Rheopectic Behavior for Aqueous Solutions of Megamolecular Polysaccharide Sacran
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Sacran Extraction and Solution Preparation
2.2. Rheological Measurements
2.2.1. Steady-Shear Viscosity Measurement
2.2.2. Dynamic Viscoelastic Measurement
2.3. Zeta Potential Measurement
2.4. Observation of LC Domains
3. Results and Discussion
3.1. Rheopectic Behavior
3.2. Recovery from Aligned State
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Okajima, M.K.; Ono, M.; Kabata, K.; Kaneko, T. Extraction of novel sulfated polysaccharides from Aphanothece sacrum (Sur.) Okada, and its spectroscopic characterization. Pure Appl. Chem. 2007, 79, 2039–2046. [Google Scholar] [CrossRef]
- Okajima, M.K.; Bamba, T.; Kaneko, Y.; Hirata, K.; Fukusaki, E.; Kajiyama, S.; Kaneko, T. Supergiant ampholytic sugar chains with imbalanced charge ratio form saline ultra-absorbent hydrogels. Macromolecules 2008, 41, 4061–4064. [Google Scholar] [CrossRef]
- Okeyoshi, K.; Shinhama, T.; Budpud, K.; Joshi, G.; Okajima, M.K.; Kaneko, T. Micelle-mediated self-assembly of microfibers bridging millimeter-scale gap to form three-dimensional-ordered polysaccharide membranes. Langmuir 2018, 34, 13965–13970. [Google Scholar] [CrossRef] [PubMed]
- Okajima, M.K.; Mishima, R.; Amornwachirabodee, K.; Mitsumata, T.; Okeyoshi, K.; Kaneko, T. Anisotropic swelling in hydrogels formed by cooperatively aligned megamolecules. RSC Adv. 2015, 5, 86723–86729. [Google Scholar] [CrossRef]
- Ito, W.; Yamaki, M.; Kawai, M.; Mitumata, T.; Okajima, M.K.; Kaneko, T. Extraordinary swelling of hydrogels physically crosslinked by megamolecular chain sacran. Chem. Lett. 2016, 45, 339–340. [Google Scholar] [CrossRef]
- Okajima, M.K.; Kaneko, D.; Mitsumata, T.; Kaneko, T.; Watanabe, J. Cyanobacteria that produce megamolecules with efficient self-orientations. Macromolecules 2009, 42, 3057–3062. [Google Scholar] [CrossRef]
- Mitsumata, T.; Miura, T.; Takahashi, N.; Kawai, M.; Okajima, M.K.; Kaneko, T. Ionic state and chain conformation for aqueous solutions of supergiant cyanobacterial polysaccharide. Phys. Rev. E 2013, 87, 042607. [Google Scholar] [CrossRef] [Green Version]
- Okajima, M.K.; Nguyen, Q.T.; Tateyama, S.; Masuyama, H.; Tanaka, T.; Mitsumata, T.; Kaneko, T. Photoshrinkage in polysaccharide gels with trivalent metal ions. Biomacromolecules 2012, 13, 4158–4163. [Google Scholar] [CrossRef]
- Okajima, M.K.; Higashi, T.; Asakawa, R.; Mitsumata, T.; Kaneko, D.; Kaneko, T.; Ogawa, T.; Kurata, H.; Isoda, S. Gelation behavior by the lanthanoid adsorption of the cyanobacterial extracellular polysaccharide. Biomacromolecules 2010, 11, 3172–3177. [Google Scholar] [CrossRef]
- Okajima, M.K.; Nakamura, M.; Mitsumata, T.; Kaneko, T. Cyanobacterial polysaccharide gels with efficient rare-earth metal sorption. Biomacromolecules 2010, 11, 1773–1778. [Google Scholar] [CrossRef]
- Joshi, G.; Okeyoshi, K.; Okajima, M.K.; Kaneko, T. Directional control of diffusion and swelling in megamolecular polysaccharide hydrogels. Soft Matter 2016, 12, 5515–5518. [Google Scholar] [CrossRef] [PubMed]
- Okeyoshi, K.; Joshi, G.; Rawat, S.; Sornkamnerd, S.; Amornwachirabodee, K.; Okajima, M.K.; Ito, M.; Kobayashi, S.; Higashimine, K.; Oshima, Y.; et al. Drying-induced self-similar assembly of megamolecular polysaccharides through nano and submicron layering. Langmuir 2017, 33, 4954–4959. [Google Scholar] [CrossRef] [PubMed]
- Okeyoshi, K.; Joshi, G.; Okajima, M.K.; Kaneko, T. Formation of polysaccharide membranes by splitting of evaporative air-LC interface. Adv. Mater. Interfaces 2018, 5, 1701219. [Google Scholar] [CrossRef]
- Joshi, G.; Okeyoshi, K.; Mitsumata, T.; Kaneko, T. Micro-deposition control of polysaccharides on evaporative air-LC interface to design quickly swelling hydrogels. J. Colloid Interface Sci. 2019, 546, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Kanai, H.; Amari, T. Negative thixotropy in ferric-oxide suspensions. Rheol. Acta 1995, 34, 303–310. [Google Scholar] [CrossRef]
- Quadrat, O.; Bradna, P.; Dupuis, D.; Wolff, C. Negative thixotropy of solutions of partially hydrolyzed polyacrylamide. 1. The influence of shear rate on time changes of flow characteristics. Colloid Polym. Sci. 1992, 270, 1057–1059. [Google Scholar] [CrossRef]
- Buitenhuis, J.; Springer, J. Negative thixotropy of polymer solutions. 2. A systematic study of the time-dependent viscosity of partially hydrolyzed polyacrylamide. Colloid Polym. Sci. 2003, 281, 260–266. [Google Scholar] [CrossRef]
- Bradna, P.; Quadrat, O.; Dupuis, D. The influence of salt concentration on negative thixotropy in solutions of partially hydrolyzed polyacrylamide. Colloid Polym. Sci. 1995, 273, 421–425. [Google Scholar] [CrossRef]
- Bradna, P.; Quadrat, O.; Dupuis, D. Negative thixotropy of solutions of partially hydrolyzed polyacrylamide. 2. The influence of glycerol content and degree of ionization. Colloid Polym. Sci. 1995, 273, 642–647. [Google Scholar] [CrossRef]
- Bradna, P.; Quadrat, O. Criteria of negative thixotropy of poly(methyl methacrylate) solutions as a function of temperature and of the thermodynamic quality and viscosity of the solvent. Colloid Polym. Sci. 1984, 262, 189–196. [Google Scholar] [CrossRef]
- Sikora, M.; Adamczyk, G.; Krystyjan, M.; Dobosz, A.; Tomasik, P.; Berski, W.; Lukasiewicz, M.; Izak, P. Thixotropic properties of normal potato starch depending on the degree of the granules pasting. Carbohydr. Polym. 2015, 121, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Krystyjan, M.; Sikora, M.; Adamczyk, G.; Dobosz, A.; Tomasik, P.; Berski, W.; Lukasiewicz, M.; Izak, P. Thixotropic properties of waxy potato starch depending on the degree of the granules pasting. Carbohydr. Polym. 2016, 141, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Li, S.P.; Hou, W.G.; Xiao, J.C.; Hu, J.F.; Li, D.Q. Influence of measuring conditions on the thixotropy of hydrotalcite-like/montmorillonite suspension. Colloids Surf. A 2003, 224, 149–156. [Google Scholar] [CrossRef]
- Dai, X.N.; Hou, W.G.; Duan, H.D.; Ni, P. Thixotropy of Mg–Al-layered double hydroxides/kaolinite dispersion. Colloids Surf. A 2007, 295, 139–145. [Google Scholar] [CrossRef]
- Li, Y.; Hou, W.-G.; Zhu, W.-Q. Thixotropic properties of aqueous suspensions containing cationic starch and aluminum magnesium hydrotalcite-like compound. J. Colloid Interface Sci. 2007, 313, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.R.; Zhang, K.M. The structure recovery capacity of highly concentrated emulsions under shear flow via studying their rheopexy. J. Dispersion Sci. Technol. 2018, 39, 970–976. [Google Scholar] [CrossRef]
- Al-Hashmi, A.R.; Luckham, P.F.; Grattoni, C.A. Flow-induced-microgel adsorption of high-molecular weight polyacrylamides. J. Pet. Sci. Eng. 2013, 112, 1–6. [Google Scholar] [CrossRef]
- Tiziani, S.; Vodovotz, Y. Rheological effects of soy protein addition to tomato juice. Food Hydrocolloids 2005, 19, 45–52. [Google Scholar] [CrossRef]
- Oates, K.M.N.; Krause, W.E.; Jones, R.L.; Colby, R.H. Rheopexy of synovial fluid and protein aggregation. J. R. Soc. Interface 2005, 3, 167–174. [Google Scholar] [CrossRef] [Green Version]
Sacran Concentration (wt.%) | Storage Modulus G’ (Pa) | ||
---|---|---|---|
G’A | G’B | G’C | |
0.05 | 8.6 × 10−2 | 1.1 × 10−1 | 2.4 × 10−2 |
0.07 | 1. 3 × 10−1 | 6.7 × 10−1 | 9.4 × 10−2 |
0.1 | 1.2 × 10−1 | 5.8 × 10−1 | 2.9 × 10−2 |
0.3 | 2.2 × 10−1 | 6.7 | 1.1 |
0.5 | 9.6 × 10−1 | 24 | 3.2 |
1.0 | 4.4 | 92 | 18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amat Yusof, F.A.; Yamaki, M.; Kawai, M.; Okajima, M.K.; Kaneko, T.; Mitsumata, T. Rheopectic Behavior for Aqueous Solutions of Megamolecular Polysaccharide Sacran. Biomolecules 2020, 10, 155. https://doi.org/10.3390/biom10010155
Amat Yusof FA, Yamaki M, Kawai M, Okajima MK, Kaneko T, Mitsumata T. Rheopectic Behavior for Aqueous Solutions of Megamolecular Polysaccharide Sacran. Biomolecules. 2020; 10(1):155. https://doi.org/10.3390/biom10010155
Chicago/Turabian StyleAmat Yusof, Fitri Adila, Miho Yamaki, Mika Kawai, Maiko K. Okajima, Tatsuo Kaneko, and Tetsu Mitsumata. 2020. "Rheopectic Behavior for Aqueous Solutions of Megamolecular Polysaccharide Sacran" Biomolecules 10, no. 1: 155. https://doi.org/10.3390/biom10010155
APA StyleAmat Yusof, F. A., Yamaki, M., Kawai, M., Okajima, M. K., Kaneko, T., & Mitsumata, T. (2020). Rheopectic Behavior for Aqueous Solutions of Megamolecular Polysaccharide Sacran. Biomolecules, 10(1), 155. https://doi.org/10.3390/biom10010155