Analytical Cross Section Approximation for Electron Impact Ionization of Alkali and Other Metals, Inert Gases and Hydrogen Atoms
Abstract
:1. Introduction
2. Approximation of the Ionization Cross Section
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huxley, G.H.; Crompton, R.W. The Diffusion and Drift of Electrons in Gases; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Petrović, Z.; Dujko, S.; Marić, D.; Malović, G.; Nikitović, Z.; Šašić, O.; Jovanović, J.; Stojanović, V.; Radmilović-Radenović, M.J. Measurement and interpretation of swarm parameters and their application in plasma modelling. Phys. D Appl. Phys. 2009, 42, 194002. [Google Scholar] [CrossRef]
- Carbone, E.; Graef, W.; Hagelaar, G.; Boer, D.; Hopkins, M.; Stephens, J.; Yee, B.; Pancheshnyi, S.; van Dijk, J.; Pitchford, L.; et al. Data Needs for Modeling Low-Temperature Non-Equilibrium Plasmas: The LXCat Project, History, Perspectives and a Tutorial. Atoms 2021, 9, 16. [Google Scholar] [CrossRef]
- Dutton, J. A survey of electron swarm data. J. Phys. Chem. Ref. Data 1975, 4, 577–856. [Google Scholar] [CrossRef]
- Zecca, A.; Karwasz, G.P.; Brusa, R.S. One century of experiments on electron-atom and molecule scattering: A critical review of integral cross-sections. Riv. Nuovo 1996, 19, 1–146. [Google Scholar] [CrossRef]
- Brusa, R.S.; Karwasz, G.P.; Zecca, A. Analytical partitioning of total cross sections for scattaring on noble gases. Z. Für Phys. D At. Mol. Clust. 1996, 38, 279287. [Google Scholar] [CrossRef]
- Mayorov, S.A. Calculation of characterisctics of electron drift in neon under a dc electric field. Bull. Lebedev Phys. Inst. 2009, 36, 299–304. [Google Scholar] [CrossRef]
- Kodanova, S.K.; Bastikova, N.K.; Ramazanov, T.S.; Maiorov, S.A. Drift of electrons in gas in spatially inhomogeneous periodic electric field. Ukr. J. Phys. 2014, 59, 371. [Google Scholar] [CrossRef]
- Mayorov, S.A. Electron transport coefficients in a helium–xenon mixture. Bull. Lebedev Phys. Inst. 2014, 41, 285–291. [Google Scholar] [CrossRef]
- Golyatina, R.I.; Maiorov, S.A. Characteristics of electron drift in an Ar–Hg Mixture. Plasma Phys. Rep. 2018, 44, 453–457. [Google Scholar] [CrossRef]
- Thomson, J.J. XLII. Ionization by moving electrified particles. Lond. Edinb. Dublin Pilos. Mag. Philos. Mag. J. Sci. 1912, 23, 449–457. [Google Scholar] [CrossRef]
- Gryziński, M. Two-Particle Collisions. I. General Relations for Collisions in the Laboratory System. Phys. Rev. 1965, 138, A305–A321. [Google Scholar] [CrossRef]
- Compton, K.T.; Van Voorhis, C.C. Probability of Ionization of Gas Molecules by Electron Impacts. II Critique. Phys. Rev. 1926, 27, 724–731. [Google Scholar] [CrossRef]
- Wannier, G.H. The Threshold Law for Single Ionization of Atoms or Ions by Electrons. Phys. Rev. 1953, 90, 817–825. [Google Scholar] [CrossRef]
- Lotz, W.Z. An Empirical Formula for the Electron-Impact Ionization Cross-Section. Physik 1967, 206, 205–211. [Google Scholar] [CrossRef]
- Lotz, W.Z. Electron-Impact Ionization Cross-Sections for Atoms up to Z = 108. Physik 1970, 232, 101–107. [Google Scholar] [CrossRef]
- Sobel’man, I.I.; Vainshtein, L.A.; Yukov, E.A. Excitation of Atoms and Broadening of Spectral Lines; Springer Series on Atomic Optical and Plasma Physics; Springer: Berlin/Heidelberg, Germany, 1995; Volume 15. [Google Scholar] [CrossRef]
- Deutsch, H.; Mark, T.D. Calculation of absolute electron impact ionization cross-section functions for single ionization of He, Ne, Ar, Kr, Xe, N and F. Int. J. Mass Spectrom. Ion Process. 1987, 79, Rl–R8. [Google Scholar] [CrossRef]
- Yong-Ki, K.; Rudd, M. Eugene Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A 1994, 50, 3954–3967. [Google Scholar]
- Kaur, J.; Gupta, D.; Naghma, R.; Ghoshal, D.; Antony, B. Electron impact ionization cross sections of atoms. Can. J. Phys. 2015, 93, 617–625. [Google Scholar] [CrossRef]
- Blanco, F.; da Silva, F.F.; Limão-Vieira, P.; García, G. Electron scattering cross section data for tungsten and beryllium atoms from 0.1 to 5000 eV. Plasma Sources Sci. Technol. 2017, 26, 085004. [Google Scholar] [CrossRef] [Green Version]
- Golyatina, R.I.; Maiorov, S.A. Analytical approximation of cross sections of collisions of electrons with atoms of inert gases. Phys. Sci. Technol. 2021, 8, 4–13. [Google Scholar] [CrossRef]
- McGuire, E.J. Electron ionization cross sections in the Born approximation. Phys. Rev. A 1977, 16, 62–72. [Google Scholar] [CrossRef]
- Freund, R.S.; Wetzel, R.C.; Shul, R.J.; Hayes, T.R. Cross-section measurements for electron-impact ionization of atoms. Phys. Rev. A 1990, 41, 3575–3595. [Google Scholar] [CrossRef]
- Povyshev, V.M.; Sadovoy, A.A.; Shevelko, V.P.; Shirkov, G.D.; Vasina, E.G.; Vatulin, V.V. Electron-Impact Ionization Cross Sections of H, He, N, O, AR, XE, AU, PB Atoms and Their Ions in the Electron Energy Range from the Threshold up to 200 kev. JINR Preprint E9-2001-148. 2001, pp. 1–48. Available online: http://www1.jinr.ru/Preprints/2001/e9-2001-148.pdf (accessed on 1 August 2020).
- Database BSR (Quantum-Mechanical Calculations by O. Zatsarinny and K. Bartschat). Available online: www.lxcat.net/BSR (accessed on 1 August 2020).
- Database Siglo. Available online: www.lxcat.net/SIGLO (accessed on 1 August 2020).
- Halle, J.C.; Lo, H.H.; Fite, W.L. Ionization of uranium atoms by electron impact. Phys. Rev. A 1981, 23, 1708–1716. [Google Scholar] [CrossRef]
- Skvortsova, N.N.; Maiorov, S.A.; Malakhov, D.V.; Stepakhin, V.D.; Obraztsova, E.A.; Kenzhebekova, A.I.; Shishilov, O.N. On the dust structures and chain reactions induced over the regolith by gyrotron radiation. JETP Lett. 2019, 109, 441–448. [Google Scholar] [CrossRef]
- Shah, M.B.; Elliott, D.S.; Gilbody, H.B. Pulsed crossed-beam study of the ionisation of atomic hydrogen by electron impact. J. Phys. B At. Mol. Phys 1987, 20, 3501–3514. [Google Scholar] [CrossRef]
- Hu, W.; Fang, D.; Wang, Y.; Yang, F. Electron-impact-ionization cross section for the hydrogen atom. Phys. Rev. A 1994, 49, 989–991. [Google Scholar] [CrossRef]
- McFarland, R.H.; Kinney, J.D. Absolute cross sections of lithium and other alkali metal atoms for ionization by electrons. Phys. Rev. 1965, 137, 1058–1061. [Google Scholar]
- Jalin, R.; Hagemann, R.; Botter, R. Absolute electron impact ionization cross sections of Li in the energy range from 100 to 2000 eV. J. Chem. Phys. 1973, 59, 952–959. [Google Scholar] [CrossRef]
- Bray, I.; Fursa, D.V. Calculation of ionization within the close-coupling formalism. Phys. Rev. A 1996, 54, 2991–3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, B.; Saikia, U.; Naghma, R.; Antony, B. Electron impact total ionization cross sections for plasma wall coating elements. Chin. J. Phys. 2013, 51, 1172–1183. [Google Scholar]
- Brink, G.O. Absolute ionization cross sections of the alkali metals. Phys. Rev. 1964, 134, 345–346. [Google Scholar] [CrossRef]
- Database Phelps, A.V. Available online: www.lxcat.net/PHELPS (accessed on 1 August 2020).
- Johnston, A.R.; Burrow, F.D. Electron-impact ionization of Na. Phys. Rev. A 1995, 51, R1735–R1737. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, P.; Gupta, S.P. Scattering ionization cross section of Sodium atom by electron impact etching. IRJMST 2017, 8, 248–255. [Google Scholar]
- Zapesochnyi, I.P.; Aleksakhin, I.S. Ionization of alkali-metal atoms by slow electrons. Zh. Eksp. Teor. Fiz. 1968, 55, 76–85. Available online: http://www.jetp.ras.ru/cgi-bin/dn/e_028_01_0041.pdf (accessed on 1 August 2020).
- Fujii, K.; Srivastava, S.K. A measurement of the electron-impact ionization cross section of sodium. J. Phys. B At. Mol. Opt. Phys. 1995, 28, L559–L563. [Google Scholar] [CrossRef]
- Tan, W.S.; Shi, Z.; Ying, C.H.; Vuskovic´, L. Electron-impact ionization of laser-excited sodium atom. Phyz. Rev. A 1996, 54, R3710–R3713. [Google Scholar] [CrossRef]
- McCarthy, I.E.; Stelbovlcs, A.T. Ionization: Test of a continuum optical model for electron scattering. Phys. Rev. A 1983, 28, 1328. [Google Scholar] [CrossRef]
- Schappe, R.S.; Walker, T.; Anderson, L.W.; Lin, C.C. Absolute Electron-Impact Ionization Cross Section Measurements Using a Magneto-Optical Trap. Phys. Rev. Lett. 1996, 76, 4328–4331. [Google Scholar] [CrossRef] [PubMed]
- McGuire, E.J. Scaled electron ionization cross sections in the Born approximation for atoms with 55 ≤ Z ≤ 102. Phys. Rev. A 1979, 20, 445–456. [Google Scholar] [CrossRef]
- Korchevoi, Y.P.; Przhonskii, A.M. Effective Electron Impact Excitation and Ionization Cross Sections for Cesium, Rubidium, and Potassium Atoms in the Pre-threshold Region. Sov. Phys. JETP 1967, 24, 1089. Available online: http://www.jetp.ras.ru/cgi-bin/dn/e_024_06_1089.pdf (accessed on 1 August 2020).
Atom | Experiment | Approximation | Cross Section Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No, Symbol | K0, a30 | I, eV | ɛ1 ÷ ɛN, eV | N | Δ, % | α, Å2 | β | γ | εm, eV | ϭ(εm), Å2 | Ci, Å2/eV |
1, H | 4.5 | 13.595 | 14.6 ÷ 3998 | 10 | 2% | 0.827 | 0.351 | 1.91 | 56.2 | 0.628 | 0.061 |
3, Li | 162 | 5.392 | 50 ÷ 500 | 6 | 1% | 5.72 | 0.500 | 1.67 | 21.5 | 3.71 | 1.06 |
11, Na | 162 | 5.139 | 6 ÷ 50 | 21 | 3% | 9.56 | 0.521 | 1.90 | 16.1 | 4.93 | 1.86 |
19, K | 287 | 4.339 | 50 ÷ 500 | 6 | 2% | 6.54 | 0.362 | 1.57 | 25.3 | 6.47 | 1.51 |
37, Rb | 310 | 4.176 | 50 ÷ 500 | 6 | 7% | 4.83 | 0.206 | 1.82 | 28.9 | 6.69 | 1.16 |
55, Cs | 385 | 3.893 | 50 ÷ 500 | 6 | 3% | 3.87 | 0.127 | 1.81 | 41.7 | 8.76 | 0.994 |
Atom | Experiment | Approximation | Cross Section Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No, Symbol | K0, a30 | I, eV | ɛ1 ÷ ɛN, eV | N | Δ, % | α, Å2 | β | γ | εm, eV | ϭ(εm), Å2 | Ci, Å2/eV |
2, He | 1.383 | 24.587 | 30 ÷ 4000 | 21 | 3% | 0.365 | 0.287 | 1.91 | 119 | 0.34 | 0.015 |
10, Ne | 2.68 | 21.564 | 30 ÷ 4000 | 21 | 6% | 0.373 | 0.136 | 2.00 | 180 | 0.68 | 0.017 |
18, Ar | 11.08 | 15.759 | 20 ÷ 4000 | 23 | 3% | 2.92 | 0.285 | 1.86 | 80 | 2.83 | 0.185 |
36, Kr | 16.74 | 13.996 | 20 ÷ 4000 | 22 | 3% | 3.51 | 0.269 | 1.80 | 79 | 3.80 | 0.251 |
54, Xe | 27.06 | 12.127 | 15 ÷ 4000 | 23 | 6% | 4.30 | 0.259 | 1.76 | 74 | 4.99 | 0.355 |
Atom | Experiment | Approximation | Cross Section Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No, Symbol | K0, a30 | I, eV | ɛ1 ÷ ɛN, eV | N | Δ, % | α, Å2 | β | γ | εm, eV | ϭ(εm), Å2 | Ci, Å2/eV |
22, Ti | 148 | 6.83 | 10 ÷ 10,000 | 18 | 4% | 19.1 | 0.654 | 1.85 | 19.1 | 8.17 | 2.80 |
25, Mn | 101 | 7.432 | 8.0 ÷ 2000 | 29 | 8% | 8.39 | 0.413 | 1.62 | 36.4 | 6.9 | 1.13 |
26, Fe | 88 | 7.90 | 9.0 ÷ 200 | 59 | 5% | 14.8 | 1.15 | 1.44 | 23.5 | 5.3 | 1.87 |
28, Ni | 67 | 7.663 | 10 ÷ 10,000 | 17 | 6% | 6.04 | 0.405 | 1.86 | 29.7 | 4.12 | 0.787 |
29, Cu | 40 | 7.724 | 9.0 ÷ 200 | 59 | 2% | 6.86 | 0.645 | 1.52 | 31.0 | 4.0 | 0.891 |
46, Pd | - | 8.33 | 10 ÷ 10,000 | 17 | 3% | 3.09 | 0.146 | 1.89 | 72.3 | 5.7 | 0.371 |
47, Ag | 67 | 7.574 | 8.0 ÷ 200 | 60 | 8% | 7.65 | 0.565 | 1.46 | 36.7 | 5.45 | 1.01 |
74, W | 115 | 7.98 | 15 ÷ 5000 | 17 | 6% | 7.12 | 0.379 | 1.62 | 42.0 | 6.39 | 0.891 |
79, Au | - | 9.223 | 16 ÷ 21,800 | 15 | 8% | 16.5 | 0.265 | 1.86 | 49.7 | 17.2 | 1.79 |
Atom | Experiment | Approximation | Cross Section Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No, Symbol | K0, a30 | I, eV | ɛ1 ÷ ɛN, eV | N | Δ, % | α, Å2 | β | γ | εm, eV | ϭ(εm), Å2 | Ci, Å2/eV |
4, Be | 37.8 | 9.323 | 9.4 ÷ 112 | 28 | 13% | 3.22 | 0.338 | 2.20 | 32.3 | 2.1 | 0.346 |
12, Mg | 72 | 7.646 | 8.0 ÷ 200 | 60 | 3% | 13.7 | 0.714 | 1.87 | 19.9 | 5.3 | 1.79 |
13, Al | 162 | 5.986 | 6.0 ÷ 200 | 60 | 5% | 11.6 | 0.337 | 1.80 | 28.2 | 9.97 | 1.93 |
14, Si | 37 | 8.157 | 9.0 ÷ 200 | 59 | 4% | 9.97 | 0.503 | 1.61 | 34.8 | 6.82 | 1.22 |
80, Hg | 34.4 | 10.434 | 10.9 ÷ 29.2 | 36 | 20% | 1.00 | 0.222 | 1.74 | 73.9 | 1.37 | 0.096 |
82, Pb | - | 7.415 | 8.0 ÷ 200 | 60 | 7% | 12.8 | 0.592 | 1.52 | 31.5 | 8.20 | 1.74 |
92, U | - | 5.65 | 7.5 ÷ 500 | 30 | 19% | 5.04 | 0.329 | 1.73 | 29.2 | 4.72 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golyatina, R.I.; Maiorov, S.A. Analytical Cross Section Approximation for Electron Impact Ionization of Alkali and Other Metals, Inert Gases and Hydrogen Atoms. Atoms 2021, 9, 90. https://doi.org/10.3390/atoms9040090
Golyatina RI, Maiorov SA. Analytical Cross Section Approximation for Electron Impact Ionization of Alkali and Other Metals, Inert Gases and Hydrogen Atoms. Atoms. 2021; 9(4):90. https://doi.org/10.3390/atoms9040090
Chicago/Turabian StyleGolyatina, Rusudan I., and Sergey A. Maiorov. 2021. "Analytical Cross Section Approximation for Electron Impact Ionization of Alkali and Other Metals, Inert Gases and Hydrogen Atoms" Atoms 9, no. 4: 90. https://doi.org/10.3390/atoms9040090
APA StyleGolyatina, R. I., & Maiorov, S. A. (2021). Analytical Cross Section Approximation for Electron Impact Ionization of Alkali and Other Metals, Inert Gases and Hydrogen Atoms. Atoms, 9(4), 90. https://doi.org/10.3390/atoms9040090