Next Article in Journal / Special Issue
A Missing Puzzle in Dissociative Electron Attachment to Biomolecules: The Detection of Radicals
Previous Article in Journal
Linear and Nonlinear Optical Absorption of CdSe/CdS Core/Shell Quantum Dots in the Presence of Donor Impurity
Previous Article in Special Issue
Electron Ionization of Size-Selected Positively and Negatively Charged Helium Droplets
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Electron Impact Excitation of Extreme Ultra-Violet Transitions in Xe7–Xe10 Ions

by
Aloka Kumar Sahoo
and
Lalita Sharma
*,†
Department of Physics, Indian Institute of Technology, Roorkee 247667, India
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Atoms 2021, 9(4), 76; https://doi.org/10.3390/atoms9040076
Submission received: 3 September 2021 / Revised: 29 September 2021 / Accepted: 30 September 2021 / Published: 6 October 2021

Abstract

:
In the present work, a detailed study on the electron impact excitation of Xe 7 + , Xe 8 + , Xe 9 + and Xe 10 + ions for the dipole allowed (E1) transitions in the EUV range of 8–19 nm is presented. The multi-configuration Dirac–Fock method is used for the atomic structure calculation including the Breit and QED corrections along with the relativistic configuration interaction approach. We have compared our calculated energy levels, wavelengths and transition rates with other reported experimental and theoretical results. Further, the relativistic distorted wave method is used to calculate the cross sections from the excitation threshold to 3000 eV electron energy. For plasma physics applications, we have reported the fitting parameters of these cross sections using two different formulae for low and high energy ranges. The rate coefficients are also obtained using our calculated cross sections and considering the Maxwellian electron energy distribution function in the electron temperature range from 5 eV to 100 eV.

1. Introduction

Spectroscopic and collisional data of highly charged xenon ions in the extreme ultraviolet (EUV) spectral range play a vital role in several research areas. For example, laser produced xenon plasma exhibits [1] the possibility to become an EUV source for the next generation lithography. Xenon ions are detected in the UV spectrum of the astrophysical objects viz., hot DO-type white dwarf [2] and planetary nebula [3]. In the next generation fusion reactor ITER, xenon is expected to be used as edge plasma coolant. Xenon ions being used in ion thruster for electric propulsion [4] plays key role in making the modern space exploration cheaper. Since emissions from various charged species of xenon ions carry information about the plasma parameters and impurities, their atomic structure and dynamical properties in the EUV range are essential for the accurate diagnostics of the aforementioned plasmas. Therefore, in this work we have focused on the electron impact excitation of the electric dipole (E1) transitions in Xe 7 + , Xe 8 + , Xe 9 + and Xe 10 + ions in the EUV region 8–19 nm. We consider excitation of E1 transitions that are responsible for the most intense lines of the spectra.
To determine the emission properties of xenon ions, experiments have been performed with either laser or gas discharge-produced plasmas. Churilov and Joshi [5] recorded xenon spectra in the 7–17 nm region on a 10.7 m grazing incidence spectrograph and analyzed the 4p 6 4d 9 –(4p 6 4d 8 5p + 4p 6 4d 8 4f + 4p 5 4d 10 ) transition array of Rh-like Xe 9 + . They also identified the resonance transitions arising from the excited 4d 9 (6p + 5f + 7p + 6f) states of Pd-like Xe 8 + and 4d 10 5s 2 S–4d 9 5s4f 2 P transitions for Ag-like Xe 7 + . Churilov et al. [6] observed the transition array 4d 8 –(4d 7 5p + 4d 7 4f + 4p 5 4d 9 ) of Xe 10 + using a low inductance vacuum spark and a 10.7 m grazing incidence photograph in the EUV region 10.5–15.7 nm. These lines were analyzed using Hartree–Fock (HFR) calculations in relativistic mode with the help of the Cowan suite of codes [7]. Fahy et al. [8] reported the EUV spectra of Xe 6 + to Xe 41 + in the wavelength region of 4.5 to 20 nm using the electron beam ion trap (EBIT) facility at NIST while varying electron beam energy from 180 eV to 8 keV. They also calculated the transition probabilities and wavelengths using the HF approximation with the Cowan code [7]. Ali and Nakamura [9] observed the EUV spectra of Rh-like Xe 9 + –Cd-like Xe 6 + and Cu-like Xe 25 + –Se-like Xe 20 + using a compact electron beam ion trap (CoBIT) and a flat-field grazing incidence spectrometer in the wavelength range of 15–20 nm with an uncertainty of 0.05 Å. The electron beam energy was varied between 200–890 eV during these measurements. Ali and Nakamura [10] also used their experimental facilities to record EUV spectra of highly charged Xe 8 + –Xe 11 + and Ba 18 + –Ba 21 + ions in the wavelength range 9–13 nm. Merabet et al. [11] studied spectra of various xenon ions (Xe 2 + –Xe 10 + ) in the EUV region 10–16 nm using a compact electron cyclotron resonance ion source (CECRIS) equipped with a grazing monochromator operating in 4–90 nm.
Various theoretical studies have been carried out to report energy levels, wavelengths, oscillator strengths and transition probabilities of xenon ions. Safronova et al. [12] calculated the atomic properties of Pd-like ions Xe 8 + with nuclear charge ranging from Z = 47 to 100 using relativistic many-body perturbation theory (RMBPT) with Breit correction. Ivanova [13] used the relativistic perturbation theory with a model potential to calculate the energy levels of Ag-, Pd- and Rh–like ions with Z = 52–86. Motoumba et al. [14] reported transition probabilities and oscillator strengths for the transition array 4d 8 – (4p 5 4d 9 + 4d 7 5p + 4d 7 4f) of Xe 10 + in the EUV spectral range of 10.2–15.7 nm. These results were obtained using two different methods viz., the semi-empirical pseudo-relativistic Hartree–Fock (HFR) method and the relativistic multiconfiguration Dirac–Hartree–Fock (MCDHF) theory within the relativistic configuration interaction (RCI) approximation. Motoumba et al. [15] also employed the above two methods to report transition probabilities and oscillator strengths for 92 spectral lines of Xe 9 + ion in the range of 11–16.4 nm. Shen et al. [16] used Flexible Atomic Code (FAC), based on a fully relativistic approach, to calculate the energy levels, oscillator strengths, electron impact collision strengths as well as effective collision strengths for Xe 10 + .
It is clear from the above discussion that most of the previous experimental or theoretical studies on Xe 7 + –Xe 10 + ions have focused on their spectroscopic properties, while the electron impact cross section data are scarcely reported. However, various studies in the past have clearly demonstrated that using accurate cross section results in a collisional radiative model provides a better agreement with the measurements on the plasma parameters, viz., electron temperature and density [17,18,19,20]. Therefore, reliable cross sections are essential for the success of any plasma model. In general, suitable theoretical methods are employed to carry out cross section calculations due to limitations, such as accurate identification of the fine-structure levels for open shell ions, in performing the scattering experiments.
In the present work, we have studied electron impact excitation of Xe 7 + , Xe 8 + , Xe 9 + and Xe 10 + ions. The core shell configuration (1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 ) is removed in the representation of the ground and excited state configurations of these four ions. We have considered the transition arrays 4d 10 5s 2 S 1 / 2 –(4d 9 5s4f + 4d 9 5s5p) for Xe 7 + , 4d 10 1 S 0 –(4d 9 5p + 4d 9 4f + 4d 9 6p + 4d 9 5f + 4d 9 7p + 4d 9 6f) for Xe 8 + , 4p 6 4d 9 –(4p 6 4d 8 5p + 4p 6 4d 8 4f + 4p 5 4d 10 ) for Xe 9 + and 4d 8 –(4d 7 5p + 4d 7 4f + 4p 5 4d 9 ) for Xe 10 + . These arrays result into 9, 18, 75 and 57 E1 transitions in Xe 7 + through Xe 10 + in EUV range. We have used multi-configuration Dirac–Fock method within RCI approximation to calculate the energy levels, wavelengths and transition rates. These results are compared in detail with the previously reported measurements and theoretical calculations. The target ion wavefunctions are further implemented in the evaluation of the transition ( T ) matrix amplitude using relativistic distorted wave (RDW) approximation and excitation cross sections are obtained up to 3000 eV electron energy. The analytical fitting of the electron excitation cross sections is also performed as it is more convenient to feed the analytical expression with fitting parameters for plasma modeling. Further, assuming electron energy distribution to be Maxwellian, we have also calculated excitation rate coefficients using our cross sections for electron temperature range 5–100 eV.

2. Theory

In order to calculate the energy levels, wavelengths and transition probabilities, we have obtained MCDF wavefunctions of Xe 7 + –Xe 10 + ions using GRASP2K code [21]. In the MCDF method, the atomic state functions (ASFs) are written as linear combination of configuration state functions (CSFs) having same parity P and angular momentum quantum number J, as follows:
Ψ ( P J M ) = i = 1 n a i Φ i ( P J M ) .
Here a i refers to the mixing coefficient of the CSF Φ i ( P J M ) which are anti-symmetrized products of a common set of orthonormal orbitals. In our calculations, we take as many CSFs as are having at least 0.001% value of the mixing coefficient. The configurations that are included in the atomic-structure calculations of xenon ions are listed in Table 1. These configurations are shown here in their non-relativistic notations. The MCDF method implements a self-consistent field procedure for obtaining the radial functions and the mixing coefficients. Further, we performed RCI calculations by considering the Breit and quantum electrodynamic (QED) corrections in the Dirac–Coulomb Hamiltonian. The transition probabilities are computed from the matrix element of dipole operator of the electromagnetic field.
We further use the bound state wavefunctions of the ion in the relativistic distorted wave theory to determine the electron impact excitation parameters. The T-matrix in the RDW approximation for excitation of an N electron ion from an initial state a to a final state b can be written as [22]:
T a b R D W ( γ b , J b , M b , μ b ; γ a , J a , M a , μ a ) = χ b V U b ( N + 1 ) | A χ a + .
Here, J a ( b ) , M a ( b ) denote the total angular momentum quantum number and its associated magnetic quantum number in the initial(final) state, whereas, γ a ( b ) represents additional quantum numbers required for unique identification of the state. μ a ( b ) refers to the spin projection of the incident(scattered) electron. A is the anti-symmetrization operator to consider the exchange of the projectile electron with the target electrons and U b is the distortion potential which is taken to be a function of the radial co-ordinates of the projectile electron only. In our calculations, we choose U b to be a spherically averaged static potential of the excited state of ion. In the above Equation (2), V is the Coulomb interaction potential between the incident electron and the target ion. The wave function χ a ( b ) + ( ) represents the product of the N-electron target wave functions Ψ a ( b ) and a projectile electron distorted wave function F a ( b ) + ( ) in the initial ‘a’ and final ‘b’, states, that is:
χ a ( b ) + ( ) = Ψ a ( b ) ( 1 , 2 , . . . , N ) ) F a ( b ) + ( ) ( k a ( b ) , N + 1 ) .
Here, ‘ + ( ) ’ sign denotes an outgoing(incoming) wave, while k a ( b ) is the linear momentum of the projectile electron in the initial(final) state. Equation (2) contains entire information about the excitation process. We, however, are interested in computing only the integrated cross section which is obtained by taking square of the mode value of the complex T-matrix with appropriate normalization, as expressed below:
σ a b = ( 2 π ) 4 k b k a 1 2 ( 2 J a + 1 ) M b μ b M a μ a | T a b R D W ( γ b , J b , M b , μ b ; γ a , J a , M a , μ a ) | 2 d Ω .

3. Results and Discussion

3.1. Atomic-Structure Calculations

We have used GRASP2K code [21] to perform MCDF and RCI calculations to obtain energy levels, wavelengths and transition rates of Xe 7 + –Xe 10 + ions. Our energy values are presented and compared with other theoretical and experimental results through Table 2, Table 3, Table 4 and Table 5 for the four ions. The fine-structure states are represented in the relativistic j j coupling scheme in which all shells, excluding s, split into two subshells with j = l ± 1 / 2 . For example, a p shell will be broken as p ¯ with j = 1 / 2 and p with j = 3 / 2 . In order to identify the levels, their indices are assigned in each table. This will help to clearly recognise the states for which wavelengths, transition rates, electron impact cross sections and excitation rate coefficients will be presented.
Table 2 presents a comparison of our results for Xe 7 + with the NIST values [23]. In addition to the j j coupling representation, we have also included the notations of the states used in the NIST database to make the comparison convenient between the two sets of the results. We find from Table 2 that our calculated energies show an average deviation of nearly 1.5% with the corresponding energies from the NIST database [23]. A maximum variation of nearly 3% is found for the 5s4f 3 P 1 / 2 , 3 / 2 levels. We have listed only those levels in Table 2 that are reported to be involved in emitting intense lines in the EBIT measurements of Fahy et al. [8] and Ali and Nakamura [9].
For Xe 8 + , in our calculations we got two levels with leading contribution from 4d 9 7p 1 P 1 , one at 138.7018 eV (53.65% 4 d 5 / 2 5 7 p 3 / 2 1 P + 37.44% 4 d ¯ 3 / 2 3 7 p ¯ 1 / 2 3 P + 8.79% 4 d ¯ 3 / 2 3 7 p 3 / 2 3 D) and another at 140.2617 eV (44.29% 4 d 5 / 2 5 7 p 3 / 2 1 P + 30.70% 4 d ¯ 3 / 2 3 7 p ¯ 1 / 2 3 P + 24.90% 4 d ¯ 3 / 2 3 7 p 3 / 2 3 D). Considering the maximum contribution, we have classified the level at 138.7018 eV as 4d 9 7p 1 P 1 , and 140.2617 eV as 4d 9 7p 3 P 1 . This changed the energy order of 1 P 1 and 3 P 1 in our calculations with respect to those reported by Churilov and Joshi [5]. As can be seen from Table 3, the agreement between the measurements [5] and our results is within 0.8% for most of the cases. The maximum difference of nearly 3 eV is found for the 4d 9 4f 1 P 1 level.
The energy levels of Xe 9 + are listed in Table 4 and are compared with the measurements [5] as well as HFR and MCDHF calculations of Motoumba et al. [15]. The open-shell structure of Xe 9 + leads to the formation of a large number of closely spaced fine-structure levels for its ground and excited state configurations. Consequently, it becomes extremely difficult to correctly identify these states as well as to label them uniquely in LS coupling notations. Churilov and Joshi [5] reported Xe 9 + levels with the wavenumbers (in cm 1 ) which are also included in Table 4 to guide us in right recognition of the states. From our calculations, we found that the inclusion of the triple excitation 4d 6 4f 3 improves the match between the present energies and measurements for the higher 4d 8 4f levels, while it deteriorates the agreement for other levels. Thus we have considered two sets of calculations for Xe 9 + , one with and the other without including the CSF 4d 6 4f 3 . The energies marked with * in Table 4 indicate the inclusion of the CSF 4d 6 4f 3 . For 4p 5 4d 10 levels, our energy results overestimate the measurements [5] and theoretical results [15] by nearly 2 eV. Except for this transition, in most of the cases our energies show better agreements with the experimental results than the MCDHF calculations [15].
Table 5 presents a comparison of the present energies with the experimental energies from Churilov et al. [6] and RCI and HFR calculations of Motoumba et al. [14] for Xe 10 + . Similar to Xe 9 + , Xe 10 + has an open shell structure and hence, we have included the wavenumbers reported in [6] so that the small spaced levels can be rightly identified. We learnt that adding the CSF 4p 4 4d 10 improves the energy of the 4d 8 levels, while including the CSF 4d 5 4f 3 with triple excitation improves the energy of the higher 4d 7 4f levels. The order of a few levels from 4d 8 , 4d 7 5p and 4d 7 4f configurations are not as per the order reported in the measurements [6]. Similar cases are also observed in the RCI results [14]. Our reported energies show a deviation of nearly 2–4 eV for the 4p 5 4d 9 levels, however, they are in good agreement with the RCI calculations by Motoumba et al. [14].
The comparison of our calculated wavelengths and transition rates with other theoretical and experimental results is shown through Table 6, Table 7, Table 8 and Table 9. For Xe 7 + , Table 6 includes the measurements from NIST EBIT and Cowan code calculations reported by Fahy et al. [8], compact EBIT results from Ali and Nakamura [9] as well as HFR calculations of Churilov and Joshi [5]. Though Table 6 shows a maximum deviation of 3.5 Å for levels of 4d 9 5s4f configurations with indices 9 and 10, a good agreement is found between our reported transition rates and the calculated results from Cowan code [8].
Wavelengths and transition rates for Xe 8 + from the present work are reported and compared in Table 7 with the measurements and other calculations [5,8,9,10,13]. Overall, our calculations are in good agreement with other results. However, a maximum deviation of 3.4 Å is found in the wavelength corresponding to 1 → 15 (4d 10 1 S 0 → 4d 9 4f 1 P 1 ) transition. This is because from Table 3 our calculated energy of the 4d 9 4f 1 P 1 level is overestimated by nearly 3 eV in comparison to the result reported by Churilov and Joshi [5]. It is further noticed for the above transition that our calculated wavelength shows a better match with that from Ivanova [13] and there is a good agreement among various values of the transition rate.
For Xe 9 + , our wavelengths and transition rates are compared with the measurements [5] and HFR and MCDHF results [15] in Table 8. Our reported wavelengths show a good match with the experimental results [5] with an average difference of 0.5 Å. The two transitions 1 → 4 and 2 → 4, where 1, 2 and 4 refer to the indices assigned to the states of Xe 9 + , show a maximum difference of nearly 5 Å. However, their transition rates are in good agreement with the reported results from Churilov and Joshi [5].
In Table 9, measurements and theoretical results from Churilov et al. [6] as well as HFR and RCI results of Motoumba [14] are included for Xe 10 + along with our calculated wavelengths and transition rates. Previous studies [6,24] showed that there are two possible strong transition arrays of Xe 10 + in 11.1 nm–11.3 nm and 13 nm–14 nm regions with possible applications in EUV Lithography [1]. Thus, we have reported results only for the transitions that fall in these ranges for Xe 10 + . The HFR and RCI wavelengths are calculated from the energy levels provided in [14]. Our results show a maximum deviation of nearly 3.5 Å from measurements and HFR calculations. This discrepancy is found for the transitions from the 3rd, 7th and 8th states to the 57th state. Overall, a better match is seen between the present results and the RCI calculations. Our calculated transition rates agree well with the corresponding values from Churilov et al. [6] except for a few cases, that is, 3 25 , 3 21 and 1 11 transitions. However, the present transition rates are in reasonable agreement with the RCI calculations for these transitions.

3.2. Cross Sections and Rate Coefficients

The atomic wavefunctions of the four ions are used in our RDW program to calculate the electron impact excitation cross sections for the E1 transitions in Xe 7 + –Xe 10 + ions. In the previous subsection, we have given a detailed comparison of our calculated results for energy levels, wavelengths and transition rates with other experimental and theoretical results and found an overall satisfactory agreement. This ensures the quality of the target ion’s wavefunctions that are crucial in determining the accuracy of the scattering parameters. Moreover, the RDW method has been successfully implemented in the previous work on a variety of targets from closed to open-shell systems and neutral atoms to multiply or highly charged ions atoms/ions [25,26,27,28,29,30]. It has also been found that using RDW cross sections in a collisional radiative (CR) model provides plasma parameters that are in better agreement with the measurements [31,32,33,34]. Therefore, the success of a CR model depends heavily on the accuracy of the collision cross sections being fed to the model. In this connection, we have calculated cross sections for 9, 18, 75 and 57 transitions, respectively, for Xe 7 + , Xe 8 + , Xe 9 + and Xe 10 + . Their excitation energies, as discussed earlier, lie in the EUV region. For the sake of simplicity in presenting our results, we have shown only a few transitions graphically through Figure 1 for Xe 8 + . However, cross sections for all the transitions considered in the four ions are provided in the supplementary file through Tables S1–S4 in the incident electron energy range 200–3000 eV. We notice the usual behaviour of the cross sections from Figure 1, that is, they decrease with increasing electron energies and their magnitudes follow the increasing order of the transition rates. Transitions which involve the change of the spin of the state have lesser cross sections as compared to those with the same spin.
Further, to make available our cross sections in a convenient manner, we have performed the fitting of our cross sections Equation (4) with two analytical forms. The first form is a rational fit and suitable for low energy, given by:
σ a b = i = 0 n x i E i 1 + y 1 E + y 2 E 2 ,
where σ a b is the excitation cross section from the initial level a to final level b and E is the energy of the incident electron. Both the cross section and the energy are considered in atomic units. x i s and y i s are fitting coefficients. The second fitting, appropriate for high energy, is performed using the Bethe–Born formula, that is,
σ a b = 1 E d 0 + d 1 ln ( E ) .
The Bethe–Born fitting is valid for energy above 2000 eV in the present case. The fitting parameters are provided in Table 10, Table 11, Table 12 and Table 13 for Xe 7 + , Xe 8 + , Xe 9 + and Xe 10 + ions, respectively. The fitted and calculated cross sections agree within 5%.
We have also obtained the rate coefficient k a b at an electron temperature T for a transition from initial level a to final level b. For this purpose, our calculated excitation cross sections are used in the following expression:
k a b = 2 2 π m e 1 / 2 ( k B T ) 3 / 2 E a b E σ a b ( E ) exp E k B T d E ,
where m e represents the mass of electron, k B is the Boltzmann constant, E a b denotes the excitation threshold energy for the transition from a to b and σ a b ( E ) is the calculated cross section at the incident electron energy E. The rate coefficients are provided through Table 14, Table 15, Table 16 and Table 17 for Xe 7 + –Xe 10 + ions in the electron temperature range 5–100 eV. The values of rate coefficients rise rapidly at first and then there is a slower logarithmic increase. In order to clearly demonstrate this trend, Figure 2 displays rate coefficients for the transitions reported in Table 7 for Xe 8 + . The same behaviour has been noticed in our previous work on excitation of highly charged xenon ions [25].

4. Conclusions

We employed the MCDF approach within the framework of the Dirac–Coulomb Hamiltonian, including the Breit and QED corrections using the GRASP2K program [21] and calculated the energy levels, wavelengths and transition rates for the electric dipole allowed transitions of Xe 7 + , Xe 8 + , Xe 9 + and Xe 10 + ions in the EUV range of 8–19 nm. These results are compared with other reported experimental and theoretical results and, overall, a good agreement is found. After confirming the reliability of our ionic wavefunctions, we used them in the RDW method to calculate the excitation cross sections for a total of 159 transitions in the four ions. To make our cross sections conveniently available for plasma modelling, we obtained the fitting parameters for these cross sections for both low and high incident electron energies. The maximum error in fitted cross sections is found to be well within 5% for most of the cases. Further, these cross sections are used to calculate the excitation rate coefficients for several electron temperatures ranging from 5 to 100 eV, assuming a Maxwellian electron energy distribution. Our cross sections and rate coefficients are reported for the first time, as no other experimental or theoretical results are available. We hope our results will be useful for the successful interpretation of EUV emissions from various sources.

Supplementary Materials

The following are available online at https://www.mdpi.com/article/10.3390/atoms9040076/s1, Table S1: Cross sections (10 20 m 2 ) for Xe 7 + for the transitions from 4d 10 5s 2 S 1 / 2 state at incident electron energies 200, 300, 400, 500, 700, 1000, 1200, 1500, 2000, 2500, 3000 eV. Table S2: Cross sections (10 20 m 2 ) for Xe 8 + for the transitions from 4d 10 1 S 0 state at incident electron energies 200, 300, 400, 500, 700, 1000, 1200, 1500, 2000, 2500, 3000 eV. Table S3: Cross sections ( 10 20 m 2 ) for Xe 9 + at incident electron energies 200, 300, 400, 500, 700, 1000, 1200, 1500, 2000, 2500, 3000 eV. a and b refer to the indices of the initial and final levels, respectively. Table S4: Cross sections ( 10 20 m 2 ) for Xe 10 + at incident electron energies 200, 300, 400, 500, 700, 1000, 1200, 1500, 2000, 2500, 3000 eV. a and b refer to the indices of the initial and final levels, respectively.

Author Contributions

Both the authors have contributed equally in performing calculations and preparing the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available in the article or Supplementary Materials here.

Acknowledgments

Aloka Kumar Sahoo would like to acknowledge the Ministry of Human Resources and Development (MHRD) India for the award of a research fellowship.

Conflicts of Interest

The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

  1. Abramov, I.S.; Gospodchikov, E.D.; Shalashov, A.G. Extreme-Ultraviolet Light Source for Lithography Based on an Expanding Jet of Dense Xenon Plasma Supported by Microwaves. Phys. Rev. Appl. 2018, 10, 1. [Google Scholar] [CrossRef] [Green Version]
  2. Werner, K.; Rauch, T.; Ringat, E.; Kruk, J.W. First detection of krypton and xenon in a white dwarf. Astrophys. J. 2012, 753, L7. [Google Scholar] [CrossRef] [Green Version]
  3. Otsuka, M.; Tajitsu, A. Chemical abundances in the extremely carbon-rich and xenon-rich halo planetary nebula H4-1. Astrophys. J. 2013, 778, 146. [Google Scholar] [CrossRef] [Green Version]
  4. Beattie, J.R.; Matossian, J.N. Xenon ion sources for space applications (invited). Rev. Sci. Instruments 1990, 61, 348–353. [Google Scholar] [CrossRef]
  5. Churilov, S.S.; Joshi, Y.N. Analysis of the 4p64d84f and 4p54d10 Configurations of Xe X and Some Highly Excited Levels of Xe VIII and Xe IX Ions. Phys. Scr. 2002, 65, 40–45. [Google Scholar] [CrossRef]
  6. Churilov, S.S.; Joshi, Y.N.; Reader, J.; Kildiyarova, R.R. 4p64d8–(4d75p + 4d74f + 4p54d9) Transitions in Xe XI. Phys. Scr. 2004, 70, 126–138. [Google Scholar] [CrossRef]
  7. Cowan, R.D. The Theory of Atomic Structure and Spectra; Number 3; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
  8. Fahy, K.; Sokell, E.; O’Sullivan, G.; Aguilar, A.; Pomeroy, J.M.; Tan, J.N.; Gillaspy, J.D. Extreme-ultraviolet spectroscopy of highly charged xenon ions created using an electron-beam ion trap. Phys. Rev. A–At. Mol. Opt. Phys. 2007, 75, 1–12. [Google Scholar] [CrossRef]
  9. Ali, S.; Nakamura, N. High resolution EUV spectroscopy of xenon ions with a compact electron beam ion trap. J. Quant. Spectrosc. Radiat. Transf. 2017, 198, 112–116. [Google Scholar] [CrossRef]
  10. Ali, S.; Nakamura, N. Extreme ultraviolet spectroscopy of highly charged xenon and barium with a compact electron beam ion trap. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2017, 408, 122–124. [Google Scholar] [CrossRef]
  11. Merabet, H.; Kondagari, S.; Bruch, R.; Fülling, S.; Hahto, S.; Leung, K.L.; Reijonen, J.; Godunov, A.L.; Schipakov, V.A. EUV emission from xenon in the 10–80 nm wavelength range using a compact ECR ion source. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2005, 241, 23–29. [Google Scholar] [CrossRef]
  12. Safronova, U.I.; Bista, R.; Bruch, R.; Merabet, H. Relativistic many-body calculations of atomic properties in Pd-like ions. Can. J. Phys. 2008, 86, 131–149. [Google Scholar] [CrossRef]
  13. Ivanova, E.P. Energy levels in Ag-like (4d104f, 4d105l (l = 0–3)), Pd-like (4d94f [J = 1], 4d95p [J = 1], 4d95f [J = 1]), and Rh-like (4d9 [J = 5/2, 3/2]) ions with Z ≤ 86. At. Data Nucl. Data Tables 2009, 95, 786–804. [Google Scholar] [CrossRef]
  14. Bokamba Motoumba, E.; Enzonga Yoca, S.; Quinet, P.; Palmeri, P. Ab initio MCDHF/RCI and semi-empirical HFR calculations of transition probabilities and oscillator strengths in Xe XI. J. Quant. Spectrosc. Radiat. Transf. 2019, 235, 217–231. [Google Scholar] [CrossRef]
  15. Motoumba, E.B.; Yoca, S.E.; Palmeri, P.; Quinet, P. Relativistic Hartree–Fock and Dirac–Fock atomic structure and radiative parameter calculations in nine-times ionized xenon (Xe X). J. Quant. Spectrosc. Radiat. Transf. 2019, 227, 130–135. [Google Scholar] [CrossRef] [Green Version]
  16. Shen, Y.; Gao, C.; Zeng, J. Electron impact collision strengths and transition rates for extreme ultraviolet emission from Xe10+. At. Data Nucl. Data Tables 2009, 95, 1–53. [Google Scholar] [CrossRef]
  17. Dressler, R.A.; Hui Chiu, Y.; Zatsarinny, O.; Bartschat, K.; Srivastava, R.; Sharma, L. Near-infrared collisional radiative model for Xe plasma electrostatic thrusters: The role of metastable atoms. J. Phys. D Appl. Phys. 2009, 42, 185203. [Google Scholar] [CrossRef]
  18. Gangwar, R.K.; Dipti., G.; Srivastava, R.; Stafford, L. Spectroscopic diagnostics of low-pressure inductively coupled Kr plasma using a collisional–radiative model with fully relativistic cross sections. Plasma Sources Sci. Technol. 2016, 25, 035025. [Google Scholar] [CrossRef]
  19. Gupta, S.; Gangwar, R.K.; Srivastava, R. Diagnostics of Ar/N2 mixture plasma with detailed electron-impact argon fine-structure excitation cross sections. Spectrochim. Acta Part B At. Spectrosc. 2018, 149, 203–213. [Google Scholar] [CrossRef]
  20. Baghel, S.S.; Gupta, S.; Gangwar, R.K.; Srivastava, R. Diagnostics of low-temperature neon plasma through a fine-structure resolved collisional–radiative model. Plasma Sources Sci. Technol. 2019, 28, 115010. [Google Scholar] [CrossRef]
  21. Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C.F.; Grant, I. New version: Grasp2K relativistic atomic structure package. Comput. Phys. Commun. 2013, 184, 2197–2203. [Google Scholar] [CrossRef] [Green Version]
  22. Sharma, L.; Surzhykov, A.; Srivastava, R.; Fritzsche, S. Electron-impact excitation of singly charged metal ions. Phys. Rev. A 2011, 83, 062701. [Google Scholar] [CrossRef]
  23. Kramida, A.; Ralchenko., Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.8); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. Available online: https://physics.nist.gov/asd (accessed on 21 August 2021).
  24. Churilov, S.; Joshi, Y.N.; Reader, J. High-resolution spectrum of xenon ions at 13.4 nm. Opt. Lett. 2003, 28, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
  25. Bharti, S.; Sharma, L.; Srivastava, R. Electron impact excitation of Ge-like to Cu-like xenon ions in the extreme ultraviolet. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 165001. [Google Scholar] [CrossRef]
  26. Shukla, N.; Priti; Sharma, L.; Srivastava, R. Electron-impact excitations of highly charged tungsten ions and polarization study of their successive photon decay. Eur. Phys. J. D 2019, 73, 109. [Google Scholar] [CrossRef]
  27. Priti; Sharma, L.; Srivastava, R. Study of electron excitation of Rb-like to Br-like tungsten ions and polarization of their photon emission. Eur. Phys. J. D 2017, 71, 100. [Google Scholar] [CrossRef]
  28. Das, T.; Sharma, L.; Srivastava, R. Electron impact excitation of the M-shell electrons from Zn-like through Co-like tungsten ions. Phys. Scr. 2012, 86, 035301. [Google Scholar] [CrossRef]
  29. Dipti; Das, T.; Sharma, L.; Srivastava, R. L-shell electron excitations of Mg- through O-like tungsten ions. Phys. Scr. 2014, 89, 085403. [Google Scholar] [CrossRef]
  30. Dipti; Das, T.; Sharma, L.; Srivastava, R. Electron impact excitation and polarization studies of Fe-like W48+ to Al-like W61+ ions. Can. J. Phys. 2015, 93, 888–897. [Google Scholar] [CrossRef]
  31. Gangwar, R.K.; Sharma, L.; Srivastava, R.; Stauffer, A.D. C-R Model for Ar plasmas using reliable excitation cross-sections. J. Physics: Conf. Ser. 2012, 388, 042013. [Google Scholar] [CrossRef] [Green Version]
  32. Dipti; Gangwar, R.K.; Srivastava, R.; Stauffer, A.D. Collisional-radiative model for non-Maxwellian inductively coupled argon plasmas using detailed fine-structure relativistic distorted-wave cross sections. Eur. Phys. J. D 2013, 67, 203. [Google Scholar] [CrossRef]
  33. Priti; Dipti., G.; Gangwar, R.; Srivastava, R. Calculation of fully relativistic cross sections for electron excitation of cesium atom and its application to the diagnostics of hydrogen-cesium plasma. J. Quant. Spectrosc. Radiat. Transf. 2017, 187, 426–442. [Google Scholar] [CrossRef]
  34. Priti; Gangwar, R.K.; Srivastava, R. Collisional-radiative model of xenon plasma with calculated electron-impact fine-structure excitation cross-sections. Plasma Sources Sci. Technol. 2019, 28, 025003. [Google Scholar] [CrossRef]
Figure 1. Integrated cross sections of Xe 8 + as a function of incident electron energy.
Figure 1. Integrated cross sections of Xe 8 + as a function of incident electron energy.
Atoms 09 00076 g001
Figure 2. Excitation rate coefficients of Xe 8 + as a function of electron temperature.
Figure 2. Excitation rate coefficients of Xe 8 + as a function of electron temperature.
Atoms 09 00076 g002
Table 1. Configurations of the initial and final states and the CSFs in non-relativistic notations.
Table 1. Configurations of the initial and final states and the CSFs in non-relativistic notations.
IonsInitial StateFinal State CSFs
Xe 7 + 4d 10 5s4d 9 (5s5p, 4f5s)even4d 10 (5s, 5d, 6s, 6d),
4d 9 (5s5d, 5s6s, 5s7s,
5s 2 , 5p 2 )
odd4d 10 (4f, 5p, 6p),
4d 9 (4f5s, 5s5p, 5s5f,
5s6f, 5p5d)
Xe 8 + 4d 10 4d 9 (4f, 5p, 5f, 6p, 6f, 7p)even4d 10 , 4d 9 (5s, 5d, 6s, 6d,
7s, 7d), 4d 8 (5s 2 , 5p 2 ,
5d 2 )
odd4d 9 (4f, 5p, 5f, 6p, 6f, 7p,
7f)
Xe 9 + 4d 9 4d 8 (4f, 5p), 4p 5 4d 10 even4d 9 , 4d 8 (5s, 5d, 6s, 6d,
7s, 7d), 4p 5 4d 9 (5p, 5f),
4d 7 (5s 2 , 5p 2 , 5d 2 , 5f 2 ,
5s5d, 5s6s, 5s6d, 5p5f)
odd4d 8 (4f, 5p, 5f, 6p, 6f,
7p), 4d 7 (5s5p, 5s5f,
5s6p), 4p 5 4d 10 , 4d 6 4f 3
Xe 10 + 4d 8 4d 7 (4f, 5p), 4p 5 4d 9 even4d 8 , 4d 7 5d, 4p 5 4d 8 (5p,
5f), 4d 6 (5s 2 + 5p 2 )
odd4d 7 (4f, 5p, 5f, 6f),
4p 5 4d 9 , 4p 5 4d 8 5d,
4d 5 4f 3
Table 2. Comparison of our calculated energy levels (in eV) with other results for Xe 7 + . A fully filled subshell is omitted in the relativistic representation of the configurations.
Table 2. Comparison of our calculated energy levels (in eV) with other results for Xe 7 + . A fully filled subshell is omitted in the relativistic representation of the configurations.
IndexState * JStatePresentNIST [23]
14d 10 5s 2 S 1 / 2 1/2 5 s 1 / 2 0.00000.0000
24d 9 5s5p (5/2, 3 P 1 ) 3/2 ( 4 d 5 / 2 5 5 s 1 / 2 ) 2 5 p ¯ 1 / 2 66.209967.1436
34d 9 5s5p (3/2, 3 P 0 ) 3/2 ( 4 d ¯ 3 / 2 3 5 s 1 / 2 ) 1 5 p ¯ 1 / 2 67.142368.2470
44d 9 5s5p (3/2, 3 P 0 ) 3/2 ( 4 d ¯ 3 / 2 3 5 s 1 / 2 ) 2 5 p ¯ 1 / 2 68.192569.0120
54d 9 5s5p (3/2, 3 P 1 ) 1/2 ( 4 d ¯ 3 / 2 3 5 s 1 / 2 ) 1 5 p ¯ 1 / 2 69.141769.9456
64d 9 5s5p (3/2, 3 P 2 ) 1/2 ( 4 d ¯ 3 / 2 3 5 s 1 / 2 ) 1 5 p 3 / 2 69.568070.4968
74d 9 5s5p (5/2, 1 P 1 ) 3/2 ( 4 d 5 / 2 5 5 s 1 / 2 ) 3 5 p 3 / 2 72.925472.5665
84d 9 5s5p (3/2, 1 P 1 ) 1/2 ( 4 d ¯ 3 / 2 3 5 s 1 / 2 ) 2 5 p 3 / 2 74.706174.3872
94d 9 5s4f 2 P 1 / 2 1/2 ( 4 d 5 / 2 5 4 f 7 / 2 ) 1 5 s 1 / 2 103.5676100.5830
104d 9 5s4f 2 P 3 / 2 3/2 ( 4 d 5 / 2 5 4 f 7 / 2 ) 1 5 s 1 / 2 103.6716100.6000
* Notation as per the NIST [23] database.
Table 3. Same as Table 2 but for Xe 8 + .
Table 3. Same as Table 2 but for Xe 8 + .
IndexState * JStatePresentOther Reported
14d 10   1 S 0 0 4 d 0 6 0.00000.0000 a
24d 9 5p 3 P 2 2 4 d 5 / 2 5 5 p ¯ 1 / 2 71.099871.3452 b
34d 9 5p 3 P 1 1 4 d ¯ 3 / 2 3 5 p ¯ 1 / 2 73.404373.7114 a
44d 9 5p 3 P 0 0 4 d ¯ 3 / 2 3 5 p 3 / 2 74.952575.3707 b
54d 9 5p 1 P 1 1 4 d ¯ 3 / 2 3 5 p ¯ 1 / 2 75.040774.9951 a
64d 9 5p 3 D 3 3 4 d 5 / 2 5 5 p 3 / 2 74.969175.0613 b
74d 9 5p 3 D 1 1 4 d ¯ 3 / 2 3 5 p 3 / 2 76.528776.6556 a
84d 9 5p 3 D 2 2 4 d ¯ 3 / 2 3 5 p 3 / 2 76.898177.0124 b
94d 9 4f 3 P 0 0 4 d 5 / 2 5 4 f ¯ 5 / 2 81.5153
104d 9 4f 3 P 1 1 4 d 5 / 2 5 4 f ¯ 5 / 2 81.854382.5053 a
114d 9 4f 3 P 2 2 4 d 5 / 2 5 4 f 7 / 2 82.5160
124d 9 4f 3 D 3 3 4 d 5 / 2 5 4 f ¯ 5 / 2 85.4793
134d 9 4f 3 D 1 1 4 d ¯ 3 / 2 3 4 f ¯ 5 / 2 86.198786.3315 a
144d 9 4f 3 D 2 2 4 d ¯ 3 / 2 3 4 f 7 / 2 86.4396
154d 9 4f 1 P 1 1 4 d 5 / 2 5 4 f 7 / 2 106.6396103.2057 a
164d 9 6p 3 P 2 2 4 d 5 / 2 5 6 p ¯ 1 / 2 117.0829
174d 9 6p 3 P 1 1 4 d 5 / 2 5 6 p 3 / 2 118.2765119.4365 a
184d 9 6p 3 P 0 0 4 d ¯ 3 / 2 3 6 p 3 / 2 119.8886
194d 9 6p 1 P 1 1 4 d ¯ 3 / 2 3 6 p ¯ 1 / 2 119.4555120.5896 a
204d 9 6p 3 D 3 3 4 d 5 / 2 5 6 p 3 / 2 118.5929
214d 9 6p 3 D 1 1 4 d ¯ 3 / 2 3 6 p 3 / 2 120.3813121.4157 a
224d 9 6p 3 D 2 2 4 d ¯ 3 / 2 3 6 p 3 / 2 120.5895
234d 9 5f 3 P 0 0 4 d 5 / 2 5 5 f ¯ 5 / 2 122.3364
244d 9 5f 3 P 1 1 4 d 5 / 2 5 5 f ¯ 5 / 2 122.5205123.0839 a
254d 9 5f 3 P 2 2 4 d 5 / 2 5 5 f 7 / 2 122.7973
264d 9 5f 3 D 1 1 4 d 5 / 2 5 5 f 7 / 2 124.0985124.5409 a
274d 9 5f 3 D 3 3 4 d 5 / 2 5 5 f ¯ 5 / 2 123.3075125.8984 b
284d 9 5f 3 D 2 2 4 d ¯ 3 / 2 3 5 f 7 / 2 124.8695
294d 9 5f 1 P 1 1 4 d ¯ 3 / 2 3 5 f ¯ 5 / 2 129.4696128.5494 a
304d 9 7p 3 P 2 2 4 d 5 / 2 5 7 p ¯ 1 / 2 138.0878
314d 9 7p 3 P 1 1 4 d ¯ 3 / 2 3 7 p ¯ 1 / 2 140.2617140.1840 a
324d 9 7p 3 P 0 0 4 d ¯ 3 / 2 3 7 p 3 / 2 140.5323
334d 9 7p 1 P 1 1 4 d 5 / 2 5 7 p 3 / 2 138.7018141.6688 a
344d 9 7p 3 D 3 3 4 d 5 / 2 5 7 p 3 / 2 138.8464
354d 9 7p 3 D 1 1 4 d ¯ 3 / 2 3 7 p 3 / 2 140.7750142.2001 a
364d 9 7p 3 D 2 2 4 d ¯ 3 / 2 3 7 p 3 / 2 140.8804
374d 9 6f 3 P 0 0 4 d 5 / 2 5 6 f ¯ 5 / 2 140.6424
384d 9 6f 3 P 1 1 4 d 5 / 2 5 6 f ¯ 5 / 2 140.7218142.0305 a
394d 9 6f 3 P 2 2 4 d 5 / 2 5 6 f 7 / 2 140.8523
404d 9 6f 3 D 3 3 4 d 5 / 2 5 6 f ¯ 5 / 2 141.0695
414d 9 6f 3 D 1 1 4 d 5 / 2 5 6 f 7 / 2 141.7116142.9743 a
424d 9 6f 3 D 2 2 4 d ¯ 3 / 2 3 6 f 7 / 2 142.8798
434d 9 6f 1 P 1 1 4 d ¯ 3 / 2 3 6 f ¯ 5 / 2 144.2122145.1465 a
* LS Coupling notation, a—Churilov and Joshi [5], b—NIST [23].
Table 4. Same as Table 2 but for Xe 9 + .
Table 4. Same as Table 2 but for Xe 9 + .
IndexConfigurationJLevel StatePresentExp [5]HFR [15]MCDHF [15]
14d 9 5/20 4 d 5 / 2 5 0.00000.00000.00000.0000
24d 9 3/216725 4 d ¯ 3 / 2 3 2.02132.07362.07362.0485
34d 8 5p7/2629040 4 d 4 4 5 p ¯ 1 / 2 77.703777.991178.003377.0501
44p 5 4d 10 3/2629234 4 p 3 / 2 3 80.453078.015177.989379.0030
54d 8 5p3/2644130 4 d 2 4 5 p ¯ 1 / 2 79.822279.862079.841880.1652
64d 8 5p5/2646494 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 3 5 p ¯ 1 / 2 79.961380.155180.154179.2899
74d 8 5p7/2646880 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 3 5 p ¯ 1 / 2 79.934280.202980.194679.3275
84d 8 5p3/2654245 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 2 5 p ¯ 1 / 2 80.904081.116181.128480.2543
94d 8 5p1/2656520 4 d 0 4 5 p ¯ 1 / 2 81.248781.398181.384380.5229
104d 8 5p5/2657645 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 2 5 p ¯ 1 / 2 81.437281.537681.538980.7503
114d 8 5p7/2658993 4 d 4 4 5 p 3 / 2 81.542481.704881.728680.8887
124d 8 5p3/2662160 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 2 5 p ¯ 1 / 2 82.031082.097482.102781.3059
134d 8 5p5/2664256 4 d 4 4 5 p 3 / 2 82.410682.357382.384181.7013
144d 8 5p5/2668525 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 3 5 p 3 / 2 82.672382.886682.894182.0430
154d 8 5p7/2669531 4 d 2 4 5 p 3 / 2 82.964183.011383.026982.2869
164d 8 5p5/2671045 4 d 2 4 5 p 3 / 2 83.282983.199083.235082.5064
174d 8 5p7/2672762 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 3 5 p 3 / 2 83.220283.411983.417882.5993
184d 8 5p3/2674159 4 d ¯ 2 2 5 p ¯ 1 / 2 83.570983.585183.560882.8836
194d 8 5p5/2675652 4 d ¯ 2 2 5 p ¯ 1 / 2 83.748783.770283.769883.0561
204d 8 4f7/2676893 4 d 4 4 4 f ¯ 5 / 2 83.754783.924183.937284.1222
214d 8 5p3/2677421 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 1 5 p ¯ 1 / 2 84.151983.989583.967183.4135
224d 8 5p1/2677704 4 d 2 4 5 p 3 / 2 84.251084.024684.000383.5000
234d 8 4f5/2678351 4 d 4 4 4 f ¯ 5 / 2 83.936084.104884.063384.2632
244d 8 5p1/2681425 4 d ¯ 2 2 5 p 3 / 2 84.383384.486084.486883.7512
254d 8 4f3/2682437 4 d 4 4 4 f ¯ 5 / 2 84.499284.611484.740684.8364
264d 8 5p5/2682838 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 2 5 p 3 / 2 84.712484.661284.688683.9971
274d 8 5p3/2682998 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 3 5 p 3 / 2 84.812784.681084.676384.1210
284d 8 5p7/2684240 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 2 5 p 3 / 2 84.828284.835084.831584.2146
294d 8 4f1/2684807 4 d 4 4 4 f 7 / 2 84.789084.905384.955584.9699
304d 8 4f7/2687770 4 d 4 4 4 f 7 / 2 85.110085.272785.264885.3875
314d 8 5p3/2688121 4 d 2 4 5 p 3 / 2 85.512285.316285.315984.7514
324d 8 4f3/2689190 4 d 4 4 4 f ¯ 5 / 2 85.277185.448785.414485.6617
334d 8 5p5/2690757 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 4 5 p 3 / 2 85.607485.643085.617784.9183
344d 8 5p5/2694056 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 1 5 p 3 / 2 86.276186.052086.037685.5415
354d 8 5p1/2695239 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 1 5 p 3 / 2 86.538986.198786.422285.8222
364d 8 4f3/2697440 4 d 4 4 4 f 7 / 2 86.369786.471686.502386.7867
374d 8 4f5/2698751 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 2 4 f ¯ 5 / 2 86.827586.634186.681286.9352
384d 8 4f5/2701155 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 3 4 f 7 / 2 86.569586.932286.925187.1944
394d 8 5p5/2701735 4 d ¯ 2 2 5 p 3 / 2 87.109287.004187.040886.3731
404d 8 4f1/2702652 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 3 4 f 7 / 2 86.906787.117887.108287.2971
414d 8 5p7/2703997 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 4 5 p 3 / 2 87.5382 * 87.284587.256686.8773
424d 8 5p1/2705669 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 2 5 p 3 / 2 87.795287.491887.490787.0046
434d 8 4f7/2708748 4 d 2 4 4 f ¯ 5 / 2 87.885287.873687.830988.2534
444d 8 4f5/2711392 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 4 4 f 7 / 2 88.213988.201488.199988.5561
454d 8 4f5/2713643 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 3 4 f ¯ 5 / 2 88.460688.480588.459288.9055
464d 8 4f5/2721870 4 d 2 4 4 f 7 / 2 89.658389.500589.503589.9423
474d 8 5p1/2723216 4 d ¯ 0 2 5 p ¯ 1 / 2 90.709989.667489.709789.5125
484d 8 4f1/2725785 4 d ¯ 2 2 4 f ¯ 5 / 2 90.024989.997190.037990.3918
494d 8 4f1/2737104 4 d ¯ 2 2 4 f ¯ 5 / 2 91.873491.389391.429691.9682
504d 8 5p3/2745212 4 d ¯ 0 2 5 p 3 / 2 92.987992.394692.370592.0573
514d 8 4f3/2749681 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 2 4 f ¯ 5 / 2 90.9563 * 92.948692.851393.7464
524d 8 4f1/2753489 ( 4 d ¯ 3 / 2 3 4 d 5 / 2 5 ) 2 4 f ¯ 5 / 2 94.387293.420893.451994.4965
534d 8 4f5/2864592 4 d 4 4 4 f 7 / 2 106.0721 * 107.1958107.1838109.8049
544d 8 4f7/2870470 4 d 2 4 4 f 7 / 2 107.4877 * 107.9246108.0401110.2660
554d 8 4f3/2874794 4 d ¯ 2 2 4 f ¯ 5 / 2 107.6293 * 108.4607108.4489110.8660
564d 8 4f5/2887203 4 d ¯ 2 2 4 f ¯ 5 / 2 109.4709 * 109.9992110.0328112.3180
574p 5 4d 10 1/2924721 4 p ¯ 1 / 2 116.2848 * 114.6508114.6494115.8723
Energy levels (in cm −1) as represented in Churilov and Joshi [5], * Values with 4d64f3 configuration included.
Table 5. Same as Table 2 but for Xe 10 + .
Table 5. Same as Table 2 but for Xe 10 + .
IndexConfigurationJLevel StatePresentExp [6]HFR [14]RCI [14]
14d 8 40 4 d 4 4 0.00000.00000.00000.0000
24d 8 213140 4 d 2 4 1.74151.62921.68111.8015
34d 8 315205 4 d ¯ 3 / 2 3 4 d 5 / 2 5 1.82041.88521.86171.8688
44d 8 226670 4 d ¯ 3 / 2 3 4 d 5 / 2 5 3.40803.30673.31123.4620
54d 8 032210 4 d 0 4 4.24533.99354.02642.5905
64d 8 134610 4 d ¯ 3 / 2 3 4 d 5 / 2 5 4.54074.29114.30654.5968
74d 8 440835 4 d ¯ 3 / 2 3 4 d 5 / 2 5 5.48725.06295.04605.3922
84d 8 242900 4 d ¯ 2 2 5.40035.31895.35565.5356
94d 8 088130 4 d ¯ 0 2 11.087110.926710.94609.7872
104d 7 5p3725825 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 5 / 2 5 p ¯ 1 / 2 89.831089.990990.019689.8633
114d 7 5p4731458 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 7 / 2 5 p 3 / 2 90.443990.689390.727090.5293
124d 7 5p3733755 4 d 9 / 2 3 5 p 3 / 2 90.788790.974191.024890.8299
134d 7 5p4737388 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 7 / 2 5 p 3 / 2 91.198091.424591.424191.1814
144d 7 5p4739542 ( 4 d ¯ 3 / 2 3 4 d 2 4 ) 7 / 2 5 p ¯ 1 / 2 91.531691.691691.710291.6168
154d 7 5p5740348 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 11 / 2 5 p ¯ 1 / 2 91.722191.791591.776791.7197
164d 7 5p3741800 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 7 / 2 5 p 3 / 2 91.890091.971591.975191.8800
174d 7 5p3744955 4 d 3 / 2 3 5 p 3 / 2 92.305492.362792.353092.9385
184d 7 5p1745470 ( 4 d ¯ 3 / 2 3 4 d 2 4 ) 3 / 2 5 p ¯ 1 / 2 92.346492.426592.429992.3399
194d 7 5p3749351 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 5 / 2 5 p ¯ 1 / 2 92.928292.907792.905093.5021
204d 7 5p2750512 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 7 / 2 5 p 3 / 2 93.111893.051793.069393.4798
214d 7 5p2753795 ( 4 d ¯ 3 / 2 3 4 d 2 4 ) 1 / 2 5 p 3 / 2 93.485393.458793.460893.8036
224d 7 5p1754745 4 d 3 / 2 3 5 p 3 / 2 93.895793.576593.621193.7532
234d 7 5p4756016 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 9 / 2 5 p ¯ 1 / 2 93.688793.734193.726093.7626
244d 7 5p1758337 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 5 / 2 5 p 3 / 2 94.473394.021894.041394.2022
254d 7 5p3761266 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 5 / 2 5 p 3 / 2 94.333794.385094.393895.3887
264d 7 5p4763070 ( 4 d ¯ 3 / 2 3 4 d 2 4 ) 7 / 2 5 p 3 / 2 94.581694.608794.646694.6785
274d 7 5p1765770 ( 4 d ¯ 3 / 2 3 4 d 2 4 ) 1 / 2 5 p 3 / 2 95.293494.943494.968195.4116
284d 7 5p3766860 ( 4 d ¯ 3 / 2 3 4 d 2 4 ) 7 / 2 5 p 3 / 2 95.098895.078695.079196.0978
294d 7 5p1767369 ( 4 d ¯ 3 / 2 3 4 d 2 4 ) 3 / 2 5 p 3 / 2 95.202895.141795.161195.1833
304d 7 5p2773315 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 3 / 2 5 p 3 / 2 96.132595.878995.946696.4209
314d 7 5p3773715 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 7 / 2 5 p 3 / 2 96.132095.928595.908896.9597
324d 7 5p4773968 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 11 / 2 5 p 3 / 2 96.346295.959895.988696.3065
334d 7 5p1775030 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 3 / 2 5 p 3 / 2 96.412696.091596.107196.2977
344d 7 5p3780503 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 9 / 2 5 p 3 / 2 97.131996.770196.820497.9562
354d 7 5p1784035 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 1 / 2 5 p 3 / 2 97.496697.208097.240297.4814
364d 7 5p2786580 4 d ¯ 3 / 2 5 p 3 / 2 97.681897.523597.524097.4868
374d 7 5p5789029 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 9 / 2 5 p 3 / 2 97.936097.827297.867697.9756
384d 7 5p1791805 4 d ¯ 3 / 2 5 p 3 / 2 98.524698.171498.1737100.6760
394d 7 5p3795135 4 d ¯ 3 / 2 5 p 3 / 2 98.954198.584298.578599.8198
404d 7 5p3801225 ( 4 d ¯ 0 2 4 d 5 / 2 5 ) 5 / 2 5 p ¯ 1 / 2 99.999899.339399.3609100.7918
414d 7 5p1830260 ( 4 d ¯ 0 2 4 d 5 / 2 5 ) 5 / 2 5 p 3 / 2 103.9132102.9392103.0239103.4795
424d 7 4f4892420 4 d 9 / 2 3 4 f 7 / 2 110.8675110.6460110.6962113.0177
434d 7 4f3894941 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 11 / 2 4 f ¯ 5 / 2 111.3093110.9586111.0141113.5215
444d 7 4f5897383 4 d 9 / 2 3 4 f 7 / 2 110.9844111.2614111.2278113.2369
454d 7 4f3908390 4 d 3 / 2 3 4 f 7 / 2 112.8340112.6261112.6093114.9623
464d 7 4f4911082 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 5 / 2 4 f ¯ 5 / 2 112.7247112.9598112.9980115.0362
474d 7 4f2911665 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 9 / 2 4 f ¯ 5 / 2 112.7447113.0321113.0446115.4546
484d 7 4f3912600 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 7 / 2 4 f 7 / 2 113.3634113.1480113.1855115.4796
494d 7 4f1913877 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 7 / 2 4 f 7 / 2 112.8179113.3064113.3154116.2031
504d 7 4f2924500 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 5 / 2 4 f 7 / 2 113.9633114.6234114.6270117.0618
514d 7 4f4925626 ( 4 d ¯ 3 / 2 3 4 d 4 4 ) 11 / 2 4 f 7 / 2 114.0579114.7631114.7761117.6640
524d 7 4f0933343 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 5 / 2 4 f ¯ 5 / 2 117.7646115.7198115.7151118.1618
534d 7 4f3935035 4 d ¯ 3 / 2 4 f ¯ 5 / 2 115.4998115.9296115.9595118.3774
544d 7 4f5938628 ( 4 d ¯ 2 2 4 d 5 / 2 5 ) 9 / 2 4 f ¯ 5 / 2 116.8915116.3751116.4192118.7650
554p 5 4d 9 2944705 4 p ¯ 1 / 2 4 d ¯ 3 / 2 3 118.9159117.1285117.1295119.3615
564p 5 4d 9 2951795 4 p ¯ 1 / 2 4 d 5 / 2 5 120.5650118.0076118.0396120.3551
574p 5 4d 9 3957488 4 p ¯ 1 / 2 4 d 5 / 2 5 122.7719118.7134118.7241121.5465
Energy levels (in cm −1) as represented in Churilov et al. [6].
Table 6. Wavelengths and transition rates of Xe 7 + for the transitions from 4d 10 5s 2 S 1 / 2 state.
Table 6. Wavelengths and transition rates of Xe 7 + for the transitions from 4d 10 5s 2 S 1 / 2 state.
IndexJ b Wavelength (nm) Transition Rate (A) (10 10 ) (s 1 )
PresentOther Reported PresentOther Reported
103/211.959312.32 a , 12.56 b , 12.332 c , 12.3243 d 128.093140.75 b , 211.225 d
91/211.971312.56 b , 12.3265 d 122.349141 b , 210.8 d
81/216.596316.668 c 1.934
73/217.001517.09 a , 17.09 b , 17.087 c 3.1314 b
61/217.821817.6 a , 17.61 b , 17.603 c 0.3990.35 b
51/217.931917.73 a , 17.76 b , 17.726 c 4.7405 b
43/218.181517.98 a , 17.92 b , 17.958 c 0.7660.5 b
33/218.465918.15 a , 18.07 b 0.0500.125 b
23/218.725918.44 a , 18.31 b , 18.4322 c 0.1650.25 b
Experimental results: a—Fahy et al. [8], c—Ali and Nakamura [9], d—Churilov and Joshi [5]. Theoretical results: b—Fahy et al. [8].
Table 7. Wavelengths and transition rates of Xe 8 + for the transitions from 4d 10 1 S 0 state.
Table 7. Wavelengths and transition rates of Xe 8 + for the transitions from 4d 10 1 S 0 state.
IndexJ b Wavelength (nm) Transition Rate (A) (10 10 ) (s 1 )
PresentOther Reported PresentOther Reported
4318.59738.5420 a , 8.54 b , 8.54 c 13.09912.333 a , 11.333 c
4118.74918.6718 a * 3.2463.167 a
3818.81068.7294 a * 0.0120.033 a
3518.80738.7190 a * 0.1100.033 a
3318.93898.7517 a 1.7831.333 a
3118.83958.8444 a , 8.85 b , 8.85 c 1.6861.933 a , 2.333 c
2919.57639.6449 a , 9.63 b , 9.61 c , 9.639 d , 9.6218 f 57.79751.267 a , 46.667 c
2619.99089.9553 a , 9.963 f 2.2012.2 a
24110.119510.0732 a * , 10.0731 f 0.1140.1 a
21110.299310.2116 a * 0.2050.267 a
19110.379110.2815 a , 10.28 b , 10.29 c , 4.5993.7 a , 4 c
17110.482610.3808 a , 10.38 b , 10.39 c , 2.8782.967 a , 3 c
15111.626512.0133 a , 12.02 b , 12.00 c , 12.019 d , 11.5787 f 157.520151.8 a , 152 c
13114.383514.3614 a , 14.36 b , 14.31 c , 14.3127 f 0.2070.2 a , 0.2 c
10115.146915.0274 a , 15.1155 f 0.0310.033 a
7116.201016.1742 a , 16.18 b , 16.15 c , 16.177 e, 16.1343 f 1.7001.5 a , 8.333 c
5116.522316.5323 a , 16.53 b , 16.50 c , 16.536 e, 16.511 f 7.1298.033 a , 1.333 c
3116.890616.8202 a , 16.7548 f 0.0010.007 a
Experimental results: a—Churilov and Joshi [5], a * —calculated wavelengths from the energy levels [5], b—Fahy et al. [8], d—Ali and Nakamura [10], e—Ali and Nakamura [9]. Theoretical results: c—Fahy et al. [8], f—Ivanova [13].
Table 8. Wavelengths and transition rates of Xe 9 + . a and b denote the indices of initial and final levels, respectively.
Table 8. Wavelengths and transition rates of Xe 9 + . a and b denote the indices of initial and final levels, respectively.
aJ a bJ b Wavelength (nm) Transition Rate (A) (10 10 ) (s 1 )
PresentExp [5]HFR [15]MCDHF [15] PresentHFR [5]HFR [15]MCDHF [15]
23/2571/210.850711.013311.013410.8926 182.421189.800192.000155.000
15/2565/211.325811.271411.267911.0387 2.7461.6171.7170.613
15/2553/211.519611.431211.432511.1833 30.098123.550125.500137.000
23/2565/211.538811.487911.484411.2437 170.353177.667180.000154.000
15/2547/211.534711.488011.475811.2441 174.181180.000183.750155.000
15/2535/211.688711.566111.567411.2913 154.107163.267166.333146.000
23/2553/211.740011.654111.655411.3938 126.26447.37548.25013.300
15/2513/213.631213.339013.353013.2255 0.1770.3000.1990.118
15/2503/213.333413.418913.422513.4682 0.2100.3250.3930.448
23/2521/213.423213.572913.568213.4112 3.7613.1003.3902.600
23/2503/213.629713.727213.730713.7747 0.3580.4500.3650.172
15/2465/213.828513.852913.852413.7849 0.0720.0670.0820.062
23/2491/213.798713.881613.875313.7883 0.7641.0501.2100.585
15/2455/214.015814.012614.016013.9456 0.0430.0500.0410.039
23/2481/214.088514.103214.094814.0344 0.4480.1500.0190.023
15/2437/214.107514.109414.116214.0487 0.0960.1250.1660.100
23/2471/213.979714.154514.147614.1754 0.4500.5500.6350.880
15/2417/214.163514.204614.209114.2712 0.5120.5250.5140.565
15/2395/214.233214.250514.244414.3545 0.0790.0670.0590.109
15/2363/214.355114.338214.333114.2861 0.0310.2250.1040.050
23/2455/214.343514.348814.352414.2745 0.1230.1000.1270.095
23/2445/214.384614.395414.395614.3322 0.0720.0500.0260.026
15/2345/214.370614.407914.410514.4941 0.0800.0830.0730.068
15/2335/214.482914.477114.481114.6004 0.4330.2330.2300.412
15/2323/214.539014.509614.515614.4737 0.0930.4750.4550.029
23/2421/214.454814.515014.515214.5939 7.68610.05010.35010.000
15/2313/214.499014.532514.532414.6292 2.8502.3502.3382.550
15/2307/214.567514.539714.541114.5202 0.1460.0380.0490.013
23/2401/214.606114.578814.580414.5438 0.2200.1000.0650.164
23/2395/214.571314.598314.592014.7032 3.6753.0173.1504.417
23/2385/214.664314.610714.611914.5614 0.0550.2670.3800.028
15/2287/214.615914.614814.615414.7224 0.2410.1250.1410.353
15/2273/214.618614.641314.642114.7388 0.7280.6001.0030.973
15/2265/214.635914.644814.640014.7605 0.0110.2170.2430.084
15/2253/214.672814.653214.631014.6145 0.3310.4000.1810.005
23/2375/214.619714.662214.654014.6059 0.0010.1830.2070.021
23/2351/214.669614.738114.738114.8026 0.7500.9500.9100.990
15/2235/214.771314.741814.747914.7139 0.3560.1000.1050.001
15/2213/214.733414.761814.765814.8638 5.5665.6505.9256.700
23/2345/214.715414.764014.766414.8497 1.0731.1001.0930.930
15/2207/214.803314.773414.771114.7386 0.1410.1630.1550.022
15/2195/214.804314.795614.800614.9278 3.2645.3505.7506.983
15/2183/214.835814.833314.837614.9588 0.0141.3001.2380.190
23/2335/214.833114.835914.840614.9613 1.7522.1502.1831.933
23/2323/214.892014.870914.876814.8283 0.0251.2001.1634.98E−5
23/2313/214.850014.894214.894414.9915 2.5323.3253.6753.525
15/2165/214.887114.902014.895715.0272 2.0462.2172.4503.033
15/2157/214.944314.935814.933015.0673 1.2152.4382.4131.413
15/2145/214.997114.958314.956915.1121 0.7271.1001.1450.733
23/2291/214.979814.968214.959214.9520 0.2390.4500.2500.002
23/2273/214.975515.008915.009715.1067 6.0186.0506.7756.775
23/2265/214.993715.012415.007515.1295 0.8490.9330.9900.805
23/2253/215.032415.021615.020614.9761 0.0950.6500.0810.021
23/2241/215.053615.044415.021615.1750 0.5240.7000.8801.070
15/2135/215.044715.054415.049515.1753 3.2383.9674.0673.383
15/2123/215.114315.102015.101115.2491 0.1360.3250.3230.172
23/2235/215.135815.114115.121915.0805 0.0990.1170.0740.003
23/2221/215.077815.129115.133615.2218 0.3330.4000.4140.277
23/2213/215.096015.135615.139715.2380 0.7140.1750.1580.615
15/2117/215.204915.174715.170215.3278 0.9311.0751.1181.070
23/2195/215.170515.176215.176315.3053 0.3850.6670.7430.643
15/2105/215.224515.205815.205515.3540 1.6911.8331.8671.640
23/2165/215.257415.283215.276315.4098 0.4700.2170.2280.333
15/283/215.324915.284915.282515.4489 0.0350.1000.0980.017
23/2135/215.423015.443315.438115.5656 0.2250.2000.2180.253
15/277/215.510815.458815.460415.6294 0.0180.0380.0380.023
15/265/215.505515.468015.468215.6368 0.2520.3170.3420.275
23/2123/215.496215.493515.492415.6432 0.3440.3250.3530.305
15/253/215.532515.524815.528715.4661 0.0430.0500.0390.495
23/291/215.649215.630015.632715.7993 0.0040.0500.0360.013
23/283/215.717615.685715.683315.8536 0.0090.0500.0450.037
15/243/215.410815.892415.897315.6936 0.2530.3000.5350.041
15/237/215.956015.897215.894716.0914 0.0120.0250.0200.015
23/253/215.936115.938815.942815.8717 0.1820.1250.1550.008
23/243/215.807916.326216.331616.1114 0.0040.0500.0610.148
Table 9. Wavelengths and transition rates of Xe 10 + . a and b refer to the indices of initial and final levels, respectively.
Table 9. Wavelengths and transition rates of Xe 10 + . a and b refer to the indices of initial and final levels, respectively.
aJ a bJ b Wavelength (nm) Transition Rate (A) (10 10 ) (s 1 )
PresentExp [6]HFR [14]RCI [14] PresentHFR [6]HFR [14]RCI [14]
3357310.250710.612510.609410.3598 9.08914.48614.28610.286
6156210.686110.902710.901310.7106 83.64460.56061.00052.200
7457310.571210.909310.906610.6741 173.558151.143152.857128.000
8257310.563410.933910.936410.6873 13.42419.07119.42916.714
8256210.765811.002611.002810.7982 40.68794.46095.80078.400
8255210.922211.088911.092410.8925 141.50987.94087.60074.400
2248311.107511.117911.119210.9066 14.75328.65728.14314.571
6152010.950411.126811.128810.9175 191.711189.600191.000158.000
7454511.129211.138411.132310.9360 191.990194.364196.364165.455
1444511.171311.143511.146910.9491 186.179189.364191.818162.727
3347211.177411.155211.151410.9155 78.60678.42084.20098.000
3346411.179411.162211.156110.9551 182.634185.556187.778161.111
2245311.160511.170611.177010.9565 107.137147.571150.000139.714
1443311.138711.173911.168410.9217 87.638160.143161.429140.571
7453311.270011.183411.178510.9735 0.11812.78612.95711.343
3345311.168411.195411.195210.9630 26.16722.71422.28611.257
1442411.183111.205511.200410.9703 172.910174.444176.667152.222
8253311.261111.208911.209810.9874 92.121162.857164.286142.000
6150211.330811.237311.238511.0243 28.80641.46041.80043.400
7451411.419711.302111.299011.0432 155.527162.44416.55614.778
6149111.450611.373111.373811.1091 66.40850.43352.00038.333
6147211.458411.402011.402111.1841 54.73727.10028.80022.200
7440313.118313.151513.145813.0111 7.7075.0295.1710.054
8240313.106213.186513.189113.0307 1.5401.7711.8290.102
7439313.265113.257313.255713.1301 3.4797.0296.8867.100
4234313.228713.265813.259013.1208 2.7491.8571.9000.002
6136213.311413.298313.300513.3474 2.2583.3803.4401.422
8238113.313813.352913.069912.7538 2.3214.7004.7000.023
7437513.411113.365513.357313.3916 2.9552.4822.5642.864
4230213.371313.393413.384113.3375 4.8813.9204.0400.045
3325313.401813.403713.399113.2575 0.2834.2574.3000.667
1417313.432013.423813.425013.3405 4.8625.4575.7140.071
9041113.356613.475013.465113.2331 6.7716.7336.8675.867
2222113.454013.484413.485313.4836 6.7484.8004.8673.733
8235113.462513.492713.493513.4845 3.5255.4675.5676.767
3323413.495913.498713.496513.4921 5.3886.4566.2333.178
1415513.517413.507213.509313.5177 3.9615.7185.7363.064
4228313.522013.510013.510613.3840 2.3324.0433.9430.281
1414413.545513.521913.519113.5329 1.2401.1781.2670.680
4227113.493413.529813.527013.4839 4.7864.9675.1330.134
3321213.525813.539313.535513.4861 1.3694.1204.3000.980
8234313.516013.557113.555413.4152 1.4271.6141.6291.413
1413413.595113.561413.561413.5975 4.4203.5003.5565.289
3320213.581213.599713.593613.5338 1.8591.8201.9082.380
5029113.631013.602513.604513.3903 2.4242.5002.5731.057
3319313.608513.621313.618213.5305 2.6423.8293.9861.024
1412313.656413.629013.620913.6502 1.6421.6861.7290.766
7432413.645813.640113.633213.6375 6.9814.1225.6331.533
7431313.678013.645113.645213.5402 2.1422.2292.3710.001
2218113.684013.654713.662413.6941 2.2733.3673.4672.187
8233113.622813.658413.661913.6604 1.9702.8673.0102.347
4224113.614913.667013.665213.6636 2.8253.3003.1371.877
1411413.708413.671313.665613.6955 1.0874.6894.7781.756
8231313.664913.682913.691913.5615 2.5881.9142.0141.087
2216313.753313.723813.731213.7640 1.0302.1222.2001.154
1410313.801913.777813.773013.7970 1.2031.8711.9001.186
7426413.916113.845913.837413.8862 0.9992.2142.1221.311
Table 10. Cross section fitting parameters of Xe 7 + for the transitions from 4d 10 5s 2 S 1 / 2 state.
Table 10. Cross section fitting parameters of Xe 7 + for the transitions from 4d 10 5s 2 S 1 / 2 state.
f J f x 0 x 1 x 2 x 3 y 1 y 2 d 0 d 1
103/25.576E−011.286E−025.801E−04−2.658E−063.022E−023.335E−03−7.154E+004.556E+00
91/22.882E−01−3.583E−021.310E−05−8.965E−02−4.299E−03−3.466E+002.192E+00
81/22.390E−023.721E−03−1.498E−051.072E−074.181E−017.597E−03−1.399E−019.347E−02
73/26.595E−022.499E−03−2.743E−051.472E−071.469E−011.871E−04−6.290E−013.595E−01
61/2−1.778E−03−3.447E−032.617E−06−5.192E−08−1.066E+00−3.835E−02−3.549E−022.399E−02
51/26.352E−022.428E−033.769E−081.411E−011.820E−03−4.145E−012.920E−01
43/25.399E−021.287E−02−3.358E−052.916E−071.143E+002.860E−02−1.234E−019.544E−02
33/2−4.022E−03−1.981E−041.350E−06−7.126E−011.596E−03−9.671E−036.795E−03
23/2−7.036E−03−1.887E−031.368E−05−8.193E−08−8.662E−01−9.805E−03−1.633E−021.929E−02
Table 11. Cross section fitting parameters for Xe 8 + for the transitions from 4d 10 1 S 0 state.
Table 11. Cross section fitting parameters for Xe 8 + for the transitions from 4d 10 1 S 0 state.
f J f x 0 x 1 x 2 x 3 y 1 y 2 d 0 d 1
4311.044E−01−7.849E−03−1.655E−051.709E−02−7.292E−03−3.341E−027.487E−02
4112.816E−02−2.014E−03−4.603E−062.605E−02−7.363E−03−3.341E−027.487E−02
381−4.591E−042.936E−05−4.303E−086.919E−10−3.475E−011.789E−026.634E−042.572E−04
3511.021E−04−9.405E−05−3.567E−078.948E−10−2.412E−01−1.337E−02−3.167E−032.348E−03
3316.951E−03−2.716E−03−9.772E−063.338E−08−5.202E−01−2.366E−02−6.374E−023.891E−02
3114.165E−03−1.042E−031.409E−06−1.362E−08−2.356E−01−7.107E−03−5.827E−023.553E−02
2913.780E−01−2.712E−02−4.510E−05−6.424E−03−4.922E−03−1.935E+001.679E+00
2611.775E−02−4.449E−03−1.445E−05−1.671E−01−2.114E−02−8.387E−027.213E−02
241−2.540E−032.083E−043.607E−06−1.109E−08−4.955E−013.809E−02−3.575E−033.621E−03
2114.408E−04−2.197E−044.829E−07−3.464E−09−2.846E−01−6.943E−03−1.061E−026.779E−03
1912.079E−02−5.369E−03−8.215E−06−2.274E−01−1.032E−02−2.413E−011.562E−01
1711.443E−02−5.786E−03−9.969E−06−3.936E−01−1.756E−02−1.552E−011.008E−01
1511.214E+00−4.966E−02−1.393E−041.188E−02−2.411E−03−1.232E+017.758E+00
131−1.350E−02−6.530E−044.946E−06−1.905E−08−6.725E−01−7.720E−04−2.388E−021.930E−02
101−5.999E−022.896E−03−5.797E−053.560E−07−8.149E−01−1.112E−023.911E−031.751E−03
716.010E−029.396E−03−4.047E−052.538E−074.611E−017.450E−03−3.543E−012.263E−01
512.421E−012.923E−02−5.968E−054.494E−073.173E−016.359E−03−1.526E+001.009E+00
311.897E−031.477E−04−4.298E−063.734E−08−6.075E−011.325E−014.609E−042.199E−06
Table 12. Cross section fitting parameters for Xe 9 + . a and b refer to the indices of the initial and final levels, respectively.
Table 12. Cross section fitting parameters for Xe 9 + . a and b refer to the indices of the initial and final levels, respectively.
a J a b J b x 0 x 1 x 2 x 3 y 1 y 2 d 0 d 1
23/2571/23.056E−011.176E−02−1.971E−051.321E−071.698E−011.873E−03−1.717E+001.207E+00
15/2565/21.374E−021.759E−032.290E−062.758E−094.156E−011.212E−02−5.725E−024.089E−02
15/2553/28.823E−026.827E−031.098E−05−5.737E−092.423E−016.028E−03−4.267E−013.146E−01
23/2565/21.035E+006.391E−026.011E−051.005E−072.016E−014.138E−03−5.513E+004.014E+00
15/2547/29.348E−015.812E−025.689E−058.184E−082.015E−014.163E−03−5.017E+003.643E+00
15/2535/26.786E−015.081E−028.792E−05−7.732E−082.280E−015.637E−03−3.405E+002.515E+00
23/2553/25.657E−014.438E−028.448E−05−9.669E−082.339E−016.025E−03−2.817E+002.086E+00
15/2513/21.483E−03−2.150E−03−6.311E−062.082E−08−4.478E−01−9.066E−027.413E−034.252E−03
15/2503/2−1.633E−03−6.857E−04−1.676E−063.357E−09−8.329E−01−5.028E−02−1.824E−033.502E−03
23/2521/2−9.315E−03−1.618E−02−7.248E−051.933E−07−2.187E+00−1.254E−01−6.090E−024.506E−02
23/2503/2−8.411E−03−1.331E−03−7.320E−07−3.433E−09−1.015E+00−3.252E−02−6.624E−039.189E−03
15/2465/2−9.020E−03−6.737E−05−6.880E−06−8.231E−01−9.125E−02−1.445E−031.805E−03
23/2491/2−6.386E−03−1.075E−03−8.103E−063.510E−08−9.694E−01−4.186E−02−1.319E−029.703E−03
15/2455/2−8.198E−032.644E−04−9.617E−066.500E−08−9.794E−01−3.430E−02−5.128E−041.133E−03
23/2481/2−4.603E−03−2.201E−044.850E−06−1.938E−08−9.938E−011.151E−02−9.463E−036.154E−03
15/2437/2−5.336E−03−3.585E−04−2.002E−051.056E−07−9.708E−01−3.847E−01−1.592E−031.153E−03
23/2471/2−7.349E−04−4.381E−04−1.050E−07−1.474E−09−6.940E−01−1.885E−02−9.577E−036.063E−03
15/2417/2−2.347E−04−1.700E−03−2.480E−063.769E−10−7.088E−01−2.624E−02−2.996E−021.924E−02
15/2395/2−3.032E−04−1.082E−043.069E−07−2.097E−09−5.188E−01−9.640E−03−3.506E−032.239E−03
15/2363/2−9.068E−033.793E−04−9.565E−066.537E−08−1.031E+00−1.342E−021.092E−035.686E−04
23/2455/2−1.961E−02−6.052E−04−1.407E−05−1.028E+00−8.287E−02−4.095E−035.313E−03
23/2445/24.846E−036.598E−045.100E−06−3.904E−019.545E−022.191E−042.778E−03
15/2345/2−1.394E−03−3.671E−04−3.059E−07−1.188E−09−6.339E−01−3.262E−021.056E−052.350E−03
15/2335/2−1.103E−03−1.120E−03−9.484E−07−2.286E−09−7.425E−01−2.403E−02−2.029E−021.306E−02
15/2323/2−8.471E−032.335E−04−1.088E−058.284E−08−1.071E+00−2.748E−02−1.700E−031.823E−03
23/2421/24.540E−021.850E−02−1.009E−052.004E−071.437E+004.170E−02−1.740E−011.142E−01
15/2313/21.616E−02−1.804E−03−2.207E−041.562E−061.606E−01−6.303E−02−8.327E−025.704E−02
15/2307/2−3.222E−021.096E−03−3.375E−052.293E−07−1.239E+00−1.772E−02−5.527E−035.304E−03
23/2401/2−6.778E−035.727E−05−2.581E−062.117E−08−1.105E+003.250E−03−4.217E−033.194E−03
23/2395/21.929E−02−1.219E−02−2.534E−05−4.571E−01−2.306E−02−2.481E−011.680E−01
23/2385/2−1.191E−026.834E−05−5.442E−06−1.034E+00−3.971E−02−1.653E−032.362E−03
15/2287/2−9.910E−03−3.222E−042.103E−06−1.018E+002.659E−03−1.408E−029.679E−03
15/2273/27.091E−04−1.521E−03−4.489E−061.017E−08−7.348E−01−3.350E−02−2.288E−021.492E−02
15/2265/2−7.491E−04−2.049E−04−1.806E−07−5.123E−01−6.014E−021.927E−033.460E−04
15/2253/2−1.649E−02−7.656E−04−1.481E−05−1.169E+00−8.421E−02−9.228E−036.756E−03
23/2375/21.347E−02−1.652E−041.441E−06−1.463E−011.037E−013.325E−03−4.932E−04
23/2351/2−6.915E−03−2.359E−03−1.747E−06−3.947E−09−1.913E+00−5.451E−02−1.792E−021.170E−02
15/2235/2−2.843E−021.988E−04−1.981E−051.415E−07−1.255E+00−1.060E−02−1.509E−021.099E−02
15/2213/23.088E−025.424E−033.431E−064.729E−011.200E−02−1.802E−011.181E−01
23/2345/2−3.461E−02−2.093E−024.367E−05−4.088E−07−3.517E+00−9.442E−02−7.586E−025.100E−02
15/2207/21.357E−039.443E−047.988E−06−4.844E−019.045E−02−4.634E−035.359E−03
15/2195/2−7.530E+24−4.281E+24−3.989E+21−3.507E+26−1.152E+25−1.611E−011.053E−01
15/2183/2−4.844E−04−3.854E−05−5.814E−09−6.284E−01−1.850E−023.802E−043.062E−04
23/2335/24.114E−04−1.002E−02−3.286E−058.621E−08−8.233E−01−3.897E−02−1.274E−018.530E−02
23/2323/26.895E−038.497E−051.816E−06−2.211E−011.019E−011.099E−034.752E−04
23/2313/28.890E−03−6.060E−03−1.281E−05−4.683E−01−2.365E−02−1.242E−018.251E−02
15/2165/21.358E−03−7.669E−03−2.180E−054.608E−08−8.152E−01−3.729E−02−1.020E−016.715E−02
15/2157/2−1.196E−03−7.781E−03−3.165E−059.722E−08−8.377E−01−4.796E−02−6.951E−025.389E−02
15/2145/2−1.384E−03−2.995E−03−7.747E−061.481E−08−8.195E−01−3.810E−02−3.340E−022.437E−02
23/2291/2−8.195E−04−3.932E−04−6.083E−07−7.390E−01−2.853E−02−5.428E−033.977E−03
23/2273/25.091E−024.394E−03−3.825E−051.917E−073.152E−011.431E−03−3.033E−012.013E−01
23/2265/2−1.883E−03−5.228E−03−1.323E−052.773E−08−9.040E−01−3.855E−02−6.374E−024.271E−02
23/2253/2−1.608E−024.219E−04−1.286E−058.943E−08−1.603E+00−6.194E−03−3.532E−033.001E−03
23/2241/2−2.617E−03−8.798E−041.155E−06−1.013E−08−1.011E+00−2.273E−02−1.343E−028.797E−03
15/2135/24.754E−03−1.234E−02−2.252E−05−7.931E−01−3.492E−02−1.657E−011.097E−01
15/2123/2−1.464E−03−5.047E−053.431E−06−1.568E−08−6.706E−011.973E−02−4.436E−033.120E−03
23/2235/2−8.887E−033.393E−041.236E−05−4.550E−08−1.347E+007.738E−02−6.560E−034.980E−03
23/2221/2−7.425E−04−8.053E−04−2.337E−065.950E−09−1.032E+00−4.496E−02−8.145E−035.670E−03
23/2213/2−3.277E−03−3.982E−03−1.117E−052.534E−08−1.107E+00−5.097E−02−3.367E−022.447E−02
15/2117/2−2.037E−03−5.243E−03−1.403E−052.794E−08−8.092E−01−3.785E−02−6.029E−024.342E−02
23/2195/2−5.526E−03−2.375E−03−8.007E−07−9.625E−09−9.796E−01−3.047E−02−2.758E−022.007E−02
15/2105/2−5.526E−03−2.375E−03−8.007E−07−9.625E−09−9.796E−01−3.047E−02−8.592E−025.951E−02
23/2165/24.399E−04−3.478E−03−1.542E−054.863E−08−8.465E−01−4.849E−02−3.464E−022.494E−02
15/283/2−6.707E−046.903E−051.874E−06−7.268E−09−6.758E−017.029E−02−1.007E−038.332E−04
23/2135/2−7.900E−04−1.675E−03−4.275E−068.673E−09−9.697E−01−4.261E−02−1.788E−021.233E−02
15/277/2−2.075E−041.583E−043.899E−06−1.582E−08−6.766E−011.330E−01−7.710E−048.472E−04
15/265/2−3.073E−03−1.153E−03−7.322E−07−3.743E−09−8.339E−01−3.073E−02−9.964E−039.362E−03
23/2123/2−3.205E−03−2.176E−03−5.431E−061.109E−08−1.065E+00−5.010E−02−1.519E−021.277E−02
15/253/2−2.835E−033.474E−044.194E−06−1.756E−08−8.477E−019.561E−021.555E−031.078E−03
23/291/24.353E−042.770E−052.759E−07−6.872E−012.183E−01−2.835E−056.334E−05
23/283/2−1.293E−034.224E−05−6.818E−073.227E−09−5.073E−011.955E−041.282E−052.775E−04
15/243/2−6.739E−021.116E−03−1.703E−059.089E−08−1.792E+007.802E−032.555E−037.192E−03
15/237/23.370E−043.605E−041.689E−06−6.613E−011.489E−019.439E−045.927E−04
23/253/2−5.758E−04−1.325E−03−6.612E−062.215E−08−1.067E+00−6.396E−02−9.803E−037.328E−03
23/243/2−3.864E−021.479E−03−2.660E−051.627E−07−1.324E+007.284E−038.685E−036.476E−04
Table 13. Cross section fitting parameters for Xe 10 + . a and b refer to the indices of the initial and final levels, respectively.
Table 13. Cross section fitting parameters for Xe 10 + . a and b refer to the indices of the initial and final levels, respectively.
a J a b J b x 0 x 1 x 2 x 3 y 1 y 2 d 0 d 1
335733.856E−023.924E−037.081E−06−6.509E−094.070E−011.123E−02−1.383E−019.985E−02
615626.774E−017.074E−021.372E−04−1.478E−074.034E−011.167E−02−2.190E+001.707E+00
745736.893E−016.159E−029.215E−05−3.809E−083.926E−011.023E−02−1.975E+001.605E+00
825738.608E−028.873E−031.555E−05−1.118E−083.964E−011.111E−02−2.862E−012.217E−01
825622.070E−012.263E−024.735E−05−6.084E−084.225E−011.266E−02−6.544E−015.100E−01
825527.935E−019.191E−022.120E−04−3.230E−074.528E−011.434E−02−2.329E+001.853E+00
224831.169E−011.671E−024.725E−05−9.097E−085.033E−011.795E−02−3.641E−012.829E−01
615203.670E−014.161E−029.169E−05−1.278E−074.516E−011.411E−02−1.045E+008.425E−01
745451.342E+001.887E−015.396E−04−1.066E−064.967E−011.772E−02−4.146E+003.237E+00
144451.340E+001.922E−015.601E−04−1.131E−065.109E−011.846E−02−4.056E+003.175E+00
334723.669E−014.715E−021.266E−04−2.403E−075.117E−011.771E−02−9.723E−017.893E−01
334641.397E+001.998E−015.833E−04−1.179E−065.124E−011.855E−02−4.192E+003.286E+00
224538.901E−011.243E−013.531E−04−6.938E−075.056E−011.803E−02−2.655E+002.088E+00
144334.440E−015.528E−021.411E−04−2.504E−075.055E−011.708E−02−1.162E+009.482E−01
74533−7.137E−04−1.310E−04−2.108E−074.500E−10−8.434E−01−2.446E−02−2.417E−031.560E−03
334531.678E−012.262E−026.238E−05−1.203E−075.242E−011.848E−02−4.570E−013.664E−01
144241.091E+001.469E−014.094E−04−8.016E−075.137E−011.814E−02−3.034E+002.429E+00
825338.118E−011.212E−013.721E−04−7.946E−075.407E−012.022E−02−2.344E+001.847E+00
615023.221E−014.756E−021.453E−04−3.097E−075.539E−012.078E−02−8.763E−017.014E−01
745141.079E+001.696E−015.509E−04−1.248E−065.823E−012.269E−02−2.918E+002.326E+00
614914.580E−017.460E−022.517E−04−5.931E−075.912E−012.345E−02−1.269E+001.001E+00
614726.249E−011.035E−013.485E−04−8.087E−075.947E−012.369E−02−1.746E+001.376E+00
74403−6.599E−02−6.468E−02−1.212E−048.066E−08−4.000E+00−1.507E−01−2.142E−011.338E−01
82403−6.633E−03−1.035E−02−1.276E−05−1.813E−08−1.862E+00−6.513E−02−7.919E−024.795E−02
74393−4.284E−02−3.422E−02−7.159E−058.431E−08−4.292E+00−1.691E−01−9.679E−026.300E−02
42343−2.599E−02−3.106E−02−5.495E−054.580E−08−3.017E+00−1.093E−01−1.452E−018.824E−02
61362−7.498E−02−5.240E−02−1.229E−042.234E−07−4.902E+00−1.883E−01−1.384E−018.802E−02
82381−4.106E−03−5.230E−032.451E−06−5.463E−08−1.424E+00−4.290E−02−5.329E−023.259E−02
74375−1.177E−02−1.583E−02−1.377E−05−7.590E−08−1.439E+00−5.348E−02−1.325E−018.631E−02
42302−3.874E−02−4.511E−02−1.002E−041.610E−07−3.260E+00−1.246E−01−1.880E−011.155E−01
33253−2.119E−03−8.258E−042.084E−06−1.516E−08−1.192E+00−2.525E−02−1.124E−027.022E−03
141731.777E+451.063E+452.215E+421.010E+473.643E+45−1.483E−019.076E−02
90411−1.387E−01−1.824E−01−3.238E−042.822E−07−3.300E+00−1.189E−01−7.989E−014.791E−01
22221−2.337E−02−3.028E−02−6.264E−058.367E−08−2.559E+00−9.786E−02−1.581E−019.771E−02
82351−7.682E−03−1.075E−02−1.771E−051.329E−08−1.830E+00−6.477E−02−8.502E−025.116E−02
332341.788E+581.091E+582.091E+555.632E+591.994E+58−2.775E−011.688E−01
14155−2.640E−02−2.772E−02−2.200E−05−9.703E−08−2.014E+00−6.763E−02−1.927E−011.188E−01
42283−2.220E−02−2.563E−02−4.240E−052.213E−08−2.721E+00−9.858E−02−1.307E−018.002E−02
14144−5.409E−03−6.585E−03−1.025E−052.949E−09−1.821E+00−6.558E−02−4.963E−023.060E−02
42271−1.486E−02−1.840E−02−3.223E−051.495E−08−2.129E+00−8.117E−02−1.111E−016.996E−02
33212−1.110E−02−5.965E−039.139E−06−8.721E−08−2.402E+00−5.948E−02−3.898E−022.400E−02
82343−6.230E−03−8.586E−03−8.745E−06−2.580E−08−1.466E+00−5.191E−02−7.861E−024.892E−02
14134−3.719E−02−3.551E−02−7.262E−059.392E−08−2.661E+00−1.010E−01−1.755E−011.101E−01
33202−4.863E−03−6.681E−03−8.585E−06−7.385E−09−1.738E+00−6.104E−02−5.406E−023.297E−02
502913.633E−027.715E−04−6.337E−061.444E−01−5.032E−04−2.978E−011.827E−01
33193−2.710E−02−2.308E−02−2.867E−05−2.763E−08−3.004E+00−1.040E−01−1.065E−016.603E−02
141231.856E−03−3.206E−03−1.852E−056.647E−08−6.132E−01−3.804E−02−4.826E−023.226E−02
74324−4.462E−02−5.445E−02−1.052E−041.327E−07−2.618E+00−9.698E−02−2.883E−011.760E−01
74313−2.038E−02−1.556E−02−2.229E−05−1.144E−08−3.069E+00−1.105E−01−6.650E−024.226E−02
22181−8.687E−03−9.822E−03−1.700E−051.232E−08−2.372E+00−8.731E−02−5.611E−023.469E−02
82331−8.895E−03−7.900E−03−1.006E−05−1.118E−08−2.212E+00−7.918E−02−4.668E−022.964E−02
42241−1.114E−02−1.292E−02−2.677E−053.928E−08−2.530E+00−9.591E−02−6.866E−024.244E−02
14114−4.827E−03−4.479E−032.534E−07−4.019E−08−1.354E+00−4.395E−02−4.338E−022.779E−02
82313−1.813E−02−2.261E−02−2.995E−05−1.856E−08−2.118E+00−7.447E−02−1.504E−019.168E−02
22163−5.591E−03−5.854E−031.359E−06−5.623E−08−1.363E+00−4.263E−02−5.966E−023.723E−02
14103−5.785E−03−2.121E−038.237E−06−5.687E−08−1.435E+00−2.622E−02−2.446E−021.538E−02
74264−4.329E−03−3.606E−035.849E−06−6.065E−08−1.192E+00−3.268E−02−4.228E−022.680E−02
Table 14. Rate coefficients for Xe 7 + for the transitions from the state 4d 10 5s 2 S 1 / 2 at electron temperatures 5, 10, 20, 30, 50, 70, 100 eV.
Table 14. Rate coefficients for Xe 7 + for the transitions from the state 4d 10 5s 2 S 1 / 2 at electron temperatures 5, 10, 20, 30, 50, 70, 100 eV.
Index J f 5101520305070100
103/24.754E−231.111E−182.983E−171.507E−167.403E−162.561E−154.301E−156.296E−15
91/22.326E−235.378E−191.439E−177.259E−173.560E−161.230E−152.064E−153.020E−15
81/23.282E−224.250E−194.351E−181.356E−174.104E−179.603E−171.362E−161.756E−16
73/21.548E−211.689E−181.638E−174.981E−171.474E−163.401E−164.805E−166.186E−16
61/22.863E−222.176E−191.848E−185.218E−181.419E−173.013E−174.076E−175.054E−17
51/23.073E−212.303E−181.974E−175.645E−171.572E−163.456E−164.780E−166.049E−16
43/21.513E−211.015E−188.318E−182.315E−176.232E−171.320E−161.787E−162.217E−16
33/24.540E−222.561E−191.906E−184.933E−181.184E−172.120E−172.540E−172.758E−17
23/29.381E−224.936E−193.642E−189.475E−182.329E−174.412E−175.565E−176.444E−17
Table 15. Rate coefficients for Xe 8 + for the transitions from the state 4d 10 1 S 0 at electron temperatures 5, 10, 20, 30, 50, 70, 100 eV.
Table 15. Rate coefficients for Xe 8 + for the transitions from the state 4d 10 1 S 0 at electron temperatures 5, 10, 20, 30, 50, 70, 100 eV.
Index J b 5101520305070100
4312.593E−273.429E−213.495E−193.414E−183.198E−171.807E−163.674E−166.093E−16
4111.123E−271.154E−211.082E−191.012E−189.086E−184.956E−179.922E−171.626E−16
3816.405E−295.562E−234.740E−214.131E−203.321E−191.547E−182.759E−183.962E−18
3514.422E−293.994E−233.516E−213.154E−202.664E−191.345E−182.562E−184.002E−18
3313.437E−282.673E−222.309E−202.091E−191.839E−181.011E−172.070E−173.518E−17
3112.381E−282.160E−221.962E−201.821E−191.639E−189.172E−181.889E−173.223E−17
2911.835E−255.586E−203.501E−182.688E−171.987E−169.355E−161.769E−152.796E−15
2612.470E−264.364E−212.275E−191.589E−181.067E−174.629E−178.436E−171.294E−16
2417.512E−271.070E−215.033E−203.277E−191.985E−187.497E−181.236E−171.692E−17
2114.471E−275.306E−222.387E−201.536E−199.361E−193.693E−186.413E−189.485E−18
1916.855E−267.798E−213.552E−192.337E−181.494E−176.366E−171.168E−161.826E−16
1715.769E−265.811E−212.537E−191.632E−181.019E−174.252E−177.724E−171.199E−16
1515.115E−231.601E−184.726E−172.497E−161.278E−154.531E−157.652E−151.120E−14
1313.100E−231.180E−191.668E−185.972E−181.999E−174.738E−176.447E−177.717E−17
1011.695E−224.140E−195.012E−181.651E−175.025E−171.071E−161.351E−161.472E−16
715.544E−228.580E−199.307E−182.984E−179.275E−172.215E−163.166E−164.104E−16
513.354E−214.494E−184.655E−171.460E−164.447E−161.046E−151.487E−151.918E−15
311.862E−221.917E−191.715E−184.803E−181.219E−172.161E−172.459E−172.429E−17
Table 16. Rate coefficients for Xe 9 + at electron temperatures 5, 10, 20, 30, 50, 70, 100 eV. a and b denote the indices of the initial and final levels, respectively.
Table 16. Rate coefficients for Xe 9 + at electron temperatures 5, 10, 20, 30, 50, 70, 100 eV. a and b denote the indices of the initial and final levels, respectively.
a J a b J b 5101520305070100
23/2571/22.383E−241.587E−195.989E−183.566E−172.043E−167.829E−161.355E−152.002E−15
15/2565/22.130E−258.764E−212.815E−191.545E−188.152E−182.922E−174.910E−177.100E−17
15/2553/22.345E−248.050E−202.438E−181.301E−176.680E−172.349E−163.918E−165.639E−16
23/2565/22.992E−231.010E−183.043E−171.620E−168.309E−162.921E−154.879E−157.033E−15
15/2547/22.686E−239.102E−192.746E−171.463E−167.508E−162.642E−154.413E−156.363E−15
15/2535/22.498E−237.347E−192.115E−171.100E−165.514E−161.903E−153.152E−154.516E−15
23/2553/22.270E−236.375E−191.807E−179.330E−174.640E−161.592E−152.630E−153.762E−15
15/2513/23.640E−242.313E−203.949E−191.570E−185.934E−181.595E−172.333E−172.996E−17
15/2503/21.068E−248.286E−211.508E−196.185E−192.407E−186.610E−189.761E−181.265E−17
23/2521/26.258E−244.673E−208.517E−193.528E−181.409E−174.068E−176.262E−178.526E−17
23/2503/24.433E−242.793E−204.728E−191.866E−186.962E−181.836E−172.652E−173.363E−17
15/2465/24.080E−242.194E−203.467E−191.308E−184.574E−181.099E−171.473E−171.701E−17
23/2491/24.423E−242.486E−204.047E−191.566E−185.731E−181.489E−172.139E−172.703E−17
15/2455/24.347E−242.078E−203.161E−191.170E−184.018E−189.509E−181.265E−171.450E−17
23/2481/24.152E−241.929E−202.938E−191.097E−183.860E−189.644E−181.354E−171.676E−17
15/2437/22.148E−248.938E−211.300E−194.711E−191.588E−183.733E−184.999E−185.834E−18
23/2471/22.157E−241.088E−201.717E−196.560E−192.384E−186.244E−189.103E−181.179E−17
15/2417/26.800E−243.097E−204.759E−191.803E−186.552E−181.742E−172.581E−173.413E−17
15/2395/21.605E−246.755E−219.910E−203.623E−191.244E−183.050E−184.267E−185.303E−18
15/2363/27.305E−242.834E−204.022E−191.439E−184.775E−181.099E−171.444E−171.635E−17
23/2455/21.533E−236.025E−208.618E−193.103E−181.042E−172.450E−173.286E−173.836E−17
23/2445/22.408E−239.221E−201.306E−184.673E−181.555E−173.598E−174.744E−175.394E−17
15/2345/24.306E−241.681E−202.411E−198.731E−192.973E−187.226E−181.003E−171.230E−17
15/2335/27.734E−242.884E−204.129E−191.506E−185.247E−181.338E−171.938E−172.508E−17
15/2323/28.124E−242.833E−203.885E−191.368E−184.475E−181.024E−171.350E−171.546E−17
23/2421/24.613E−231.794E−192.640E−189.847E−183.555E−179.538E−171.431E−161.921E−16
15/2313/22.637E−239.957E−201.449E−185.368E−181.922E−175.112E−177.628E−171.018E−16
15/2307/22.690E−239.245E−201.263E−184.442E−181.453E−173.327E−174.382E−175.005E−17
23/2401/28.092E−242.731E−203.721E−191.310E−184.313E−181.006E−171.351E−171.587E−17
23/2395/28.348E−233.020E−194.332E−181.594E−175.666E−171.498E−162.231E−162.973E−16
23/2385/21.412E−234.577E−206.131E−192.134E−186.910E−181.571E−172.066E−172.361E−17
15/2287/21.513E−235.111E−206.990E−192.471E−188.200E−181.942E−172.651E−173.191E−17
15/2273/27.840E−242.748E−203.892E−191.421E−185.004E−181.310E−171.940E−172.575E−17
15/2265/23.487E−241.151E−201.551E−195.417E−191.765E−184.079E−185.473E−186.466E−18
15/2253/21.754E−235.701E−207.676E−192.686E−188.794E−182.041E−172.736E−173.212E−17
23/2375/22.612E−238.661E−201.166E−184.058E−181.308E−172.922E−173.762E−174.153E−17
23/2351/28.531E−242.871E−203.986E−191.435E−184.941E−181.252E−171.808E−172.334E−17
15/2235/23.329E−231.023E−191.352E−184.686E−181.519E−173.496E−174.667E−175.457E−17
15/2213/26.701E−232.214E−193.085E−181.120E−173.930E−171.031E−161.531E−162.039E−16
23/2345/23.199E−231.060E−191.473E−185.324E−181.855E−174.807E−177.077E−179.338E−17
15/2207/24.990E−231.496E−191.952E−186.705E−182.141E−174.792E−176.233E−177.021E−17
15/2195/26.960E−232.199E−193.011E−181.082E−173.750E−179.691E−171.426E−161.882E−16
15/2183/22.000E−245.880E−217.619E−202.608E−198.315E−191.883E−182.500E−182.927E−18
23/2335/26.316E−231.953E−192.647E−189.443E−183.243E−178.286E−171.211E−161.588E−16
23/2323/22.371E−236.748E−208.645E−192.939E−189.270E−182.045E−172.630E−172.916E−17
23/2313/25.716E−231.761E−192.392E−188.560E−182.958E−177.634E−171.124E−161.484E−16
15/2165/25.005E−231.504E−192.023E−187.194E−182.466E−176.305E−179.231E−171.213E−16
15/2157/25.519E−231.598E−192.115E−187.445E−182.517E−176.324E−179.144E−171.185E−16
15/2145/22.637E−237.384E−209.644E−193.368E−181.128E−172.803E−174.028E−175.194E−17
23/2291/25.911E−241.642E−202.119E−197.313E−192.397E−185.766E−188.082E−181.012E−17
23/2273/21.516E−224.372E−195.824E−182.066E−177.093E−171.827E−162.692E−163.564E−16
23/2265/23.923E−231.106E−191.452E−185.093E−181.717E−174.313E−176.249E−178.130E−17
23/2253/21.773E−234.711E−205.928E−192.005E−186.334E−181.422E−171.869E−172.147E−17
23/2241/21.122E−233.018E−203.867E−191.333E−184.372E−181.056E−171.488E−171.878E−17
15/2135/29.271E−232.564E−193.361E−181.182E−174.012E−171.022E−161.496E−161.970E−16
15/2123/29.180E−242.314E−202.848E−199.505E−192.958E−186.595E−188.745E−181.032E−17
23/2235/21.708E−234.313E−205.355E−191.804E−185.711E−181.302E−171.745E−172.065E−17
23/2221/26.343E−241.703E−202.196E−197.625E−192.539E−186.291E−189.032E−181.164E−17
23/2213/22.815E−237.500E−209.657E−193.354E−181.118E−172.778E−173.997E−175.162E−17
15/2117/25.762E−231.441E−191.813E−186.215E−182.043E−175.007E−177.158E−179.197E−17
23/2195/23.113E−237.863E−209.875E−193.371E−181.097E−172.635E−173.707E−174.675E−17
15/2105/26.855E−231.713E−192.166E−187.467E−182.480E−176.178E−178.934E−171.162E−16
23/2165/23.111E−237.636E−209.594E−193.297E−181.091E−172.709E−173.910E−175.074E−17
15/283/26.708E−241.494E−201.753E−195.679E−191.698E−183.579E−184.538E−185.060E−18
23/2135/21.836E−234.113E−205.002E−191.689E−185.481E−181.336E−171.910E−172.461E−17
15/277/21.445E−232.902E−203.275E−191.038E−183.015E−186.128E−187.566E−188.171E−18
15/265/22.825E−235.938E−206.983E−192.301E−187.188E−181.659E−172.279E−172.810E−17
23/2123/22.849E−236.095E−207.265E−192.421E−187.711E−181.832E−172.573E−173.246E−17
15/253/21.985E−233.999E−204.555E−191.459E−184.336E−189.195E−181.178E−171.333E−17
23/291/25.039E−249.325E−211.017E−193.152E−198.889E−191.736E−182.079E−182.160E−18
23/283/21.994E−233.579E−203.874E−191.199E−183.385E−186.657E−188.035E−188.436E−18
15/243/21.038E−222.259E−192.666E−188.742E−182.687E−175.941E−177.797E−178.977E−17
15/237/24.994E−237.990E−208.335E−192.534E−187.045E−181.374E−171.659E−171.750E−17
23/253/21.982E−233.436E−203.840E−191.244E−183.873E−189.131E−181.286E−171.635E−17
23/243/21.237E−222.181E−192.388E−187.519E−182.207E−174.647E−175.915E−176.580E−17
Table 17. Rate coefficients for Xe 10 + at electron temperatures 5, 10, 20, 30, 50, 70, 100 eV. a and b denote the indices of the initial and final levels, respectively.
Table 17. Rate coefficients for Xe 10 + at electron temperatures 5, 10, 20, 30, 50, 70, 100 eV. a and b denote the indices of the initial and final levels, respectively.
a J a b J b 5101520305070100
335736.000E−267.754E−213.640E−192.411E−181.531E−176.323E−171.124E−161.689E−16
615622.790E−242.205E−198.794E−185.371E−173.146E−161.220E−152.113E−153.114E−15
745732.171E−241.945E−198.079E−185.035E−173.006E−161.182E−152.056E−153.037E−15
825732.751E−252.488E−201.038E−186.481E−183.882E−171.532E−162.674E−163.965E−16
825629.893E−257.177E−202.781E−181.675E−179.668E−173.707E−166.388E−169.381E−16
825525.066E−243.116E−191.143E−176.695E−173.761E−161.410E−152.407E−153.510E−15
224831.071E−245.457E−201.881E−181.069E−175.826E−172.137E−163.617E−165.247E−16
615202.469E−241.475E−195.359E−183.124E−171.746E−166.520E−161.111E−151.617E−15
745451.287E−236.416E−192.195E−171.243E−166.750E−162.468E−154.173E−156.047E−15
144451.376E−236.577E−192.219E−171.247E−166.727E−162.446E−154.125E−155.966E−15
334723.669E−241.742E−195.860E−183.288E−171.769E−166.407E−161.077E−151.553E−15
334641.452E−236.885E−192.317E−171.300E−167.004E−162.543E−154.287E−156.197E−15
224538.931E−244.316E−191.461E−178.227E−174.444E−161.617E−152.728E−153.946E−15
144334.116E−242.030E−196.917E−183.905E−172.114E−167.693E−161.296E−151.871E−15
745331.136E−264.820E−221.543E−208.382E−204.312E−191.475E−182.386E−183.302E−18
334531.646E−247.888E−202.662E−181.496E−178.062E−172.926E−164.926E−167.109E−16
144241.116E−235.272E−191.771E−179.930E−175.340E−161.935E−153.256E−154.699E−15
825339.624E−244.211E−191.380E−177.640E−174.060E−161.458E−152.447E−153.525E−15
615024.261E−241.742E−195.579E−183.054E−171.604E−165.707E−169.531E−161.368E−15
745141.660E−236.233E−191.940E−171.048E−165.426E−161.910E−153.176E−154.544E−15
614917.470E−242.725E−198.402E−184.515E−172.328E−168.167E−161.357E−151.940E−15
614721.036E−233.753E−191.155E−176.197E−173.192E−161.119E−151.859E−152.659E−15
744031.002E−239.276E−201.818E−187.811E−183.238E−179.658E−171.511E−162.088E−16
824033.387E−243.162E−206.211E−192.672E−181.109E−173.311E−175.187E−177.179E−17
743936.289E−245.238E−209.900E−194.175E−181.697E−174.969E−177.704E−171.055E−16
423437.327E−246.276E−201.199E−185.088E−182.085E−176.167E−179.628E−171.330E−16
613629.279E−247.476E−201.397E−185.855E−182.365E−176.886E−171.065E−161.455E−16
823813.278E−242.632E−204.907E−192.054E−188.282E−182.409E−173.726E−175.100E−17
743751.082E−238.116E−201.479E−186.121E−182.439E−177.020E−171.080E−161.470E−16
423021.187E−239.201E−201.701E−187.097E−182.860E−178.351E−171.296E−161.782E−16
332531.059E−247.892E−211.425E−195.845E−192.290E−186.415E−189.664E−181.286E−17
141731.007E−237.484E−201.364E−185.654E−182.263E−176.571E−171.018E−161.397E−16
904114.570E−233.583E−196.650E−182.783E−171.126E−163.301E−165.139E−167.089E−16
222211.136E−238.316E−201.508E−186.231E−182.486E−177.200E−171.114E−161.526E−16
823515.936E−244.313E−207.792E−193.214E−181.279E−173.691E−175.698E−177.800E−17
332342.014E−231.433E−192.576E−181.060E−174.215E−171.218E−161.883E−162.582E−16
141551.563E−231.092E−191.947E−187.973E−183.147E−179.015E−171.386E−161.889E−16
422831.011E−237.061E−201.260E−185.168E−182.046E−175.887E−179.080E−171.242E−16
141444.171E−242.861E−205.068E−192.069E−188.143E−182.327E−173.573E−174.867E−17
422719.004E−246.406E−201.149E−184.723E−181.872E−175.384E−178.293E−171.132E−16
332123.436E−242.378E−204.215E−191.718E−186.736E−181.909E−172.912E−173.937E−17
823436.615E−244.622E−208.232E−193.368E−181.328E−173.793E−175.821E−177.920E−17
141341.636E−231.086E−191.903E−187.730E−183.027E−178.615E−171.320E−161.795E−16
332024.594E−243.078E−205.411E−192.201E−188.637E−182.464E−173.783E−175.156E−17
502912.657E−231.727E−193.009E−181.220E−174.774E−171.362E−162.093E−162.856E−16
331939.822E−246.462E−201.129E−184.580E−181.791E−175.092E−177.803E−171.061E−16
141236.170E−243.904E−206.709E−192.692E−181.037E−172.897E−174.387E−175.890E−17
743242.599E−231.671E−192.902E−181.174E−174.586E−171.306E−162.006E−162.737E−16
743137.252E−244.551E−207.824E−193.146E−181.219E−173.434E−175.237E−177.088E−17
221815.581E−243.495E−206.011E−192.419E−189.395E−182.660E−174.071E−175.536E−17
823314.742E−243.085E−205.366E−192.170E−188.453E−182.392E−173.654E−174.952E−17
422416.198E−244.066E−207.104E−192.882E−181.128E−173.216E−174.938E−176.731E−17
141145.338E−243.267E−205.556E−192.218E−188.514E−182.372E−173.593E−174.829E−17
823131.404E−238.905E−201.538E−186.204E−182.415E−176.854E−171.051E−161.431E−16
221637.166E−244.264E−207.187E−192.858E−181.094E−173.046E−174.617E−176.218E−17
141033.794E−242.168E−203.586E−191.408E−185.291E−181.437E−172.139E−172.826E−17
742646.860E−243.659E−205.936E−192.313E−188.653E−182.359E−173.535E−174.712E−17
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Sahoo, A.K.; Sharma, L. Electron Impact Excitation of Extreme Ultra-Violet Transitions in Xe7–Xe10 Ions. Atoms 2021, 9, 76. https://doi.org/10.3390/atoms9040076

AMA Style

Sahoo AK, Sharma L. Electron Impact Excitation of Extreme Ultra-Violet Transitions in Xe7–Xe10 Ions. Atoms. 2021; 9(4):76. https://doi.org/10.3390/atoms9040076

Chicago/Turabian Style

Sahoo, Aloka Kumar, and Lalita Sharma. 2021. "Electron Impact Excitation of Extreme Ultra-Violet Transitions in Xe7–Xe10 Ions" Atoms 9, no. 4: 76. https://doi.org/10.3390/atoms9040076

APA Style

Sahoo, A. K., & Sharma, L. (2021). Electron Impact Excitation of Extreme Ultra-Violet Transitions in Xe7–Xe10 Ions. Atoms, 9(4), 76. https://doi.org/10.3390/atoms9040076

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop