Serine Protease Inhibitors—New Molecules for Modification of Polymeric Biomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inhibitors
2.2. Carriers for Immobilization
2.3. Covalent Immobilization of Protease Inhibitors
- (a)
- GLA—the carrier was suspended in a solution of GLA in 0.1 M phosphate buffer pH 7.0 and shaken for 1 h at room temperature. Then carrier was washed with 0.1 M phosphate buffer pH 7.0 until the GLA odor disappeared, reduced with solution of NaBH4, and again washed with cold 0.1 M phosphate buffer pH 7.0;
- (b)
- CDI—carrier was washed with 0.1 M KH2PO4. Then carrier was suspended in CDI dissolved in 0.1 M KH2PO4 and shaken for 30 min at room temperature. After activation the carrier was washed with distilled water and cold 0.1 M KH2PO4;
- (c)
- DVS—the carrier was washed with 1 M Na2CO3. Then carrier was suspended in DVS solution in 1 M Na2CO3 and shaken for 2 h at room temperature. After activation, the carrier was washed with small portions of distilled water to reach pH 8 and then cold 0.1 M Na2HPO4.
2.4. Determination of Inhibition Activity
2.5. Determination of the Immobilization Process Efficiency and the Specificity of Chemical Bonds Formed Between Inhibitors and Immobilization Carriers
2.6. Stability at Different Temperature and PH Values
2.7. Stability during Long-Term Storage
2.8. Effect of Sterilization on Inhibition Activity of Modified Biomaterials
2.9. MIC and MBC Analysis
2.10. Analysis of Biofilm Formation
2.11. Analysis of Biomaterial Surface Structure Using Optical Profilometry
2.12. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Parameter | Characteristics |
---|---|
Sds | Summit Density, the number of summits per unit area that make up the surface |
Sq | Root mean square roughness |
Ssk | Skewness of the 3D surface texture Ssk > 0—a more convex surface Ssk < 0—a more concave surface |
Sku | Kurtosis—distribution of peaks on the surface of the material Sku = 3—normal distribution Sku > 3—inordinately high peaks Sku < 3—deep valleys |
Sdq | General measurement of the slopes that comprise the surface |
Sz | Characterizes the average peak to valley magnitude, which contains most of the surface heights |
Ssc | Helps predict the degree of elastic and plastic deformation of a surface under different loading conditions |
Sdr | Differentiates surfaces of similar amplitudes and average roughness |
References
- Maitz, M.F. Applications of synthetic polymers in clinical medicine. Biosurf. Biotribol. 2015, 1, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Venkatraman, S.; Boey, F.; Lao, L.L. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Prog. Polym. Sci. 2008, 33, 853–874. [Google Scholar] [CrossRef]
- FitzGerald, S.F.; Kelly, C.; Humphreys, H. Diagnosis and treatment of prosthetic aortic graft infections: Confusion and inconsistency in the absence of evidence or consensus. J. Antimicrob. Chemother. 2005, 56, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Trampuz, A.; Zimmerli, W. Prosthetic joint infections: Update in diagnosis and treatment. Swiss Med. Wkly. 2005, 135, 243–251. [Google Scholar]
- Russu, E.; Mureşan, A.; Grigorescu, B. Vascular graft infections management. Management in Health 2011, XV, 16–19. [Google Scholar]
- Mah, T.C.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends. Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surface. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- De Angelis, G.; Mutters, N.T.; Minkley, L.; Holderried, F.; Tacconelli, E. Prosthetic joint infections in the elderly. Infection 2015, 43, 629–637. [Google Scholar] [CrossRef]
- Ricco, J.; Assadian, A.; Schneider, F.; Assadian, O. In vitro evaluation of the antimicrobial efficacy of a new silver-triclosan vs. a silver collagen-coated polyester vascular graft against methicillin-resistant Staphylococcus aureus. J. Vasc. Surg. 2012, 55, 823–829. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Zhang, X.; Savino, K.; Gabrys, P.; Gao, Y.; Chaimayo, W.; Miller, B.L.; Yates, M.Z. Antimicrobial silver-hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surf. Coat. Technol. 2016, 301, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Setyawati, M.I.; Leong, D.T.; Xie, J. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 2018, 357, 1–17. [Google Scholar] [CrossRef]
- Goëau-Brissonnière, O.; Fabre, D.; Leflon-Guibout, V.; Di Centa, I.; Nicolas-Chanoine, M.; Coggia, M. Comparison of the resistance to infection of rifampin-bonded gelatin-sealed and silver/collagen-coated polyester prostheses. J. Vasc. Surg. 2002, 35, 1260–1263. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Richter, T.; Schardey, H.M.; Wittmann, F.; Mayr, S.; Schmitt-Sody, M.; Blasenbreu, S.; Heiss, M.M.; Gabka, C.; Angele, M.K. Rifampin and triclosan but not silver is effective in preventing bacterial infection of vascular Dacron graft material. Eur. J. Vasc. Endovasc. Surg. 2003, 26, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Hardman, S.; Cope, A.; Swann, A.; Bell, P.R.F.; Naylor, A.R.; Hayes, P.D. An in vitro model to compare the antimicrobial activity of silver-coated versus rifampicin-soaked vascular grafts. Ann. Vasc. Surg. 2004, 18, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Ginalska, G.; Osińska, M.; Uryniak, A.; Urbanik-Sypniewska, T.; Belcarz, A.; Rzeski, W.; Wolski, A. Antibacterial activity of gentamicin-bonded gelatin-sealed polyethylene terephthalate vascular prostheses. Eur. J. Vasc. Endovasc. Surg. 2005, 29, 419–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginalska, G.; Kowalczuk, D.; Osińska, M. A chemical method of gentamicin bonding to gelatine-sealed prosthetic vascular grafts. Int. J. Pharm. 2005, 288, 131–140. [Google Scholar] [CrossRef]
- Ginalska, G.; Kowalczuk, D.; Osińska, M. Amikacin-loaded vascular prosthesis as an effective drug carrier. Int. J. Pharm. 2007, 339, 39–46. [Google Scholar] [CrossRef]
- Kuehn, C.; Graf, K.; Mashaqi, B.; Pichlmaier, M.; Heuer, W.; Hilfiker, A.; Stiesch, M.; Chaberny, I.F.; Haverich, A. Prevention of early vascular graft infection using regional antibiotic release. J. Surg. Res. 2010, 164, 185–191. [Google Scholar] [CrossRef]
- Mandal, S.M.; Porto, W.F.; De, D.; Phule, A.; Korpole, S.; Ghosh, A.K.; Roy, S.K.; Franco, O.L. Screening of serine protease inhibitors with antimicrobial activity using iron oxide nanoparticles functionalized with dextran conjugated trypsin and in silico analyses of bacterial serine protease inhibition. Analyst 2014, 139, 464–472. [Google Scholar] [CrossRef]
- Pletzer, D.; Coleman, S.R.; Hancock, R.E.W. Anti-biofilm peptides an a new weapon in antimicrobial warfare. Curr. Opin. Microbiol. 2016, 33, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Zida, A.; Bamba, S.; Yacouba, A.; Ouedraogo-Traore, R.; Guiguemdé, R.T. Anti-Candida albicans natural products sources of new antifungal drugs: A review. J. Mycol. Med. 2016, 27, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Tapader, R.; Basu, S.; Pal, A. Secreted proteases: A new insight in the pathogenesis of extraintestinal pathogenic Escherichia coli. Int. J. Med. Microbiol. 2019, 309, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Lister, J.L.; Horswill, A.R. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front. Cell. Infect. Mi. 2014, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naglik, J.R.; Challacombe, S.J.; Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. R. 2003, 67, 400–428. [Google Scholar] [CrossRef] [Green Version]
- Al-Warfy, F.; Brzozowska, E.; Górska, S.; Gamian, A. Pathogenic factors of Pseudomonas aeruginosa – the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Hig. Med. Dosw. 2016, 70, 78–91. [Google Scholar] [CrossRef]
- Onesti, S.; Brick, P.; Blow, D.M. Crystal structure of a Kunitz – type trypsin inhibitor from Erythrina coffra seeds. J. Mol. Biol. 1991, 217, 153–176. [Google Scholar] [CrossRef]
- Powers, J.C.; Asgian, J.L.; Ekici, Ö.D.; James, K.E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev. 2002, 102, 4639–4750. [Google Scholar] [CrossRef]
- Kang, U.; Baek, J.; Ryu, S.; Kim, J.; Yu, M.; Lee, C. Kinetic mechanism of protease inhibition by α1-antitrypsin. Biochem. Biophys. Res. Commun. 2004, 323, 409–415. [Google Scholar] [CrossRef]
- Szałapata, K.; Osińska-Jaroszuk, M.; Jarosz-Wilkołazka, A. Inhibitors of enzymes with potential medical applications. Postępy Biochemii 2017, 63, 261–268. [Google Scholar]
- Patick, A.K.; Potts, K.E. Protease inhibitors as antiviral agents. Clin. Microbiol. Rev. 1998, 11, 614–627. [Google Scholar] [CrossRef] [Green Version]
- Wensing, A.M.J.; van Maarseveen, N.M.; Nijhuis, M. Fifteen years of HIV protease inhibitors: Raising the barrier to resistance. Antiviral. Res. 2010, 85, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Zhirnov, O.P.; Klenk, H.D.; Wright, P.F. Aprotinin and similar protease inhibitors as drug against influenza. Antiviral. Res. 2011, 92, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Raphel, J.; Holodnyi, M.; Goodman, S.B.; Heilshorn, S.C. Multifuncional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implant. Biomaterials 2016, 84, 301–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, L.; Williams, R.L.; Anuforom, O.; Berwick, M.R.; Halstead, F.; Hughes, E.; Stamboulis, A.; Oppenheim, B.; Gough, J.; Grover, L.; et al. Antimicrobial peptide coatings for hydroxyapatite: Electrostatic and covalent attachment of antimicrobial peptides to surface. J. Royal Soc. Interface 2016, 14, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Li, K.; Xiang, D.; Zhang, D.; Yang, D.; Zhang, J.; Mao, J.; Wang, H.; Guo, W. Surface immobilization of heparin on functional polyisobutylene-based thermoplastic elastomer as a potential artificial vascular graft. Appl. Surf. Sci. 2018, 445, 8–15. [Google Scholar] [CrossRef]
- Xu, W.; Flores-Mireles, A.L.; Cusumano, Z.T.; Takagi, E.; Hultgren, S.J.; Caparon, M.G. Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter associated urinary tract infection. NPJ Biofilms Microbi. 2017, 3, 1–12. [Google Scholar] [CrossRef]
- Yau, J.W.; Stafford, A.R.; Liao, P.; Fredenburgh, J.C.; Roberts, R.; Brash, J.L.; Weitz, J.I. Corn trypsin inhibitor coating attenuates the prothrombotic properties of catheters in vitro and in vivo. Acta Biomater. 2012, 8, 4092–4100. [Google Scholar] [CrossRef]
- Bryjak, J.; Aniulyte, J.; Liesiene, J. Evaluation of main-tailored cellulose-based carriers in glucoamylase immobilization. Carbohydr. Res. 2007, 342, 1105–1109. [Google Scholar] [CrossRef]
- Lee, T.; Lin, Y. Trypsin inhibitor and trypsin–like protease activity in air – or submergence – grown rice (Oryza sativa L.) coleoptiles. Plant. Sci. J. 1995, 106, 43–54. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- CLSI Protocol; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard - Second Edition (M27-A3); Clinical & Laboratory Standards Institute (Former NCCLS): Wayne, NJ, USA, 2002.
- CLSI Protocol, Method for dilution antimicrobial susceptibility testing for bacteria that grow aerobically; Approved Standard (M07-A10) - Tenth Edition; Clinical & Laboratory Standards Institute (Former NCCLS): Wayne, NJ, USA, 2015.
- Brown, H.L.; van Vielt, A.H.M.; Betts, R.P.; Reuter, M. Tetrazolium reduction allows assessment of biofilm formation by Campylobacter jejuni in a food matrix model. J. Appl. Microbiol. 2013, 115, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Revest, M.; Camou, F.; Senneville, E.; Caillon, E.; Laurent, F.; Calvet, B.; Feugier, P.; Batt, M.; Chidiac, C. Groupe de Réflexion sur les Infections de Prothèses vasculaires (GRIP), Medical treatment of prosthetic vascular graft infections: Review of the literature and proposal of Working Group. Int. J. Antimicrob. Agents. 2015, 46, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Bisdas, T.; Beckmann, E.; Marsch, G.; Burgwitz, K.; Wilhelmi, M.; Kuehn, C.; Haverich, A.; Teebken, O.E. Prevention of vascular graft infections with antibiotic graft impregnation prior to implantation: In vitro comparison between daptomycin, rifampin and nebacetin. Eur. J. Vasc. Endovasc. Surg. 2012, 43, 448–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, F.; Carvalho, I.F.; Montelaro, R.C.; Gomes, P.; Martins, M.C.L. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterials surfaces. Acta Biomater. 2011, 7, 1431–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, W.; Luo, J.; Deng, Y.; Sun, Y. Biomaterials immobilized with chitosan for rechargeable antimicrobial drug delivery. J. Biomed. Mater. Res. A 2013, 101, 447–455. [Google Scholar] [CrossRef]
- Alves, D.; Pereira, M.O. Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surface. Biofouling 2014, 30, 483–499. [Google Scholar] [CrossRef]
- Berard, X.; Stecken, L.; Pinaquy, J.-B.; Cazanave, C.; Puges, M.; Pereyre, S.; Bordenave, L.; M’Zali, F. Comparison of the antimicrobial properties of silver impregnated vascular grafts with and without Triclosan. Eur. J. Vasc. Endovasc. Surg. 2016, 51, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Jeanmonod, P.; Laschke, M.W.; Gola, N.; von Heesen, M.; Glanemann, M.; Dold, S.; Menger, M.D.; Moussavian, M.R. Silver acetate coating promotes early vascularization of Dacron vascular grafts without inducing host tissue inflammation. J. Vasc. Surg. 2013, 58, 1637–1643. [Google Scholar] [CrossRef] [Green Version]
- Tautenhahn, J.; Meyer, F.; Buerger, T.; Schmidt, U.; Lippert, H.; Koenig, W.; Koenig, B. Interactions of neutrophils with silver-coated vascular polyester grafts. Langenbeck’s Arch. Surg. 2010, 395, 143–149. [Google Scholar] [CrossRef]
- Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Invest. 2003, 111, 1265–1273. [Google Scholar] [CrossRef]
- Romanò, C.L.; Scarponi, S.; Gallazzi, E.; Romanò, D.; Drago, L. Antibacterial coating of implants in orthopaedics and trauma: A classification proposal in an evolving panorama. J. Orthop. Surg. Res. 2015, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behaviour in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 2004, 37, 790–802. [Google Scholar] [CrossRef] [PubMed]
- López-Gallego, F.; Betancor, L.; Mateo, C.; Hidalgo, A.; Alonso-Morales, N.; Dellamora-Ortiz, G.; Guisán, J.M.; Fernández-Lafuente, R. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J. Biotechnol. 2005, 119, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.R.; Murzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Cao, L. Immobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 2005, 9, 217–226. [Google Scholar] [CrossRef]
- Mendes, G.; Brandão, T.; Silva, C.L.M. Ethylene oxide sterilization of medical devices: A review. Am. J. Infect. Control 2007, 35, 574–581. [Google Scholar] [CrossRef]
- De Bernardis, F.; Sullivan, P.A.; Cassone, A. Aspartyl proteinases of Candida albicans and their role in pathogenicity. Med. Mycol. 2001, 39, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Ingmer, H.; Brøndsted, L. Proteases in bacterial pathogenesis. Res. Microbiol. 2009, 160, 704–710. [Google Scholar] [CrossRef]
- Costa, F.M.T.A.; Maia, S.R.; Gomes, P.A.C.; Martins, M.C.L. Dhvar5 antimicrobial peptide (AMP) chemoselective covalent immobilization results on higher anti-adherence effect than simple physical adsorption. Biomaterials 2015, 52, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Merrett, K.; Cornelius, R.M.; McClung, W.G.; Unsworth, L.D.; Sheardown, H. Surface analysis methods for characterizing polymeric biomaterials. J. Biomater. Sci. Polym. Ed. 2002, 13, 593–621. [Google Scholar] [CrossRef]
- Balla, V.K.; Bodhak, S.; Bose, S.; Bandyopadhyay, A. Porous tantalum structures for bone implant: Fabrication, mechanical and in vitro biological properties. Acta Biomater. 2010, 6, 3349–3359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visan, A.; Cristescu, R.; Stefan, N.; Miroui, M.; Nita, C.; Socol, M.; Florica, C.; Rasoga, O.; Zgura, I.; Sima, L.E.; et al. Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering. Appl. Surf. Sci. 2017, 417, 234–243. [Google Scholar] [CrossRef]
- Domínguez-Trujillo, C.; Ternero, F.; Rodríguez-Ortiz, J.A.; Heise, S.; Boccaccini, A.R.; Lebrato, J.; Torres, Y. Bioactive coatings on porous titanium for biomedical applications. Surf. Coat. Tech. 2018, 349, 584–592. [Google Scholar] [CrossRef]
Stage of Research | Carrier Type (Manufacturer) | Carrier Characteristics |
---|---|---|
STAGE I optimization process | Controlled pore glass (POCh) | pore diameter (D) – 25 nm pore volume (Vp) – 1.27 cm3/g specific surface of carrier (SHg) – 176.69 m2/g |
STAGE II biomaterials functionalization | Uni-Graft® K DV prosthesis (Braun Melsungen AG) | knitted gelatin-impregnated polyester prosthesis |
Skull bone prosthesis - Codubix (Tricomed) | polyester-polypropylene prosthesis with mechanical properties similar to natural bone | |
Hemagard Intergard prosthesis (Maquet Getinge Group) | knitted polyester vascular graft impregnated with collagen |
Inhibitor | STAGE I—Optimization of Immobilization Process on CPG | STAGE II—Immobilization Process on Biomaterials Surface | |||||||
---|---|---|---|---|---|---|---|---|---|
Optimal Cross-Linking Compound | Optimal Concentration of Cross-Linking Compound | Optimal Concentration of Inhibitor | Optimal Storage Buffer | Stability during 1-Month Storage (%) | Biomaterial | Activity (IU/mg of Carrier) | Immobilization Yield (%) | Types of Bonds (%) | |
GLA | 5% | 0.6 mg/mL | 0.1 M phosphate buffer pH 7.0 | 75.6 | Codubix | 2.1 ± 0.5 | 41.7 ± 2.1 | covalent – 87.6 non-covalent – 12.4 | |
AEBSF | Uni-Graft | 31.8 ± 1.5 | 55.5 ± 2.0 | covalent – 93.7 non-covalent – 6.3 | |||||
Hemagard | 5.58 ± 0.9 | 56.4 ± 1.7 | covalent – 94.2 non-covalent – 5.8 | ||||||
SI | GLA | 2.5% | 1.5 mg/mL | 0.1 M phosphate-citrate buffer pH 5.0 | 58.0 | Codubix | 12.6 ± 3.5 | 43.3 ± 1.6 | covalent – 59.2 non-covalent – 40.8 |
Uni-Graft | 52.2 ± 6.8 | 43.9 ± 1.3 | covalent – 89.0 non-covalent – 11.0 | ||||||
Hemagard | 26.3 ± 5.4 | 51.3 ± 2.1 | covalent – 86.4 non-covalent – 13.6 | ||||||
GLA | 2.5% | 0.5 mg/mL | 0.1 M phosphate buffer pH 7.0 | 47.6 | Codubix | 5.0 ± 1.1 | 11.3 ± 0.9 | covalent – 72.9 non-covalent – 27.1 | |
α1-AT | Uni-Graft | 19.0 ± 8.4 | 9.1 ± 0.7 | covalent – 45.8 non-covalent – 54,2 | |||||
Hemagard | 18.6 ± 2.2 | 25.9 ± 1.2 | covalent – 65.3 non-covalent – 34.7 |
Inhibitor | Minimal Inhibitory Concentration (MIC) | |||
---|---|---|---|---|
E. coli 9.3 × 103 cfu/mL | S. aureus 2.1 × 104 cfu/mL | P. aeruginosa 1.1 × 104 cfu/mL | C. albicans 2.1 × 105 cfu/mL | |
AEBSF | 2 mg/mL | 2 mg/mL | 0.5 mg/mL | nd |
SI | nd | nd | nd | nd |
α1-AT | nd | nd | nd | nd |
Inhibitor | Minimal Bactericidal or Fungicidal Concentration (MBC/MFC) | |||
---|---|---|---|---|
E. coli 9.3 × 103 cfu/mL | S. aureus 2.1 × 104 cfu/mL | P. aeruginosa 1.1 × 104 cfu/mL | C. albicans 2.1 × 105 cfu/mL | |
AEBSF | 4 mg/mL | 3 mg/mL | 3 mg/mL | nd |
SI | nd | nd | nd | nd |
α1-AT | nd | nd | nd | nd |
Biomaterial | Sds | Sq | Ssk | Sku | Sdq | Sz (nm) | Ssc (1/nm) | Sdr (%) |
---|---|---|---|---|---|---|---|---|
Uni-Graft (unmodified) | 1.545 ± 0.33 * | 25.89 ± 9.96 | −0.209 ± 0.73 | 6.3 ± 6.7 | 0.1659 ± 0.09 | 230.7 ± 104.1 | 0.0011 ± 0.0006 | 1.73 ± 1.99 |
Uni-Graft + AEBSF | 1.031 ± 0.26 * | 32.54 ± 11.1 | 0.298 ± 1.19 | 7.7 ± 7.7 | 0.1575 ± 0.16 | 280.0 ± 115.0 | 0.0009 ± 0.0005 | 1.38 ± 1.28 |
Uni-Graft + α1-AT | 1.035 ± 0.35 * | 34.22 ± 20.61 | −0.033 ± 0.98 | 6.09 ± 3.96 | 0.1722 ± 0.09 | 263.6 ± 146.5 | 0.0010 ± 0.0005 | 1.76 ± 2.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szałapata, K.; Osińska-Jaroszuk, M.; Kapral-Piotrowska, J.; Pawlikowska-Pawlęga, B.; Łopucki, R.; Mroczka, R.; Jarosz-Wilkołazka, A. Serine Protease Inhibitors—New Molecules for Modification of Polymeric Biomaterials. Biomolecules 2020, 10, 82. https://doi.org/10.3390/biom10010082
Szałapata K, Osińska-Jaroszuk M, Kapral-Piotrowska J, Pawlikowska-Pawlęga B, Łopucki R, Mroczka R, Jarosz-Wilkołazka A. Serine Protease Inhibitors—New Molecules for Modification of Polymeric Biomaterials. Biomolecules. 2020; 10(1):82. https://doi.org/10.3390/biom10010082
Chicago/Turabian StyleSzałapata, Katarzyna, Monika Osińska-Jaroszuk, Justyna Kapral-Piotrowska, Bożena Pawlikowska-Pawlęga, Rafał Łopucki, Robert Mroczka, and Anna Jarosz-Wilkołazka. 2020. "Serine Protease Inhibitors—New Molecules for Modification of Polymeric Biomaterials" Biomolecules 10, no. 1: 82. https://doi.org/10.3390/biom10010082
APA StyleSzałapata, K., Osińska-Jaroszuk, M., Kapral-Piotrowska, J., Pawlikowska-Pawlęga, B., Łopucki, R., Mroczka, R., & Jarosz-Wilkołazka, A. (2020). Serine Protease Inhibitors—New Molecules for Modification of Polymeric Biomaterials. Biomolecules, 10(1), 82. https://doi.org/10.3390/biom10010082