Polarizabilities and Rydberg States in the Presence of a Debye Potential
Abstract
:1. Introduction
2. Calculations and Results
3. Rydberg States of He
4. Transition Rates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Qi, Y.Y.; Wang, J.G.; Janev, R.K. Bound-bound transitions in hydrogenlike ions in Debye plasmas. Phys. Rev. A 2009, 80, 032502. [Google Scholar] [CrossRef]
- Zimmermann, R. The Green’s function of the Debye potential: Evaluation of the ground-state polarizability. J. Phys. B 1985, 18, 2817. [Google Scholar] [CrossRef]
- Bahar, M.K.; Soylu, A.; Poszwa, A. The Hulthen Potential Model for Hydrogen Atoms in Debye Plasma. IEEE Trans. Plasma Sci. 2016, 10, 2297. [Google Scholar] [CrossRef]
- Paul, S.; Ho, Y.K. Electric Field on Hydrogen Atom. Phys. Plasmas 2010, 17, 082704. [Google Scholar] [CrossRef]
- Fowler, P.W. Polarizability of the Electron in a Debye Potential. J. Phys. B 1986, 19, L1. [Google Scholar] [CrossRef]
- Saha, B.; Mukherjee, P.K.; Diercksen, G.H.F. Energy levels and structural properties of compressed hydrogen atoms under Debye screening. Astron. Astrophys. 2002, 396, 337. [Google Scholar] [CrossRef]
- Bhatia, A.K.; Drachman, R.J. Polarizabilities of helium and negative hydrogen ion. J. Phys. B Mol. Opt. Phys. 1994, 27, 1299. [Google Scholar] [CrossRef]
- Drachman, R.J.; Bhatia, A.K. Rydberg levels of lithium. Phys. Rev. A 1995, 51, 2926. [Google Scholar] [CrossRef]
- Dalgarno, A.; Lewis, J.T. The exact calculation of long-range forces between atoms by perturbation theory. Proc. R. Soc. Lond. Ser. A 1955, 233, 70. [Google Scholar]
- Drachman, R.J. Long-Range Casimir Forces, Theory and Recent Experiments on Atomic Systems; Levin, F.S., Micha, D.A., Eds.; Plenum Press: New York, NY, USA, 1993; p. 219. [Google Scholar]
M | Present | Qi et al. [1] |
---|---|---|
0.00 | 4.500 | 4.500 |
0.01 | 4.50220 | A |
0.02 | 4.50868 | 4.50820 |
0.025 | 4.51346 | 4.51299 |
0.050 | 4.55220 | 4.55176 |
0.0625 | 4.58049 | 4.58003 |
0.10 | 4.69978 | 4.69933 |
0.20 | 5.27637 | 5.27661 |
μ = 0.0 | 0.02 | 0.025 | 0.05 | 0.0625 | 0.10 | 0.20 | |
---|---|---|---|---|---|---|---|
β1 | 5.3750 | 5.3917 | 5.4009 | 5.4751 | 5.5305 | 5.7636 | 6.9384 |
γ1 | 6.6458 | 6.6750 | 6.6911 | 6.8219 | 6.9182 | 7.3313 | 9.5128 |
α2 | 15.000 | 15.0540 | 15.0838 | 15.3246 | 15.5008 | 16.2498 | 20.0479 |
β2 | 13.3750 | 13.4453 | 13.4840 | 13.7977 | 14.0284 | 15.0195 | 20.3300 |
γ2 | 12.4948 | 12.5829 | 12.6315 | 13.0262 | 13.3179 | 14.5872 | 21.8128 |
α3 | 131.2500 | 131.989 | 132.396 | 135.6875 | 138.1049 | 148.490 | 204.341 |
β3 | 102.031 | 102.817 | 103.249 | 106.758 | 109.349 | 120.632 | 185.434 |
γ3 | 83.2044 | 84.0320 | 84.4974 | 88.1980 | 90.9547 | 103.142 | 178.390 |
Ε | 59.2125 | 59.7110 | 59.9307 | 61.7172 | 63.0371 | 68.7756 | 101.226 |
Δ | 106.500 | 107.036 | 107.331 | 109.724 | 111.484 | 119.044 | 159.391 |
μ = 0.0 | 0.02 | 0.025 | 0.05 | 0.0625 | 0.10 | 0.20 | |
---|---|---|---|---|---|---|---|
α1 | 0.28125 | 0.28139 | 0.28146 | 0.28209 | 0.28255 | 0.28451 | 0.29374 |
β1 | 0.08394 | 0.08406 | 0.08409 | 0.08439 | 0.08461 | 0.08556 | 0.09006 |
γ1 | 0.02596 | 0.02599 | 0.02601 | 0.02614 | 0.02623 | 0.02665 | 0.02864 |
α2 | 0.23438 | 0.23459 | 0.02347 | 0.23568 | 0.23640 | 0.23945 | 0.25390 |
β2 | 0.05225 | 0.05232 | 0.05235 | 0.05267 | 0.05291 | 0.05389 | 0.58670 |
γ2 | 0.01220 | 0.01222 | 0.01224 | 0.01234 | 0.01241 | 0.01272 | 0.14245 |
α3 | 0.51269 | 0.51343 | 0.51384 | 0.51717 | 0.51962 | 0.53003 | 0.58004 |
β3 | 0.09964 | 0.09984 | 0.09994 | 0.10083 | 0.10148 | 0.10426 | 0.11780 |
γ3 | 0.02031 | 0.02037 | 0.02039 | 0.02063 | 0.02080 | 0.02153 | 0.02518 |
ε | 0.05792 | 0.05802 | 0.05808 | 0.05853 | 0.05886 | 0.06027 | 0.06716 |
δ | 0.41602 | 0.41655 | 0.41684 | 0.41926 | 0.42104 | 0.42861 | 0.46501 |
N | L | Present (MHz) | Drachman [6] (MHz) |
---|---|---|---|
10 | 7 | −48.60605124 | −48.60604738 |
10 | 8 | −24.17853458 | −24.17853458 |
A (2p→1s) | A (3p→1s) | A (4p→1s) | |
---|---|---|---|
0.000 | 0.624293 | 0.166670 | 0.071760 |
0.020 | 0.618343 | 0.160013 | 0.066440 |
0.025 | 0.615137 | 0.156613 | 0.064150 |
0.050 | 0.590180 | 0.131877 | 0.053783 |
0.0625 | 0.572693 | 0.115647 | 0.051620 |
0.1000 | 0.503290 | 0.061607 | 0.058523 |
0.2000 | 0.215653 | 0.034923 | 0.070210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, A.K.; Drachman, R.J. Polarizabilities and Rydberg States in the Presence of a Debye Potential. Atoms 2021, 9, 86. https://doi.org/10.3390/atoms9040086
Bhatia AK, Drachman RJ. Polarizabilities and Rydberg States in the Presence of a Debye Potential. Atoms. 2021; 9(4):86. https://doi.org/10.3390/atoms9040086
Chicago/Turabian StyleBhatia, Anand K., and Richard J. Drachman. 2021. "Polarizabilities and Rydberg States in the Presence of a Debye Potential" Atoms 9, no. 4: 86. https://doi.org/10.3390/atoms9040086
APA StyleBhatia, A. K., & Drachman, R. J. (2021). Polarizabilities and Rydberg States in the Presence of a Debye Potential. Atoms, 9(4), 86. https://doi.org/10.3390/atoms9040086