporary anions. Int. J. Quant. Chem. 2001, 82, 218–226. [Google Scholar] [CrossRef]
- Santra, R.; Cederbaum, L.S. An efficient combination of computational techniques for investigating electronic resonance states in molecules. J. Chem. Phys. 2001, 115, 6853–6861. [Google Scholar] [CrossRef]
- Santra, R.; Cederbaum, L.S. Non-Hermitian electronic theory and applications to clusters. Phys. Rep. 2002, 368, 1–117. [Google Scholar] [CrossRef]
- Sommerfeld, T. Coupling between dipole-bound and valence states: The nitromethane anion. Phys. Chem. Chem. Phys. 2002, 4, 2511–2516. [Google Scholar] [CrossRef]
- Sommerfeld, T.; Meyer, H.D. Computing the energy-dependent width of temporary anions L2 from ab initio methods. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 1841–1863. [Google Scholar] [CrossRef]
- Dreuw, A.; Sommerfeld, T.; Cederbaum, L.S. Short- and long-lived electronic states of BF−. J. Chem. Phys. 2002, 116, 6039–6044. [Google Scholar] [CrossRef]
- Feuerbacher, S.; Sommerfeld, T.; Santra, R.; Cederbaum, L.S. Complex absorbing potentials in the framework of electron propagator theory. II. Application to temporary anions. J. Chem. Phys. 2003, 118, 6188–6199. [Google Scholar] [CrossRef]
- Muga, J.G.; Palao, J.P.; Navarro, B.; Equsquiza, I.L. Complex absorbing potentials. Phys. Rep. 2004, 395, 357–426. [Google Scholar] [CrossRef]
- Sajeev, Y.; Santra, R.; Pal, S. Analytically continued Fock space multireference coupled-cluster theory: Application to the 2Πg shape resonance in e-N2 scattering. J. Chem. Phys. 2005, 122, 234320. [Google Scholar] [CrossRef]
- Sajeev, Y.; Santra, R.; Pal, S. Correlated complex independent particle potential for calculating electronic resonances. J. Chem. Phys. 2005, 123, 204110:1–204110:10. [Google Scholar] [CrossRef]
- Sajeev, Y.; Vysotskiy, V.; Cederbaum, L.S.; Moiseyev, N. Continuum remover-complex absorbing potential: Efficient removal of the nonphysical stabilization points. J. Chem. Phys. 2009, 131, 211102:1–211102:4. [Google Scholar] [CrossRef] [Green Version]
- Ehara, M.; Sommerfeld, T. CAP/SAC-CI method for calculating resonance states of metastable anions. Chem. Phys. Lett. 2012, 537, 107–112. [Google Scholar] [CrossRef]
- Ghosh, A.; Vaval, N.; Pal, S.; Bartlett, R.J. Complex absorbing potential based equation-of-motion coupled cluster method for the potential energy curve of CO2−. J. Chem. Phys. 2014, 141, 164113:1–164113:6. [Google Scholar] [CrossRef]
- Ghosh, A.; Vaval, N.; Pal, S. Equation-of-motion coupled-cluster method for the study of shape resonance. J. Chem. Phys. 2012, 136, 234110:1–234110:6. [Google Scholar] [CrossRef]
- Jagau, T.C.; Zuev, D.; Bravaya, K.B.; Epifanovsky, E.; Krylov, A.I. A fresh look at resonances and complex absorbing potentials: Density matrix-based approach. J. Phys. Chem. Lett. 2014, 5, 310–315, J. Phys. Chem. Lett.2015, 6, 3866. [Google Scholar] [CrossRef]
- Zuev, D.; Jagau, T.C.; Bravaya, K.B.; Epifanovsky, E.; Shao, Y.; Sundstrom, E.; Head-Gordon, M.; Krylov, A.I. Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks. J. Chem. Phys. 2014, 141, 024102:1–024102:19, Erratum: J Chem. Phys. 2015, 143, 149901:1. [Google Scholar] [CrossRef] [Green Version]
- Jagau, T.C.; Krylov, A.I. Complex absorbing potential equation-of-motion coupled-cluster method yields smooth and internally consistent potential energy surfaces and lifetimes for molecular resonances. J. Phys. Chem. Lett. 2014, 5, 3078–3085. [Google Scholar] [CrossRef]
- Jagau, T.C.; Dao, D.B.; Holtgrewe, N.S.; Krylov, A.I.; Mabbs, R. Same but different: Dipole-stabilized shape resonances in CuF− and AgF−. J. Phys. Chem. Lett. 2015, 6, 2786–2793. [Google Scholar] [CrossRef] [Green Version]
- Ehara, M.; Fukuda, R.; Sommerfeld, T. Projected CAP/SAC-CI method with smooth Voronoi potential for calculating resonance states. J. Comp. Chem. 2016, 37, 242–249. [Google Scholar] [CrossRef]
- Kunitsa, A.A.; Bravaya, K.B. First-principles calculations of the energy and width of the 2Au shape resonance in p-benzoquinone: A gateway state for electron transfer. J. Phys. Chem. Lett. 2015, 6, 1053–1058. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Ehara, M.; Sommerfeld, T. Low-lying π* resonances of standard and rare DNA and RNA bases studied by the projected CAP/SAC–CI method. J. Phys. Chem. A 2016, 120, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Jagau, T.C.; Krylov, A.I. Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments. J. Chem. Phys. 2016, 144, 054113:1–054113:10. [Google Scholar] [CrossRef]
- Jagau, T.C.; Bravaya, K.B.; Krylov, A.I. Extending quantum chemistry of bound states to electronic resonances. Ann. Rev. Phys. Chem. 2017, 68, 525–553. [Google Scholar] [CrossRef] [Green Version]
- Kunitsa, A.A.; Granovsky, A.A.; Bravaya, K.B. CAP-XMCQDPT2 method for molecular electronic resonances. J. Chem. Phys. 2017, 146, 184107:1–184107:8. [Google Scholar] [CrossRef]
- Ehara, M.; Kanazawa, Y.; Sommerfeld, T. Low-lying π* resonances associated with cyano groups: A CAP/SAC-CI study. Chem. Phys. 2017, 482, 169–177. [Google Scholar] [CrossRef] [Green Version]
- White, A.F.; Epifanovsky, E.; McCurdy, C.W.; Head-Gordon, M. Second order Moller-Plesset and coupled cluster singles and doubles methods with complex basis functions for resonances in electron-molecule scattering. J. Chem. Phys. 2017, 146, 234107:1–234107:10. [Google Scholar] [CrossRef] [PubMed]
- Thodika, M.; Fennimore, M.; Karsili, T.N.V.; Matsika, S. Comparative study of methodologies for calculating metastable states of small to medium-sized molecules. J. Chem. Phys. 2019, 151, 244104:1–244104:16. [Google Scholar] [CrossRef] [PubMed]
- Phung, Q.M.; Komori, Y.; Yanai, T.; Sommerfeld, T.; Ehara, M. Combination of a Voronoi-type complex absorbing potential with the XMS-CASPT2 method and pilot applications. J. Chem. Theor. Comp. 2020, 16, 2606–2616. [Google Scholar] [CrossRef] [PubMed]
- Adamson, S.O.; Kharlampidi, D.D.; Golubkov, G.V.; Dyakov, Y.A.; Morozov, I.I.; Shestakov, D.V.; Golubkov, M.G. Calculation of the lowest resonance 1S state of H− ion by complex absorbing potential method. Russ. J. Phys. Chem. B 2020, 14, 742–751. [Google Scholar] [CrossRef]
- Belogolova, A.V.; Dempwolff, A.I.; Dreuw, A.; Trofimov, A.V. A complex absorbing potential electron propagator approach to resonance states of metastable anions. J. Phys. Conf. Ser. 2021, 1847, 012050:1–012050:10. [Google Scholar] [CrossRef]
- Bylicki, M.; Nicolaides, C.A. Theoretical resolution of the H− resonance spectrum up to the n = 4 threshold. II. States of 1S and 1D symmetries. Phys. Rev. A 2000, 61, 052509:1–052509:10. [Google Scholar] [CrossRef]
- Bylicki, M. The Hermitian representation of the complex-rotation method and its application to the 1s2s2 2S resonance of He−. J. Phys. B At. Mol. Opt. Phys. 1991, 24, 413–422. [Google Scholar] [CrossRef]
- Gopalan, A.; Bömmels, J.; Götte, S.; Landwehr, A.; Franz, K.; Ruf, M.-W.; Hotop, H.; Bartschat, K. A novel electron scattering apparatus combining a laser photoelectron source and a triply differentially pumped supersonic beam target: Characterization and results for the resonance. Eur. Phys. J. D 2003, 22, 17–29. [Google Scholar] [CrossRef]
- Cederquist, H.; Mannervik, S. On the core-excited doublets of Li I: Accurate determination of autoionisation rates. J. Phys. B At. Mol. Phys. 1982, 15, L807–L812. [Google Scholar] [CrossRef]
- Mannervik, S.; Cederquist, H. Absolute term energies of core-excited doublets of Li I determined experimentally. Phys. Scr. 1985, 31, 79–82. [Google Scholar] [CrossRef]
- Cederquist, H.; Mannervik, S. Autoionizing states in Li I observed in optical-emission spectra. Phys. Rev. A 1985, 31, 171–176. [Google Scholar] [CrossRef]
- Cardona, J.C.; Sanz-Vicario, J.L.; Martín, F. Complete Feshbach-type calculations of energy positions and widths of autoionizing states Li-like atoms. Phys. Rev. A 2010, 82, 022501:1–022501:13. [Google Scholar] [CrossRef]
- Landau, A.; Moiseyev, N. Molecular resonances by removing complex absorbing potentials via Padé; Application to CO− and N2−. J. Chem. Phys. 2016, 145, 164111:1–164111:8. [Google Scholar] [CrossRef]
- Ehrhardt, H.; Langhans, L.; Linder, F.; Taylor, H.S. Resonance scattering of slow electrons from H2 and CO angular distributions. Phys. Rev. 1968, 173, 222–230. [Google Scholar] [CrossRef]
- Berman, M.; Estrada, H.; Cederbaum, L.S.; Domcke, W. Nuclear dynamics in resonant electron-molecule scattering beyond the local approximation: The 2.3-eV shape resonance in N2. Phys. Rev. A 1983, 28, 1363–1381. [Google Scholar] [CrossRef]
- Lefebvre, R.; Sindelka, M.; Moiseyev, N. Resonance positions and lifetimes for flexible complex absorbing potentials. Phys. Rev. A 2005, 72, 052704:1–052704:6. [Google Scholar] [CrossRef]
- Bloch, C. Une formulation unifiée la théorie des réactions nucléares. Nucl. Phys. 1957, 4, 503–528. [Google Scholar] [CrossRef]
- Zvijac, D.J.; Heller, E.J.; Light, J.C. Variational correction to Wigner R-matrix theory of scattering. J. Phys. B At. Mol. Opt. Phys. 1975, 8, 1016–1033. [Google Scholar] [CrossRef]
- Halley, M.H.; Delande, D.; Taylor, K.T. The combination of R-matrix and complex coordinate methods: Application to resonances in the diamagnetic Rydberg spectra of Li. J. Phys. B At. Mol. Opt. Phys. 1992, 25, L525–L532. [Google Scholar] [CrossRef]
- Halley, M.H.; Delande, D.; Taylor, K.T. The combination of R-matrix and complex coordinate methods: Application to the diamagnetic Rydberg spectra of Ba and Sr. J. Phys. B At. Mol. Opt. Phys. 1993, 26, 1775–1790. [Google Scholar] [CrossRef]
- Huarte-Larranaga, F.; Gimenez, H.; Aguilar, A.; Baer, M. On the accuracy of reactive scattering calculations with absorbing potentials: A new implementation based on a generalized R-matrix propagation. Chem. Phys. Lett. 1998, 291, 346–350. [Google Scholar] [CrossRef]
- Huarte-Larranaga, F.; Gimenez, H.; Aguilar, A. The application of complex absorbing potentials to an invariant embedding scattering method: I. Theory and computational details. J. Chem. Phys. 1998, 109, 5761–5769. [Google Scholar] [CrossRef]
- Huarte-Larranaga, F.; Gimenez, H.; Lucas, J.M.; Aguilar, A. The application of complex absorbing potentials to an invariant embedding scattering method. II. Applications. J. Chem. Phys. 1999, 111, 1979–1987. [Google Scholar] [CrossRef]
- Szegö, G. Orthogonal Polynomials; American Mathematical Society: Providence, RI, USA, 1939; p. 432. ISBN 978-147-043-171-6. [Google Scholar]
- Akhiezer, N.I.; Glazman, A.I. Theory of Linear Operators in Hilbert Space; Pittman Publishing Inc.: Marshfield, MA, USA, 1981; p. 347. ISBN 027-308-495-X. [Google Scholar]
- Bateman, H.; Erdelyi, A. Higher Transcendental Functions; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1953; p. 324. ISBN 089-874-206-4. [Google Scholar]
- Kazmin, Y.A. On subsequences of Hermite and Laguerre polynomials. Vestn. Mosk. Univ. Ser. Mat. Mekhaniki 1960, 2, 6–9. [Google Scholar]
- Ryndina, V.V. Approximation by Laguerre polynomials in the complex domain. Izv. Akad. Nauk. USSR Ser. Mat. 1962, 26, 143–160. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products; Academic Press, Inc.: New York, NY, USA, 1980; p. 1191. ISBN 012-294-760-6. [Google Scholar]
- Davies, K.T.R.; Baranger, M. Symmetry properties of the S-matrix with application to resonance reactions. Ann. Phys. 1962, 19, 383–427. [Google Scholar] [CrossRef]
- Bain, R.A.; Bardsley, J.N.; Junker, B.R.; Sukumar, C.V. Complex coordinate studies of resonant electron-atom scattering. J. Phys. B At. Mol. Opt. Phys. 1974, 7, 2189–2202. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, J. Computation of Special Functions; John Wiley & Sons: New York, NY, USA, 1996; p. 717. ISBN 047-111-963-6. [Google Scholar]
- Ting, T.C.T. A method of solving a system of linear equations whose coefficients form a tridiagonal matrix. Quart. Appl. Math. 1964, 22, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Pedrotti, K.D. Extinction spectroscopy: A novel laser spectroscopic technique. Opt. Commun. 1987, 62, 250–255. [Google Scholar] [CrossRef]
- Cantù, A.M.; Parkinson, W.H.; Tondello, G.; Tozzi, G.P. Observations of Li i and Li ii absorption spectra in the grazing incidence region. J. Opt. Soc. Am. 1977, 67, 1030–1033. [Google Scholar] [CrossRef]
- Ederer, D.L.; Lucatorto, T.; Madden, R.P. Autoionization Spectra of Lithium. Phys. Rev. Lett. 1970, 25, 1537–1539. [Google Scholar] [CrossRef]
- Davis, B.; Chung, K.T. Widths of 2S, 2Po, and 2D resonances in Li I, Be II, and B III. Phys. Rev. A 1985, 31, 3017–3026. [Google Scholar] [CrossRef]
- Chung, K.T. Photoionization of lithium below the Li+ 1s2s3 S threshold. Phys. Rev. A 1997, 56, R3330–R3333. [Google Scholar] [CrossRef]
- Zatsarinny, O.; Fischer, C.F. The use of basis splines and nonorthogonal orbitals in R-matrix calculations: Application to Li photoionization. J. Phys. B At. Mol. Opt. Phys. 2000, 33, 313–342. [Google Scholar] [CrossRef]
- Verbockhaven, G.; Hansen, J.E. Energies and autoionization widths in the lithium isoelectronic sequence. J. Phys. B At. Mol. Opt. Phys. 2001, 34, 2337–2361. [Google Scholar] [CrossRef]
- Adamson, S.; Kharlampidi, D.; Preobrazhenskaya, A.A.; Dementiev, A. Calculation of the lowest 2S resonance state of He− by a stabilization method. Russ. J. Phys. Chem. B 2017, 11, 894–902. [Google Scholar] [CrossRef]
- Adamson, S.; Kharlampidi, D.; Dementiev, A. Application of the uniformly charged sphere stabilization for calculating the lowest 1S resonances of H−. In Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology. Progress in Theoretical Chemistry and Physics; Hotokka, M., Brandas, E., Maruani, J., Delgado-Barrio, G., Eds.; Springer: Cham, Switzerland, 2012; Volume 27, pp. 101–118. ISBN 978-331-901-528-6. [Google Scholar]
- Preobrazhenskaya, A.A.; Adamson, S.O.; Kharlampidi, D.D.; Dement’ev, A.I. Calculation of the lowest 1S resonance state of the H− anion by the stabilization method. Russ. J. Phys. Chem. B 2014, 8, 22–29. [Google Scholar] [CrossRef]
- Preobrazhenskaya, A.A.; Adamson, S.O.; Kharlampidi, D.D.; Dementiev, A.I. Ab initio calculations of lower resonant states of two-electron systems. Russ. J. Phys. Chem. B 2016, 10, 133–142. [Google Scholar] [CrossRef]
- Adamson, S.; Kharlampidi, D.; Dementiev, A. Stabilization of resonance states by an asymptotic Coulomb potential. J. Chem. Phys. 2008, 128, 024101:1–024101:7. [Google Scholar] [CrossRef] [PubMed]
0.01 | 0.0031 | 3.426390 | 0.006388 | 0.0031 | 3.426441 | 0.006375 |
0.01 | 1.0803 | 3.426363 | 0.006364 | 1.0803 | 3.426443 | 0.006411 |
0.12 | 0.1760 | 3.426382 | 0.006388 | 0.1608 | 3.426446 | 0.006380 |
0.12 | 1.0560 | 3.426361 | 0.006362 | 1.0560 | 3.426443 | 0.006414 |
0.36 | 1.0324 | 3.426350 | 0.006345 | 1.0142 | 3.426441 | 0.006435 |
N | |||||||
---|---|---|---|---|---|---|---|
0.01 | 100 | 0.0016 | 3.425115 | 0.005185 | 0.0017 | 3.426867 | 0.008752 |
100 | 0.7347 | 3.425747 | 0.006216 | 0.7438 | 3.426845 | 0.006961 | |
600 | 0.0018 | 3.425785 | 0.005974 | 0.0018 | 3.426641 | 0.007170 | |
600 | 0.6559 | 3.426108 | 0.006324 | 0.6622 | 3.426608 | 0.006624 | |
0.12 | 100 | 0.0579 | 3.425567 | 0.005875 | 0.0576 | 3.426796 | 0.007439 |
100 | 0.6863 | 3.425744 | 0.006194 | 0.6883 | 3.426835 | 0.007100 | |
600 | 0.1227 | 3.426042 | 0.006248 | 0.1157 | 3.426605 | 0.006735 | |
600 | 0.6494 | 3.426105 | 0.006318 | 0.6494 | 3.426604 | 0.006629 | |
0.36 | 100 | 0.6622 | 3.425754 | 0.006172 | 0.6621 | 3.426812 | 0.006999 |
600 | 0.6751 | 3.426096 | 0.006321 | 0.6751 | 3.426614 | 0.006633 |
N | |||||||
---|---|---|---|---|---|---|---|
0.01 | 100 | 0.00085 | 3.425175 | 0.005144 | 0.00085 | 3.426723 | 0.008766 |
100 | 1.29522 | 3.425184 | 0.005068 | 1.29517 | 3.426633 | 0.008886 | |
600 | 0.00006 | 3.425804 | 0.005947 | 0.00006 | 3.426600 | 0.007182 | |
600 | 1.10547 | 3.425784 | 0.005917 | 1.09122 | 3.426597 | 0.007227 | |
0.12 | 100 | 0.00446 | 3.425645 | 0.005787 | 0.00437 | 3.426641 | 0.007474 |
100 | 1.13039 | 3.425628 | 0.005754 | 1.13039 | 3.426633 | 0.007523 | |
600 | 0.00035 | 3.426059 | 0.006163 | 0.00034 | 3.426531 | 0.006789 | |
600 | 1.10547 | 3.426035 | 0.006138 | 1.09122 | 3.426532 | 0.006828 | |
0.36 | 100 | 0.00855 | 3.425804 | 0.005947 | 0.00862 | 3.426599 | 0.007181 |
600 | 1.10547 | 3.425785 | 0.005919 | 1.10505 | 3.426597 | 0.007225 |
λ | A | B | ||
---|---|---|---|---|
−Eres | Г | −Eres | Г | |
1.00 | 0.3512175 | 172.73 | 0.3512240 | 132.32 |
1.20 | 0.3512303 | 176.65 | 0.3511645 | 144.03 |
1.40 | 0.3512224 | 176.73 | 0.3510555 | 164.30 |
1.60 | 0.3512307 | 179.65 | 0.3513016 | 199.75 |
1.80 | 0.3512312 | 178.95 | 0.3511226 | 193.48 |
Averaged value a | 0.3512250 | 175.83 | 0.3512137 | 164.51 |
Reference value b | 0.35122025/173.870 |
λ | 2P0 [1s(2s2p) 3P] | 2P0 [1s(2s2p) 1P] | ||||||
---|---|---|---|---|---|---|---|---|
A | B | A | B | |||||
−Eres | Г | −Eres | Г | −Eres | Г | −Eres | Г | |
3.1 | 5.312252 | 11.55 | 5.312185 | 13.46 | 5.256965 | 35.74 | 5.256806 | 23.22 |
3.3 | 5.312212 | 12.95 | 5.312199 | 4.62 | 5.256608 | 46.32 | - | - |
3.5 | 5.312070 | 11.70 | 5.312001 | 14.08 | 5.256063 | 34.58 | 5.255900 | 22.91 |
3.7 | 5.311837 | 13.11 | 5.311827 | 4.50 | 5.255298 | 44.33 | 5.255332 | 14.07 |
Averaged value a | 5.312107 | 13.33 | 5.312083 | 7.67 | 5.256247 | 39.97 | 5.256179 | 20.02 |
Experimental and theoretical values | ||||||||
5.31307(3)/9.6(4) b | ||||||||
5.31183/13.5 c | 5.25624/34.5 c | |||||||
5.256864/36.79 d |
λ | 2P0 [1s(2s2p) 3P] | 2P0 [1s(2s2p) 1P] | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | |||||
−Eres | Г | −Eres | Г | −Eres | Г | −Eres | Г | |
3.1 | 5.312253 | 14.02 | 5.312252 | 11.55 | 5.256920 | 40.71 | 5.256965 | 35.74 |
3.3 | 5.312205 | 10.08 | 5.312212 | 12.95 | 5.256598 | 33.97 | 5.256608 | 46.32 |
3.5 | 5.312082 | 14.33 | 5.312070 | 11.70 | 5.256039 | 43.46 | 5.256063 | 34.58 |
3.7 | 5.311828 | 10.05 | 5.311837 | 13.11 | 5.255292 | 32.61 | 5.255298 | 44.33 |
Averaged value a | 5.312106 | 11.98 | 5.312107 | 13.33 | 5.256243 | 38.37 | 5.256247 | 39.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamson, S.O.; Kharlampidi, D.D.; Dyakov, Y.A.; Golubkov, G.V.; Golubkov, M.G. Calculation of the Lowest Resonant States of H− and Li by the Complex Absorbing Potential Method. Atoms 2021, 9, 72. https://doi.org/10.3390/atoms9040072
Adamson SO, Kharlampidi DD, Dyakov YA, Golubkov GV, Golubkov MG. Calculation of the Lowest Resonant States of H− and Li by the Complex Absorbing Potential Method. Atoms. 2021; 9(4):72. https://doi.org/10.3390/atoms9040072
Chicago/Turabian StyleAdamson, Sergey O., Daria D. Kharlampidi, Yurii A. Dyakov, Gennady V. Golubkov, and Maxim G. Golubkov. 2021. "Calculation of the Lowest Resonant States of H− and Li by the Complex Absorbing Potential Method" Atoms 9, no. 4: 72. https://doi.org/10.3390/atoms9040072
APA StyleAdamson, S. O., Kharlampidi, D. D., Dyakov, Y. A., Golubkov, G. V., & Golubkov, M. G. (2021). Calculation of the Lowest Resonant States of H− and Li by the Complex Absorbing Potential Method. Atoms, 9(4), 72. https://doi.org/10.3390/atoms9040072